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Abstract

We propose a method of comparing two functional linear models in which explana-

tory variables are functions (curves) and responses can be either scalars or functions.

In such models, the role of parameter vectors (or matrices) is played by integral op-

erators acting on a function space. We test the null hypothesis that these operators

are the same in two independent samples. The complexity of the test statistics

increases as we move from scalar to functional responses and relax assumptions on

the covariance structure of the regressors. They all, however, have an asymptotic

chi–squared distribution with the number of degrees of freedom which depends on a

specific setting. The test statistics are readily computable using the R package fda,

and have good finite sample properties. The test is applied to egg–laying curves of

Mediterranean flies and to data from terrestrial magnetic observatories.
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1 Introduction

In the last decade, methods of functional data analysis have been found useful in a number

of applied fields, including environmental science, finance, genetics, biology, public health,

geophysics, image and signal processing, to name just a few, see, for example, Besse et al.

(2000), Damon and Guillas (2002), Laukaitis and Račkauskas (2002), Ando et al. (2004),

Fernández de Castro et al. (2005), Morris et al. (2006), Müller et al. (2006), Hlubinka and

Prchal (2007), Nerini and Ghattas (2007), Febrero et al. (2007), Glendinning and Fleet

(2007). The functional linear model, in its various forms, stands out as a particularly

useful tool in many such analyses, and has consequently been thoroughly studied, see

Cuevas et al. (2002), Malfait and Ramsay (2003), Cardot et al. (2003a), Chiou et al.

(2004), Müller and Stadtmüller (2005), Yao et al. (2005), Cai and Hall (2006), Chiou and

Müller (2007), Li and Hsing (2007), among others.

This paper is concerned with the following problem of functional data analysis. We

observe two samples: sample 1: (Xi, Yi), 1 ≤ i ≤ N, and sample 2: (X∗j , Y
∗
j ), 1 ≤ j ≤M .

The explanatory variables Xi and X∗j are functions over a compact subset of a Euclidean

space, whereas the responses Yi and Y ∗j can be either functions or scalars (the Yi and Y ∗j

are either both functions, or both scalars). We model the dependence of the Yi (Y ∗j ) on

the Xi (X∗j ) by the functional regression models

Yi = ΨXi + εi, Y ∗j = Ψ∗X∗j + ε∗j ,

where Ψ and Ψ∗ are linear operators whose domain is a function space, and which take

values either in the same function space or in the real line. We wish to test if the operators

Ψ and Ψ∗ are equal.

The above testing problem is directly motivated by our work with terrestrial mag-

netometer data. Specifically, we have been interested in finding out if interactions of

currents of charged particles flowing in the ionosphere and the magnetosphere in various

states of the near Earth space and at various times are statistically significantly different.

The problem is truly functional, as the shapes of the daily magnetogram curves have

been used for almost one hundred years to describe various electrodynamic phenomena
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in near Earth space. Digital observatories measure the components of the magnetic field

every 5 seconds. In this application, which is described in some detail in Section 4, the

model is fully functional (both responses and regressors are curves). The case of scalar

responses is also included because of its importance in many applications, see e.g. Cardot

et al. (2003a), Müller and Stadtmüller (2005) and Ferraty and Vieu (2006). Like classical

two sample procedures in various forms, our methodology is likely to be applicable to

a wide range of problems, where estimating two significantly different functional linear

regressions on subsamples of a larger sample may reveal additional features.

Even in the traditional multivariate setting, except for comparing mean responses, the

problem of comparing the regression coefficients for two models based on two different

samples is not trivial, and we could not find a ready reference for it. In the functional

setting, it becomes even more complex, as the dimension of the data must be reduced,

and the resulting approximation error must be controlled. We achieve it by expanding

the data with respect to the functional principal components (FPC’s), see e.g. Chapter

8 of Ramsay and Silverman (2005). In addition to being random, the FPC’s can be

very different for the two samples, a problem not encountered in existing literature on

functional linear models. Generally, due to different FPC’s structures, working with two

functional samples is difficult, but important theoretical advances, mostly in the context

of canonical correlation analysis, have recently been made, see He et al. (2003), Cupidon

et al. (2007) and Eubank and Hsing (2007). Our paper aims at developing a practical

testing procedure, but some complexity in the form of the test statistics and the derivation

of their asymptotic properties is unavoidable. Our theory is developed using population,

rather than estimated FPC’s. Estimation of the FPC’s introduces additional terms, and

would make the arguments even longer. The additional terms are generally asymptotically

or practically negligible, and the simulations we present here show that this is indeed the

case in our setting. Gabrys and Kokoszka (2007), Horváth et al. (2009), Berkes et al.

(2009), among others, show how the estimation of the FPC’s is handled in simpler settings.

Other approaches to comparing two samples of curves, but not samples of dependent

pairs of curves, have been explored in Laukaitis and Račkauskas (2005), Ferraty et al.
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(2007), Benko et al. (2009).

After introducing the requisite concepts and notation in Section 2, we describe the

testing procedures in Section 3. Applications to medfly and magnetometer data are

presented in Section 4. The asymptotic results and their proofs are collected in Section

5.

2 Preliminaries

We state the assumptions and introduce the notation for the observations (Xi, Yi), i =

1, 2, . . . N . The observations (X∗j , Y
∗
j ), j = 1, 2, . . .M, are assumed to satisfy the same

assumptions with the superscript ∗ added to the corresponding quantities. The two

samples are assumed to be independent.

Throughout this paper we take 〈·, ·〉 to be the L2([0, 1]) inner product.

Assumption 2.1 The observations {Xn} are iid mean zero random functions in L2([0, 1])

satisfying

E||Xn||4 = E
[∫

X2
n(t)dt

]2
<∞.

For the linear model with scalar responses, we formulate the following assumption.

Assumption 2.2 The scalar responses Yi satisfy

Yi =
∫ 1

0
ψ(s)Xi(s)ds+ εi,

with iid mean zero errors εi satisfying Eε4
i < ∞, and ψ ∈ L2([0, 1]). The errors εi and

the regressors Xi are independent.

In the case of functional responses, we define an analogous assumption.

Assumption 2.3 The functional responses Yi ∈ L2([0, 1]) satisfy

Yi(t) =
∫ 1

0
ψ(t, s)Xi(s)ds+ εi(t),
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with iid mean zero errors εi satisfying

E||εn||4 = E
[∫

ε2
n(t)dt

]2
<∞,

and ψ ∈ L2([0, 1]× [0, 1]). The errors εi and the regressors Xi are independent.

Our objective is to test

H0 : ‖ψ − ψ∗‖ = 0

against

HA : ‖ψ − ψ∗‖ 6= 0,

where the norm is in L2([0, 1]) under Assumption 2.2 and in L2([0, 1] × [0, 1]) under

Assumption 2.3.

The covariance operator of the Xn is defined by

C(x) = E[〈Xn, x〉Xn], x ∈ L2([0, 1])

and its eigenfunctions vj and eigenvalues λj by C(vj) = λjvj, j ≥ 1. The eigenfunctions

vj form an orthonormal basis of L2([0, 1]). We also call them the functional principal

components (FPC’s).

The empirical covariance operator is defined by

Ĉ(x) =
1

N

N∑
n=1

〈Xn, x〉Xn, x ∈ L2([0, 1]),

and its eigenelements by Ĉ(v̂j) = λ̂j v̂j, j = 1, 2, . . . N.

Since the operators C and Ĉ are symmetric and nonnegative definite, the eigenvalues

λj and λ̂j are nonnegative. Following the usual convention, we assume that λ1 > λ2 > . . .

with the same ordering for the empirical eigenvalues. Recall that
∑∞

j=1 λj = E||Xn||2,

see e.g. Section 1.5 of Bosq (2000), so v1 explains the largest portion of the variance of

X, with the subsequent FPC’s explaining decreasing contributions to the variance. Our

asymptotic results require that the first p eigenvalues are nonzero and distinct, so we

impose an additional assumption.

Assumption 2.4 The eigenvalues of the covariance operator C satisfy

λ1 > λ2 > . . . λp > λp+1.
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3 Testing procedure

In this section we introduce the testing procedure. We start with the easier case of scalar

responses, and then generalize to the more technical case of functional response variables,

which uses the results developed in the scalar setting. A reader interested only in the

practical application can start with Section 3.3, which provides an outline.

3.1 Scalar responses

Since ψ ∈ L2([0, 1]), we can expand it as ψ(s) =
∑∞

i=1 µivi(s), where µi = 〈ψ, vi〉. Conse-

quently, the response variables can be expressed as Yi =
∑∞

k=1 µk 〈Xi, vk〉+εi. We truncate

the above expansion at 1 ≤ p < ∞, and combine the error made by the truncation with

the εi. Defining ε′i = εi +
∑∞

k=p+1 µk 〈Xi, vk〉, the response is equivalently given by

Yi =
p∑

k=1

µk 〈Xi, vk〉+ ε′i.(3.1)

In terms of matrix and vector notation we have

Y = Xµ+ ε′,

where, for 1 ≤ i ≤ N and 1 ≤ j ≤ p,

Y(i) = Yi, X(i, j) = 〈Xi, vj〉 , µ(j) = µj, ε′(i) = ε′i.

The least squares estimator for µ is therefore

µ̂ =
(
XT X

)−1
XT Y.(3.2)

By Theorem 5.1, µ̂ is a consistent estimator of µ, and for the second sample, the anal-

ogously defined µ̂∗ a consistent estimator of µ∗. Thus we can base a test statistic on

the difference µ̂ − µ̂∗. To motivate our construction, assume first that the covariance

operators of the Xi and X∗j are equal and the errors εi and ε∗j have equal variances, i.e.

E(X1(s)X1(t)) = E(X∗1 (s)X∗1 (t)) = c(s, t)(3.3)
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and

var(ε1) = var(ε∗1).(3.4)

In order to develop meaningful asymptotic results we assume that the two samples

sizes are of roughly the same order. i.e. we assume there exists a constant 0 < ζ < ∞

such that

N/M → ζ, N →∞.(3.5)

Finally we introduce the random variable

Λp = N(1 + ζ)−1(µ̂− µ̂∗)T Σ−1
p (µ̂− µ̂∗),(3.6)

where Σp is the common asymptotic covariance matrix of µ̂ and µ̂∗ defined by

Σp(i, i) = λ−1
i σ2 + λ−2

i var

〈X1, vi〉
∞∑

k=p+1

µk 〈X1, vk〉

 , i = 1, . . . , p;(3.7)

Σp(i, j) = λ−1
i λ−1

j E

〈X1, vi〉 〈X1, vj〉

 ∞∑
k=p+1

µk 〈X1, vk〉

2
 , i 6= j.(3.8)

The estimation of Σp and Λp is discussed later on in this section.

The following theorem, which follows immediately from Theorem 5.2, shows that Λp

has a chi–squared asymptotic distribution.

Theorem 3.1 Suppose Assumptions 2.1, 2.2, 2.4, and conditions (3.3), (3.4), and (3.5)

hold. Then, Λp
d→ χ2(p), as N → ∞, where Λp is defined by (3.6), and χ2(p) is a

chi-squared random variable with p degrees of freedom.

We therefore propose the following test statistic when the covariances are equal

Λ̂p = N(1 +N/M)−1(µ̂− µ̂∗)T (Σ̂p)−1(µ̂− µ̂∗).(3.9)

We use the empirical diagonal approximation to the matrix Σp given by

Σ̂p = σ̂2



λ̂−1
1 0 · · · 0

0 λ̂−1
2 · · · 0

...
...

...
...

0 0 · · · λ̂−1
p


;
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where σ̂ are residual standard deviations from the estimated regression models. The

matrix Σ̂
∗
p is defined analogously.

In many applications, the covariance kernels c(s, t) and c∗(s, t) are not necessarily

equal. Since the two kernels can have potentially different eigenfunctions we instead

consider an arbitrary basis {wi} of L2([0, 1]). The kernels ψ and ψ∗ are expanded as

ψ(s) =
∞∑
i=1

µiwi(s), ψ∗(s) =
∞∑

j=1

µ∗jwj(s),(3.10)

and so

Yi =
∞∑

k=1

µk 〈Xi, wk〉+ εi, Y ∗j =
∞∑

k=1

µ∗k
〈
X∗j , wk

〉
+ ε∗j .

Truncating both sums at p, the response variables can again be expressed as

Y = Xµ+ ε′, Y∗ = X∗µ∗ + ε′∗,

with all terms analogously defined with respect to our new basis. While this appears

similar to our prior calculations, we are expanding with respect to an arbitrary basis

which means that X and ε′ are now potentially correlated. The least squares estimators

take the same form

µ̂ = (XT X)−1XT Y, µ̂∗ = (X∗T X∗)−1X∗T Y∗.

Thus we can once again compare µ̂ and µ̂∗ to test the null hypothesis. To analyze the

asymptotic behavior of these estimates we consider the relation

µ̂ = µ+ (XT X)−1XTε′.

The vector XTε′ can be expressed as

XTε′ = A + B +Nm,

where

A =



N∑
i=1

εi 〈Xi, w1〉
...

N∑
i=p

εi 〈Xi, wp〉


, B =



N∑
i=1

∞∑
k=p+1

µk (〈Xi, w1〉 〈Xi, wk〉 − E[〈X1, w1〉 〈X1, wk〉])

...
N∑

i=1

∞∑
k=p+1

µk (〈Xi, wp〉 〈Xi, wk〉 − E[〈X1, wp〉 〈X1, wk〉])


,
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have mean zero and are uncorrelated since the error terms are independent of the ex-

planatory functions. The term m represents the bias introduced by using an arbitrary

basis which is given by

m =



∞∑
k=p+1

µkE[〈X1, w1〉 〈X1, wk〉]

...
∞∑

k=p+1

µkE[〈X1, wp〉 〈X1, wk〉]


.

This yields the form

µ̂ = µ+ (XT X)−1A + (XT X)−1B +N(XT X)−1m.

Clearly A and B are sums of iid random vectors with means zero and finite covariance

matrices due to Assumptions 2.1 and 2.2. Thus by the multivariate central limit theorem

N−1/2(A B)T is asymptotically normal. We have by the strong law of large numbers

that

N−1
N∑

i=1

〈Xi, wj〉 〈Xi, wk〉
a.s.→ E 〈X1, wj〉 〈X1, wk〉 ,

for j = 1, . . . , p and k = 1, . . . , p, or in matrix notation

N−1XT X
a.s.→ Σ1,

where the (j, k) entry of Σ1 is E 〈X1, wj〉 〈X1, wk〉. Thus by Slutsky’s Lemma N−1/2(µ̂−

µ − N(XT X)−1m) is asymptotically normal. Since A has zero mean, we have that the

(i, j) entry of its covariance matrix is given by

E
N∑

k=1

εk 〈wi, Xk〉 εk 〈wj, Xk〉 = Nσ2E 〈wi, X1〉 〈wj, X1〉 ,

and therefore

cov(A) = Nσ2Σ1.

Turning to B, the (i, j) entry of its covariance matrix is given by

N
∞∑

k=p+1

∞∑
r=p+1

µkµrE{(〈X1, wi〉 〈X1, wk〉 − E[〈X1, wi〉 〈X1, wk〉])
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(〈X1, wj〉 〈X1, wr〉 − E[〈X1, wj〉 〈X1, wr〉])}.

We will denote the covariance matrix of B as NΣ2. Combining everything, we have by

Slutsky’s Lemma

N1/2(µ̂− µ−N(XT X)−1m)
d→ N(0,C),

where C = σ2Σ−1
1 + Σ−1

1 Σ2Σ
−1
1 .

An identical argument gives, for the second sample,

M1/2(µ̂∗ − µ∗ −M(X∗T X∗)−1m∗)
d→ N(0,C∗),

with all terms analogously defined. Combined with assumption 3.5 we therefore conclude

N1/2(µ̂− µ̂∗ − (N(XT X)−1m−M(X∗T X∗)−1m∗))
d→ N(0,C + ζC∗).

Neglecting the biases m and m∗, we thus arrive at the test statistic

Λ̂p = N(µ̂− µ̂∗)T (σ̂2Σ̂1 + (N/M)σ̂∗2Σ̂
∗
1)
−1(µ̂− µ̂∗).(3.11)

The error variances σ2 and σ∗2 are estimated as before, but without pooling the samples.

The matrix Σ1 is now estimated with

Σ̂1 = N−1XT X,

with Σ̂
∗
1 defined analogously.

The distributions of statistics (3.9) and (3.11) are approximated by the chi-squared

distribution with p degrees of freedom. If p is large (in terms of the percentage of variance

explained), then all neglected terms are close to 0.

3.2 Functional responses

Turning to the case when the response variables are functions, we now assume that εi is

a random element of L2([0, 1]) and ψ(t, s) ∈ L2([0, 1] × [0, 1]) is fixed, but known. Our

goal is to use dimension reduction techniques to make this problem approachable. Our
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method will consist of choosing a basis to project the Yi onto, and then using the results

developed in the scalar case.

We first focus on the case of equal variances defined by assumptions (3.3) and, in place

of (3.4),

E(ε1(s)ε1(t)) = E(ε∗1(s)ε
∗
1(t)).(3.12)

Consider an arbitrary orthonormal basis {ui}∞i=1 for L2([0, 1]) (on which the Yi are to be

projected), and analogous basis {u∗j}∞j=1. Though all our results hold for an arbitrary

choice for {ui}∞i=1, we will use in our applications the eigenfunctions of the covariance

operator for the {Yi}, with the {u∗i } defined analogously. Because {ui} and {vi} are both

bases for L2([0, 1]), it follows that we can construct a basis for L2([0, 1]× [0, 1]) using the

bivariate functions ui(t)vj(s) for (t, s) ∈ [0, 1] × [0, 1], i = 1, . . . ,∞, and j = 1, . . . ,∞.

We therefore have the expansion ψ(t, s) =
∑∞

k=1

∑∞
l=1 µklul(t)vk(s), but we will work with

the approximation

ψ̂(t, s) =
p∑

k=1

r∑
l=1

µ̂k,lûl(t)v̂k(s),

where 1 ≤ r <∞ and 1 ≤ p <∞ are fixed.

Extending the notation introduced in the case of scalar responses, define the matrices

Y(i, j) = 〈Yi, uj〉 , i = 1, . . . , N, j = 1, . . . , r,

X(i, j) = 〈Xi, vj〉 , i = 1, . . . , N, j = 1, . . . , p,

µ(i, j) =
∫ 1

0

∫ 1

0
ψ(t, s)vi(s)uj(t)dsdt, i = 1, . . . p, j = 1, . . . r.

As in the scalar case, we combine any errors made by our approximations with the error

of the model, so we also introduce the matrix

ε′(i, j) = 〈εi, uj〉+
∞∑

k=p+1

X(i, k)µ(k, j), i = 1, . . . , N, j = 1, . . . , r.

Projecting the relation Yi = ΨXi + εi onto the uj, we obtain

〈Yi, uj〉 = 〈ΨXi, uj〉+ 〈εi, uj〉 =
∞∑

k=1

〈Xi, vk〉 〈Ψvk, uj〉+ 〈εi, uj〉

11



which implies

Y = Xµ+ ε′.(3.13)

The corresponding least squares estimator µ̂ = (XT X)−1XT Y consistently estimates the

matrix µ. This follows immediately by applying Theorem 5.1 to each column of µ̂.

Asymptotic normality follows from Theorem 5.4.

Since µ is now a matrix, the task of constructing a quadratic form leading to a test

statistic is somewhat painful notationally. We start by writing µ as a column vector of

length pr:

µT
v = vec(µ)T = (µ(1, 1),µ(2, 1), . . . ,µ(p, 1),µ(1, 2), . . . ,µ(p− 1, r),µ(p, r)).(3.14)

In words, µv is constructed by placing the columns of µ on top of one another. The

covariance matrix for the error terms is given by

Σε(i, j) = cov[〈ε1, ui〉 , 〈ε1, uj〉] = E[〈ε1, ui〉 〈ε1, uj〉], 1 ≤ i, j ≤ r,

and the diagonal matrix containing the largest p eigenvalues of C is

Γ(i, j) = λiδij, for 1 ≤ i, j ≤ p,

where δij is Kronecker’s delta.

With this notation in place, we consider the random variable

Λpr = N(1 + ζ)−1(µ̂v − µ̂∗v)T
(
Σε ⊗ Γ−1 + E

[
∆1 ⊗ (Γ−1∆2Γ

−1)
])−1

(µ̂v − µ̂∗v),

where ∆1,∆2 are defined in (5.4) and (5.5), respectively.

Assuming equal covariances, Theorem 5.4 implies that under H0, Λpr
d→ χ2(pr). An ex-

tension of the argument used in the proof of Theorem 3.1 yields that Λpr
P→∞, under HA,

as long as p and r are so large that µ 6= µ∗. That such a pair (p, r) exists, follows imme-

diately from the fact that {viuj} form a basis in L2([0, 1]× [0, 1]).

A computable approximation to Λpr is

Λ̂pr = N(1 +N/M)−1(µ̂v − µ̂∗v)T
(
Σ̂ε ⊗ Γ̂

−1
)−1

(µ̂v − µ̂∗v),(3.15)
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where Σ̂ε is the sample covariance matrix of the residuals in (3.13) and Γ̂ = diag(λ̂1, λ̂2, . . . , λ̂p),

with the λ̂i being the eigenvalues of the empirical covariance operator of the pooled Xi

and X∗j .

We finally turn to the most complex case of different covariances for the explanatory

functions. We now expand both the explanatory and response functions with respect to

two arbitrary, potentially different, bases in L2[0, 1], {ui} and {wj}, respectively:

ψ(t, s) =
∞∑
i=1

∞∑
j=1

µjiui(t)wj(s), ψ∗(t, s) =
∞∑
i=1

∞∑
j=1

µ∗jiui(t)wj(s).

This leads to the relations Y = Xµ + ε′, Y∗ = X∗µ∗ + ε∗′, with all terms analo-

gously defined as in the equal variance case, but using the bases {ui} and {wj}. Thus

the least squares estimates are again µ̂ = (XT X)−1XT Y and µ̂∗ = (X∗T X∗)−1X∗T Y∗.

(µ,µ∗, µ̂, µ̂∗ are now p × r matrices) Extending the argument developed in Section 3.1,

we arrive at the test statistic

Λ̂pr = Nvec(µ̂− µ̂∗)T (Σ̂ε ⊗ Σ̂
−1

1 + (N/M)Σ̂
∗
ε ⊗ Σ̂

−1∗
1 )−1vec(µ̂− µ̂∗),(3.16)

where the residual covariance matrices Σε and Σ∗ε are computed for each sample sepa-

rately. The estimate Σ̂
−1

1 is given by N−1XT X, and Σ̂
∗−1

1 is equivalently defined.

The distribution of statistics (3.15) and (3.16) is approximated by the chi-square dis-

tribution with pr degrees of freedom. The values of p and r depend on the selected bases,

examples of suitable bases are given in Section 4. Selection of p and r is discussed in

Section 3.3.

If p and/or r are large, the normalized χ2 distribution can be approximated by a

normal distribution, as in Cardot et al. (2003a) who studied a single scalar response

model and tested ψ = 0. In our case, due to the complexity of the problem, the rigorous

derivation of the normal convergence with p = pn depending on a sample size would be

far more tedious, so it is not pursued. To perform a test, a finite p (and r) must be chosen

no matter what approximation is used, and as illustrated in Section 4 large p (and r) do

not necessarily lead to meaningful results.
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3.3 Summary of the testing procedure

In order to apply the tests, we must first verify if a linear functional model approxi-

mates the dependence structure of the data reasonably well. This can be done using the

techniques of Chiou and Müller (2007). The assumptions of independence and identical

distribution can be verified using the test of Gabrys and Kokoszka (2007). The regressors

and the responses must be centered, so that their sample means are zero.

Next, the values of p and r must be chosen. In applications in which the FPC’s have

a clear interpretation, these values can be chosen so that the action of the operators on

specific subspaces spanned by the FPC’s of interest is compared. In the absence of such

an interpretation, several data driven approaches are available. When the covariances are

approximately equal, typically p is chosen so large that
∑p

k=1 λ̂k exceeds a required per-

centage of the variance of the Xi (defined as (N+M)−1(
∑N

i=1

∫
X2

i (t)dt+
∑M

j=1

∫
X∗2i (t)dt)

for the centered functions). We choose r analogously for the response functions. When

the covariances cannot be assumed equal then we propose, as one possibility, a pooling

technique to choose p and r. Pooling the explanatory functions we have

(N +M)−1

 N∑
i=1

Xi(s)Xi(t) +
M∑

j=1

X∗j (s)X∗j (t)

 a.s.→ (1 + 1/ζ)−1c(s, t) + (1 + ζ)c∗(s, t).

We propose taking the wi to be the eigenfunctions of (1 + 1/ζ)−1c(s, t) + (1 + ζ)c∗(s, t)

which is itself a covariance kernel. The ui can be defined in an analogous manner using

the response functions. Such a choice will allow smaller values of p (and r) to be taken so

that any bias from neglected terms is minimal, but we can still expect reasonable power.

The values p and r can be chosen as before, but now with respect to the pooled variance.

All these steps can be implemented in the R package fda, and ready–made functions for

the percentage of variance explained by FPC’s are available. Other methods of choosing

p (or r) are implemented in the MATLAB PACE package developed at the University of

California at Davis.

It is often useful to compute the test for a wide range of values of p (and r) and check

if a uniform pattern emerges. This approach is illustrated in Section 4.
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Finally, we compute the test statistic Λ̂, and reject H0 if it exceeds the χ2 density with

DF degrees of freedom according to the following table:

Response Covariances Λ̂ DF

Scalar Equal (3.9) p

Scalar Different (3.11) p

Functional Equal (3.15) pr

Functional Different (3.16) pr

The term “equal covariances” refers to assumptions (3.3), (3.4) in the scalar case, and

(3.3), (3.12) in the functional case.

4 Application to medfly and magnetometer data

In this section we illustrate the application of the test on two examples. The first example

is motivated by the work presented in Carey et al. (2002), Chiou et al. (2004), Müller

and Stadtmüller (2005), Chiou and Müller (2007), among others, and studies egg-laying

curves of Mediterranean fruit flies (medflies). The second example is an application to the

measurements of the magnetic field generated by near Earth space currents. Techniques

of FDA are very promising in space physics, see Kokoszka et al. (2008) and Maslova et

al. (2009).

Before turning to these examples, we note that simulations performed on generic

models show that the procedures have empirical sizes are close to nominal, and the power

increases with the “size” of the difference. The power is smaller if the explanatory func-

tions do not have a common distribution, and/or are non-normal. Some tables and the R

code are available at http://www.stat.uchicago.edu/∼mreimherr/research.html.

Egg-laying curves of Mediterranean fruit flies. Müller and Stadtmüller (2005),

Section 6, consider 534 egg-laying curves of medflies who lived at least 30 days. Each

function is defined over an interval [0, 30], and its value on day t ≤ 30 is the count of

eggs laid by fly i on that day. The 534 flies can be classified into long–lived, i.e. those
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who lived longer than 44 days, and short–lived, i.e. those who died before the end of

the 44th day after birth. In the sample, there are 256 short–lived, and 278 long–lived

flies. This classification naturally defines two samples: Sample 1: the egg-laying curves

Xi(t), 0 < t ≤ 30, i = 1, 2, . . . , 256 of the short–lived flies, and the corresponding total

number of eggs Yi. Sample 2: the egg-laying curves X∗j (t), 0 < t ≤ 30, j = 1, 2, . . . , 278

of the long–lived flies, and the corresponding total number of eggs Y ∗j .

The average of the Y ∗j is obviously larger than that of the Yi, but a question of

interest is whether after adjusting for the means, the structure of the dependence of the

Y ∗j on the curves X∗j (t) is different from the dependence of the Yi on the curves Xi(t).

Additionally, we would like to know in which functional component the difference, if any,

becomes significant. As the graphs and the analysis in Müller and Stadtmüller (2005)

show, even distinguishing the two functional samples Xi(t), 0 < t ≤ 30, i = 1, 2, . . . , 256

and X∗j (t), 0 < t ≤ 30, j = 1, 2, . . . , 278 is very difficult.

We thus consider two linear models:

Yi − Ȳ =
∫
ψ(t)(Xi(t)− X̄(t))dt+ εi, i = 1, 2, . . . , 256,

Y ∗j − Ȳ ∗ =
∫
ψ∗(t)X∗j (t)− X̄∗(t))dt+ ε∗j , j = 1, 2, . . . , 278.

and test (without assuming equal variances) H0 : ψ = ψ∗.

The above linear models describe the dependence structure of the data remarkably

well. We applied the graphical test of Chiou and Müller (2007) in which the responses are

graphed against the scores of the initial functional principal components. Figure 1 shows

such graphs for the second principal component, the graphs for the other components also

show nice elliptic shapes.

Table 1 shows the P-values for the five initial FPC’s. The P-values for the remaining

FPC’s do not exceed half a percent. We see that there is a significant difference between

the curves ψ and ψ∗, and that it occurs in the dependence on the second principal com-

ponents of the egg-laying curves. Using only the first principal components (p = p∗ = 1)

is not enough to see the difference.
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Figure 1: Diagnostic plots of responses vs scores of the second PC for medfly samples.

Data from terrestrial magnetic observatories. We now apply our methodology to

magnetometer data. A comprehensive case study is not our goal, but we would rather

like to illustrate the steps outlined in Section 3.3 in a new, practically relevant setting.

A sample of 40 functional regressors and corresponding responses is shown in Figure

2. Each curve in Figure 2 shows one minute averages in a UT (Universal Time) day

of the component of the magnetic field lying in the Earth’s tangent plane an pointing

toward the magnetic North. We thus have 1440 data points per curve, so a traditional

multivariate analysis is not feasible. However, splitting the magnetogram data into days

and treating the daily curves as functional observations is natural because of the daily

rotation of the Earth. Moreover, for space physics researchers, it is the shape of these

curves that conveys information, not the minute by minute values. These curves record

magnetic fields generated by the Magnetosphere–Ionosphere (M–I) current system. The

M–I currents are located in a region of space which is not sufficiently dense to allow

operation of aircraft, but too dense for satellites, so in situ measurements are difficult to
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Table 1: Statistic (3.11) and the P-values for several values of p = p∗.

p Λpp∗ P-Value

1 1.3323 0.2484

2 11.3411 0.0034

3 10.6097 0.0140

4 23.8950 0.0001

5 33.1144 0.0000

obtain. For this reason, and because of its inherent complexity, the M–I current system is

only partially understood. An interested reader is referred to Kivelson and Russell (1997),

especially Chapters 9, 10, 13 and 14. Here we utilize a simple and easy to explain setting,

intended to illustrate our technique. The curves Xi reflect ionospheric magnetic activity in

the polar region known as substorms, which is spectacularly manifested as northern lights

(aurora borealis). The curves Yi reflect magnetospheric activity in the magnetic equatorial

region in the same UT day. We consider three samples: A, B, C. Each of them consists

of about 40 pairs of curves. All measurements were recorded in 2001, the Xi at College

(CMO), Alaska; the Yi at Honolulu (HON), Hawaii. Sample A contains substorms which

took place in January through March, B in April–June, C in July–September. Broader

physical issues related to the dependence of the Yi on the Xi in Kamide et al. (1998).

Using a goodness–of–fit test of Chiou and Müller (2007), Kokoszka et al. (2008) verified

that the fully functional linear model is a reasonable approximation to the dependence of

the Yi on the Xi. The identical distribution and lack of correlations of the observations

were established in Gabrys and Kokoszka (2007) and Kokoszka et al. (2008). The data

can be assumed to be approximately independent because the M-I system resets itself

after each rotation of the Earth, and the effect of larger disturbances of solar origin decay

within about two days.

Intuitively, we would expect rejections of the null for all three pairs: A–B, B–C, and
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Figure 2: Observations for sample A: left panel CMO (X), right panel HON (Y ).

A–C, as the position of the axis of the Earth relative to the Sun shifts with each season,

and substorms are influenced by the solar wind. This is indeed the case for tests in cases

B–C and A–C, for which the P–values are very small: for B–C the largest P-value is 0.034,

and for A–C 0.007 (for p ≤ 15, r ≤ 10). The results for testing samples A and B presented

in Table 2 indicate the acceptance of H0. In retrospect, this conclusion is supported by

the observation, well–known in the space–physics community, that M–I disturbances tend

to be weaker in summer months. Our test thus shows that it is reasonable to assume that

the effect of substorms on low–latitude currents is approximately the same in first and

second quarter of 2001, but changes in the third quarter (due to weaker substorms).
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Table 2: P–values for testing the equality of regression operators in samples A and B.

p/r 1 2 3 4 5 6 7 8 9 10

1 0.344 0.608 0.231 0.280 0.349 0.380 0.372 0.391 0.351 0.257

2 0.147 0.259 0.274 0.416 0.565 0.422 0.373 0.345 0.339 0.310

3 0.204 0.378 0.399 0.621 0.762 0.592 0.582 0.621 0.654 0.478

4 0.120 0.305 0.299 0.567 0.716 0.619 0.654 0.307 0.315 0.158

5 0.440 0.668 0.555 0.741 0.861 0.730 0.792 0.515 0.453 0.223

6 0.582 0.891 0.798 0.793 0.883 0.554 0.567 0.605 0.218 0.106

7 0.689 0.962 0.950 0.911 0.954 0.749 0.792 0.783 0.566 0.427

8 0.965 0.968 0.972 0.952 0.958 0.815 0.755 0.582 0.432 0.257

9 0.981 0.804 0.962 0.980 0.972 0.821 0.837 0.753 0.722 0.456

10 0.727 0.585 0.903 0.973 0.986 0.972 0.973 0.941 0.935 0.626

11 0.911 0.880 0.991 0.999 0.999 0.998 0.998 0.994 0.995 0.990

12 0.856 0.860 0.989 0.997 0.959 0.962 0.940 0.930 0.845 0.889

13 0.667 0.856 0.982 0.988 0.939 0.950 0.889 0.845 0.784 0.844

14 0.395 0.457 0.798 0.418 0.314 0.445 0.240 0.240 0.201 0.282

15 0.398 0.481 0.847 0.414 0.321 0.456 0.276 0.255 0.170 0.113
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5 Asymptotic theory

In this section we collect the statements and proofs of the theorems referred to in Section

3, and continue to use the notation introduced in that section. These results do not follow

from the existing multivariate theory because the regression errors are not independent

and include projections on the “left over” FPC’s vp+1, vp+2, . . . , ur+1, ur+2, . . ., etc. Theo-

rems 5.2 and 5.4 are of particular interest, as they state the exact asymptotic distribution

of the LSE’s in a multivariate regression obtained by projecting a functional regression.

Since the following simple lemma is used repeatedly in the proofs, it is stated first for

ease of reference. It essentially follows from the orthonormality of the eigenfunctions of

the covariance operator.

Lemma 5.1 Suppose X is a random element of L2([0, 1]) satisfying

EX(t) = 0 and E
∫ 1

0
|X(t)|2dt <∞.

Let λi, vi, i ≥ 1, be, respectively, the eigenvalues and the eigenfunctions of its covariance

operator. Then

E[〈vi, X〉 〈vj, X〉] = λiδij,

where δij is Kronecker’s delta.

Theorem 5.1 Suppose Assumptions 2.1, 2.2 and 2.4 hold. Then,

µ̂ =
(
XT X

)−1
XT Y

a.s.→ µ, as N →∞,

where µT = (µ1, . . . , µp) and
a.s.→ refers to almost sure convergence.

Proof: To analyze the behavior of µ̂, let us start by considering

(XT X)(i, j) =
N∑

k=1

〈vi, Xk〉 〈vj, Xk〉 .

Since the Xi are iid, by the strong law of large numbers

1

N
(XT X)(i, j)

a.s.→ E(〈vi, X1〉 〈vj, X1〉), as N →∞.
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From Lemma 5.1 we have that E(〈vi, X1〉 〈vj, X1〉) = λiδij. Therefore N−1(XT X) con-

verges almost surely to a p×p diagonal matrix whose diagonal entries are the eigenvalues

of C.

Turning to XT Y, observe that

XT Y(i) =
N∑

j=1

〈vi, Xj〉Yj

and, using (3.1),

N∑
j=1

〈vi, Xj〉Yj =
N∑

j=1

〈vi, Xj〉
p∑

k=1

µk 〈vk, Xj〉+
N∑

j=1

ε′j 〈vi, Xj〉 .

Applying again the strong law of large numbers and Lemma 5.1again, we obtain, as

N →∞,

N−1
N∑

j=1

〈vi, Xj〉
p∑

k=1

µk 〈vk, Xj〉
a.s.→ E

p∑
k=1

µk 〈vi, X1〉 〈vk, X1〉 = µiλiδij.

Lastly, we will show that, as N →∞,

N−1
N∑

j=1

ε′j 〈vi, Xj〉
a.s.→ 0.

Recalling the definition of ε′i, (3.1), we have

N−1
N∑

j=1

ε′j 〈vi, Xj〉 = N−1
N∑

j=1

εj 〈vi, Xj〉+N−1
N∑

j=1

∞∑
k=p+1

µk 〈vk, Xj〉 〈vi, Xj〉 .

Since {εi} and {Xi} are independent, by the strong law of large numbers and Assumption

2.2

N−1
N∑

j=1

εj 〈vi, Xj〉
a.s.→ 0.

Similarly, using Lemma 5.1 and noting that i ≤ p, we get

N−1
N∑

j=1

∞∑
k=p+1

µk 〈vk, Xj〉 〈vi, Xj〉
a.s.→ E

∞∑
k=p+1

µk 〈vk, X1〉 〈vi, X1〉 = 0.

Theorem 5.2 Suppose Assumptions 2.1, 2.2 and 2.4 hold. Then, as N →∞,

√
N(µ̂− µ)

d→ N(0,Σp),

where N(0,Σp) is a multivariate normal random vector with mean 0 and covariance matrix

Σp defined by (3.7) and (3.8).
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Proof: By the definition of µ̂ (3.2),

√
N(µ̂− µ) =

√
N
((

XT X
)−1

XT Y − µ
)
.

Defining ε′T = (ε′1, . . . , ε
′
N), the above reduces to

√
N(µ̂− µ) =

(
N−1XT X

)−1
N−1/2XTε′.

By Lemma 5.1, N−1XT X converges almost surely to a diagonal matrix whose diagonal

elements are the first p eigenvalues of the covariance operator of the {Xi}. Therefore we

need only focus on the behavior of N−1/2XTε′ and use Slutsky’s Theorem to obtain the

claimed limiting distribution. Considering the ith coordinate of N−1/2XTε′ we have

(N−1/2XTε′)(i) = N−1/2
N∑

j=1

〈vi, Xj〉 ε′j, 1 ≤ i ≤ p.(5.1)

By Assumption 2.2 the above is a summation of iid random variables. Since each coor-

dinate of N−1/2XTε′ is given by such a sum, Assumption 2.2 implies that XTε′ can be

expressed as a sum of iid random vectors. We can apply the multivariate central limit

theorem to obtain the claimed multivariate normal limiting distribution if we can show

that each entry of the covariance matrix is finite. Therefore we spend the rest of the proof

deriving the form for Σp and showing that its entries are finite. Using the definition of

ε′i, we obtain

N−1/2
N∑

j=1

〈vi, Xj〉 ε′j = N−1/2

 N∑
j=1

〈vi, Xj〉 εj +
N∑

j=1

〈vi, Xj〉
∞∑

k=p+1

µk 〈vk, Xj〉

 .
Because the {Xj} are independent, both sums (with respect to j) are sums of independent

and identically distributed random variables. Furthermore, since {εj} are independent

of all other terms, we also have that the two sums above are uncorrelated. Therefore it

follows that

var

N−1/2

 N∑
j=1

〈vi, Xj〉 εj +
N∑

j=1

〈vi, Xj〉
∞∑

k=p+1

µk 〈vk, Xj〉



= var (〈vi, X1〉 ε1) + var

〈vi, X1〉
∞∑

k=p+1

µk 〈vk, X1〉

 .(5.2)

23



Considering the first term of (5.2), we have by the independence of X1 and ε1 and Lemma

5.1 that

var(〈vi, X1〉 ε1) = λiσ
2 <∞.

Turning to the second term of (5.2), we have by Lemma 5.1

var

〈vi, X1〉
∞∑

k=p+1

µk 〈vk, X1〉

 = E

〈vi, X1〉
∞∑

k=p+1

µk 〈vk, X1〉

2

.

Applying the Cauchy-Schwarz inequality it follows that

E

〈vi, X1〉
∞∑

k=p+1

µk 〈vk, X1〉

2

≤

E [〈vi, X1〉]4 E

 ∞∑
k=p+1

µk 〈vk, X1〉

4


1/2

.

As a consequence of Assumption 2.1, we obtain that

E [〈vi, X1〉]4 <∞.

Using the Cauchy-Schwarz inequality again we have

E

 ∞∑
k=p+1

µk 〈vk, X1〉

4

≤ E

 ∞∑
k=p+1

µ2
k

∞∑
s=p+1

〈vs, X1〉2
2

.

Therefore we can infer that

E

〈vi, X1〉
∞∑

k=p+1

µk 〈vk, X1〉

2

≤

 ∞∑
k=p+1

µ2
k


E [〈vi, X1〉]4 E

 ∞∑
s=p+1

〈vs, X1〉2
2


1/2

.

Using Assumption 2.2 and Bessel’s Inequality we have that

∞∑
k=p+1

µ2
k ≤ ‖ψ‖2 <∞.

Similarly, using Assumption 2.1 and Bessel’s Inequality we have that

E

 ∞∑
s=p+1

〈vs, X1〉2
2

≤ E‖X1‖4 <∞.

Combining the above with Assumption 2.1 we conclude

E

〈vi, X1〉
∞∑

k=p+1

µk 〈vk, X1〉

2

<∞.(5.3)
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and it follows that the diagonal elements of Σp are given

Σp(i, i) = λ−1
i σ2 + λ−2

i var

〈vi, X1〉
∞∑

k=p+1

µk 〈vk, X1〉

 , i = 1, . . . , p.

Next we examine the joint behavior of the coordinates. Combining (5.3) with the

Cauchy-Schwarz inequality we have

cov
[
(XTε′)(i), (XTε′)(j)

]
<∞ i = 1, . . . , p and j = 1, . . . , p.

Therefore to finish the proof we need only derive the form for the off diagonal terms of

Σp. Using (5.1), Assumption 2.2, and Lemma 5.1, it is easy to verify that for i 6= j

cov
[
(XTε′)(i), (XTε′)(j)

]
= E((XTε′)(i)(XTε′)(j))

= E

 N∑
q=1

〈vi, Xq〉
∞∑

k=p+1

µk 〈vk, Xq〉
N∑

s=1

〈vj, Xs〉
∞∑

k=p+1

µk 〈vk, Xs〉



=
N∑

q=1

E

〈vi, Xq〉 〈vj, Xq〉

 ∞∑
k=p+1

µk 〈vk, Xq〉

2


= NE

〈vi, X1〉 〈vj, X1〉

 ∞∑
k=p+1

µk 〈vk, X1〉

2
 .

Therefore it follows that the off diagonal terms of Σp are given by

Σp(i, j) = λ−1
i λ−1

j E

〈vi, X1〉 〈vj, X1〉

 ∞∑
k=p+1

µk 〈vk, X1〉

2
 , i 6= j,

which concludes the proof.

Theorem 5.3 If the assumptions of Theorem 3.1 are satisfied and p is so large that

µ 6= µ∗, then Λp
P→∞, as N →∞.

Proof: We start by expanding Λp as

Λp = N(1 + ζ)−1(µ̂− µ̂∗)T Σ−1
p (µ̂− µ̂∗)

= N(1 + ζ)−1(µ̂− µ− µ̂∗ + µ∗)T Σ−1
p (µ̂− µ− µ̂∗ + µ∗)
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+N(1 + ζ)−1(µ− µ∗)T Σ−1
p (µ− µ∗)

+2N(1 + ζ)−1(µ− µ∗)T Σ−1
p (µ̂− µ− µ̂∗ + µ∗).

Therefore we need only consider each term above. From Theorem 3.1 it follows that

N(1 + ζ)−1(µ̂− µ− µ̂∗ + µ∗)T Σ−1
p (µ̂− µ− µ̂∗ + µ∗) = OP (1).

From Theorem 5.2 it follows that

2N(1 + ζ)−1(µ− µ∗)T Σ−1
p (µ̂− µ− µ̂∗ + µ∗) = OP (

√
N).

The last term we need to consider is

N(1 + ζ)−1(µ− µ∗)T Σ−1
p (µ− µ∗).

Since Σ−1
p is positive definite it follows that

(µ− µ∗)T Σ−1
p (µ− µ∗) > 0,

and we have

N(1 + ζ)−1(µ− µ∗)T Σ−1
p (µ− µ∗)→∞.

Furthermore when we divide the above by
√
N we get

N1/2(1 + ζ)−1(µ− µ∗)T Σ−1
p (µ− µ∗)→∞.

Therefore N(1 + ζ)−1(µ − µ∗)T Σ−1
p (µ − µ∗) dominates all the other terms in the limit

and the theorem follows.

Theorem 5.4 Suppose that Assumptions 2.1, 2.3, 2.4, (3.3), (3.5), and (3.12) hold.

Then for each fixed p ≥ 1 and r ≥ 1, we have

N1/2(µ̂v − µv)
d→ N

(
0,Σε ⊗ Γ−1 + E

[
∆1 ⊗ (Γ−1∆2Γ

−1)
])

where Ir is the r × r identity matrix, and

∆1(j, t) =

 ∞∑
s=p+1

µsj 〈vs, X1〉

 ∞∑
x=p+1

µxt 〈vx, X1〉

 ,(5.4)

and

∆2(i, q) = 〈vi, X1〉 〈vq, X1〉 .(5.5)
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Proof: The asymptotic normality follows from an application of the multivariate CLT.

The derivation of the exact form of the asymptotic variance involves lengthy technical

manipulations, and is omitted to conserve space.
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