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Abstract

The econometric literature of high frequency data usually relies on moment estimators which
are derived from assuming local constancy of volatility and related quantities. We here show
that this first order approximation is not always valid if used näıvely. We find that such ap-
proximations require an ex post adjustment involving asymptotic likelihood ratios. These are
given. Several examples (powers of volatility, leverage effect, ANOVA) are provided. The first
order approximations in this study can be over the period of one observation, or over blocks of
successive observations. The theory relies heavily on the interplay between stable convergence
and measure change, and on asymptotic expansions for martingales.

Practically, the procedure permits (1) the definition of estimators of hard to reach quanti-
ties, such as the leverage effect, (2) the improvement in efficiency in classical estimators, and (3)
easy analysis. More conceptually, we show that the approximation induces a measure change
similar to that occurring in options pricing theory. In particular, localization over one observa-
tion induces a measure change related to the leverage effect, while localization over a block of
observations creates an effect that connects to the volatility of volatility. Another conceptual
gain is the relationship to Hermite polynomials. The three measure changes mentioned relate,
respectively, to the first, third, and second such polynomial.

Keywords: consistency, cumulants, contiguity, continuity, discrete observation, efficiency,
equivalent martingale measure, Itô process, leverage effect, likelihood inference, realized volatil-
ity, stable convergence.
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1 Introduction

1.1 Setting and Overview

Recent years have seen an explosion of literature in the area of estimating volatility on the basis
of high frequency data. The concepts go back to stochastic calculus, see, for example, Karatzas
and Shreve (1991) (Section 1.5), Jacod and Shiryaev (2003) (Theorem I.4.47 on page 52), and
Protter (2004) (Theorem II-22 on page 66). An early econometric discussion of this relationship
can be found in Andersen, Bollerslev, Diebold, and Labys (2000). Recent work both from the
probabilistic and econometric side show that the approximation error has a mixed normal distri-
bution. References include Jacod (1994, 2006), Jacod and Protter (1998), Barndorff-Nielsen and
Shephard (2002), Zhang (2001), Mykland and Zhang (2006), and Barndorff-Nielsen, Graversen,
Jacod, Podolskij, and Shephard (2006). Further econometric literature includes, in particular, Gal-
lant, Hsu, and Tauchen (1999), Chernov and Ghysels (2000), Engle (2000), Andersen, Bollerslev,
Diebold, and Labys (2001, 2003), Dacorogna, Gençay, Müller, Olsen, and Pictet (2001), Goncalves
and Meddahi (2005) and Kalnina and Linton (2007). Estimating instantaneous volatility at each
point in time goes back to Foster and Nelson (1996), see also Mykland and Zhang (2001), but
this has not caught on quite as much in the econometric application. There is also an emerging
literature on micro structure, but we are not planning to address this question in any depth here.

The quantities that can be estimated from high frequency data are not confined to volatility.
Problems that are attached to the estimation of covariations between two processes are discussed
in Hayashi and Yoshida (2005) and Zhang (2005). There is a literature on power variations and bi-
and multi-power estimation (see Examples 1-2 in Section 2.5 for references). There is an analysis
of variance/variation (ANOVA) based on high frequency observations (see Section 4.2). Also, the
separation of jumps and continuous evolution is a highly discussed topic, cf. Section 8.1. We shall
see in this paper that one can also estimate such things as the leverage effect.

The literature of high frequency data relies on moment estimators derived from assuming local
constancy of volatility and related quantities. To be specific, if ti, 0 < t1 < ... < tn = T , are
observation times, it is assumed that one can validly make one period approximations of the form∫ ti+1

ti

fsdWs ≈ fti(Wti+1 −Wti), (1)

where {Wt} is a standard Brownian motion. The cited work on mixed normal distributions effec-
tively uses similar approximations to study stochastic variances. In the case of volatility, one can
under weak regularity conditions make the approximation∑

i

(∫ ti+1

ti

σtdWt

)2

−
∫ T

0
σ2

t dt ≈
∑

i

σ2
ti(Wti+1 −Wti)

2 −
∑

i

σ2
ti(ti+1 − ti) (2)

without affecting asymptotic properties (the error in (2) is of order op(n−1/2)). Thus the asymptotic
distribution of realized volatility (sums of squared returns) can be inferred from discrete time
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martingale central limit theorems. In the special case where the σ2
t process is independent of Wt,

one can even talk about unbiasedness of the estimator.

This raises several questions. First of all, (i) can one always do this? Or, does the approximation
in formula (1) only work for a handful of cases such as volatility? Is there any case where the first
order approximation fails to give the (asymptotically) correct answer in high frequency inference?
Second, (ii) there is a mysterious absence of leverage effect from existing results for high frequency
data. The leverage effect here refers to the dependence between a process and its own volatility
(often in the form of covariance or correlation), and is an important ingredient in many models,
such as the one by Heston (1993). From the existing literature, however, one might be tempted to
think that one can simply assume the absence of leverage effect, and that asymptotic results will
remain valid even when this assumption fails. Can this be true? Finally, (iii) if one can pretend
that volatility characteristics are constant from ti−1 to ti, then can one also pretend constancy over
successive blocks of M (M > 1) observations, from, say ti−M to ti? If the answer to this were yes,
a whole arsenal of additional statistical techniques would become available.

The purpose of this paper is to provide answers to these questions. In answer to (i), we show in
Section 2 that first order approximations (like (1)-(2)) are not always valid for purposes of inference
in high frequency data. The error, however, is controllable by a general procedure which we shall
provide.

Specifically, let P be the true probability distribution governing the asset price process. The
first order approximation (1) is (in a suitable sense) exact under a distribution P ∗

n . We show that
the likelihood ratio dP ∗

n/dP has an asymptotic (nondegenerate) limit, which we can call dP ∗
∞/dP .

One can therefore proceed as follows:
(1) Find the asymptotic distribution of estimators under P ∗

n (i.e., pretending that the first order
approximation (1) is valid); and then
(2) Correct for the error in the final asymptotic distribution by multiplying by dP/dP ∗

∞.

In other words, we provide a generic device for correcting asymptotic distributions ex post when
first order approximations are used in the analysis.

In the process, we also give the answer to question (ii) above. Specifically, dP ∗
∞/dP is closely

related to the size of the leverage effect.

Our result is more of an opportunity than a crisis. The usual asymptotic results concerning
power variations (as estimators of

∫ T
0 |σ|pt dt) are unaffected by the adjustment. The new result does

permit, however, the estimation of more elusive quantites such as the leverage effect (see Section
4.3; otherwise the development described above is in Section 2).

The paper then turns to question (iii). We show in Section 3 that by holding volatility char-
acteristics constant over successive blocks of M (M > 1) observations, from, say, ti−M to ti, one
implicitly behaves as if the probability distribution were Qn, where dQn/dP has an asymptotic
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(nondegenerate) limit, which we can call dQ∞/dP . The conclusion is therefore much the same as
under one period discretization (1). In this case, the size of the additional adjustment turns out to
related to the volatility of volatility

The implication is that parametric techniques can be used locally over such blocks. Estimators
of integrated quantities may then be obtained by aggregating local estimators. The advantage
of such an approach is to gain efficiency. In the case of quantities like

∫ T
0 |σ|pt dt, there can be

substantial gain (see Section 4.1). In the case of the leverage effect, such blocking is a sine qua
non, as will be clear from Sections 2.5 and 4.3.

Local parametric inference appears to have been introduced by Tibshirani and Hastie (1987),
and there is an extensive literature on the subject, such as Fan (1993), Fan and Gijbels (1996),
Hjort and Jones (1996), Loader (1996), Fan, Gijbels, and King (1997), Kauermann and Opsomer
(2003), Chen and Spokoiny (2007) and Cizek, Härdle, and Spokoiny (2007). A review is given in
Fan, Farmen, and Gijbels (1998), and this paper should be consulted for further references. A
related but different form of diffusion block approximation was also discussed in Mykland (2006),
in the context of (conditionally) nonrandom volatility.

This paper establishes the connection of high-frequency-data inference to local parametric in-
ference. We make this link with the help of contiguity. It will take time and further research to
harvest the existing knowledge in the area of local likelihood for use in high frequency semimartin-
gale inference. In fact, the estimators discussed in the applications section (Section 4) are rather
obvious once a local likelihood perspective has been adapted; they are more of a beginning than
an end. For example, local adaptation is not considered.

The plan for the paper is that Section 1.2 provides a technical preview about various measure
changes in our inference. Section 2 discusses measure changes in detail, and their relationship to
high frequency inference. It then analyzes the one period (M = 1) discretization. Section 3 discusses
longer block sizes (M > 1). The major applications are given in Section 4, with a summary of the
methodology in Section 5. The later sections are concerned with irregular and asynchronous data
(Section 6), and also with overlapping blocks (moving windows, Section 7). Section 8 discusses the
extension to jumps and microstructure. Section 9 discusses the use of Milstein type schemes for
the one period approximation. We conclude in Section 10. Proofs are in the Appendix.

A reader’s guide: We emphasize that the two approximations (to block size M = 1, and then
from M = 1 to M > 1) are quite different in their methodologies. If you are only interested in
the one period approximation, the material to read is Sections 2 and 9, and Appendix A. (Though
consequences for estimation of leverage effect is discussed in Section 4.3). The block (M > 1)
approximation is mainly described in Section 3-5, and Appendix B.
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1.2 Technical Preview

The theory in this paper deals with two forms of discretization: to block size M = 1, and then to
block size M > 1. Each of these has to be adjusted for by using an asymptotic measure change.
Accordingly, the likelihood ratios are called dP ∗

∞/dP and dQ∞/dP . There is similarity here to
the measure change dP ∗/dP used in option pricing theory, where P ∗ is an equivalent martingale
measure (a probability distribution under which the drift of an underlying process has been removed;
for our purposes, discounting is not an issue); for more discussion and references, see Remark 2 in
Section 2.2. In fact, for the reasons given in that section, we shall for simplicity assume that the
probabilities P ∗

n and Qn also are such that the (observed discrete time) process has no drift.

It is useful to write the likelihood ratio decomposition

log
dQ∞
dP

= log
dQ∞
dP ∗

∞
+ log

dP ∗
∞

dP ∗ + log
dP ∗

dP
. (3)

We shall see (in Section 3.3) that these three likelihood ratios are of similar form, and can be repre-
sented in terms of Hermite polynomials of the increments of the observed process. The connections
are summarized in Table 1.

The three approximations all lead to adjustments that are absolutely continuous. This fact
means that for estimators, consistency and rate of convergence are unaffected by the the approx-
imation. It will also turn out that asymptotic variances are similarly unaffected (Remark 8 in
Section 2.4). Asymptotic distributions can be changed through their means only (Sections 2.4,
3.4). We emphasize that this is not the same as introducing inconsistency.

type of compensating size of LR order of relevant
approximation likelihood ratio (LR) is related to Hermite polynomial
one period discretization dP ∗

∞/dP ∗ leverage effect 3
(M = 1)
multi period discretization dQ∞/dP ∗

∞ volatility of volatility 2
(block M > 1)
removal of drift dP ∗/dP mean 1

Table 1. Measure changes (likelihood ratios) tied to three procedures modifying properties of the
observed process. P is the true probability distribution, P ∗ is the equivalent martingale measure
(as in option pricing theory). P ∗

n is the probability for which (1) is exact, and Qn is the probability
for which one can use

∫ ti
ti−M fsdWs ≈ fti−M (Wti − Wti−M ). The two measure changes dP ∗

n/dP ∗

and dQn/dP ∗
n have an asymptotic limit. This connects to the statistical concept of contiguity, cf.

Remark 5.
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As an illustration for Table 1, consider a scalar process on the form dXt = µtdt + σtdWt, and
with equidistant observations of X. The terms in (3) can be written

log
dQ∞
dP ∗

∞
= Z1η1 −

1
2
η2
1 and log

dP ∗
∞

dP ∗ = Z2η2 −
1
2
η2
2, (4)

where Z1 and Z2 are independent standard normal (independent of the data), and

η2
1 =

3
8

∫ T

0
σ−6

t (〈σ2, X〉′t)2dt︸ ︷︷ ︸
related to leverage effect

and η2
2 =

M − 1
4

∫ T

0
σ−4

t 〈σ2, σ2〉′tdt︸ ︷︷ ︸
related to volatility of volatility

(5)

The angle brackets 〈·, ·〉 refers to covariation (sum of instantaneous covariance between processes,
see Chapter I.4e (p. 51-58), of Jacod and Shiryaev (2003), see also (9) in the upcoming Section
2.1). As is well known from stochastic calculus, log dP ∗

dP = −
∫ T
0

µt

σt
dWt − 1

2

∫ T
0

µ2
t

σ2
t
dt.

In the case of a Heston (1993) model, where dσ2
t = κ(α− σ2

t )dt + γσtdBt, and B is a Brownian
motion correlated with W , d〈B,W 〉t = ρdt, one obtains

η2
1 =

3
8
(ργ)2

∫ T

0
σ−2

t dt and η2
2 =

1
4
γ2(M − 1)

∫ T

0
σ−2

t dt. (6)

2 Approximate Systems.

We here discuss the discretization to block size M = 1. As a preliminary, we define some notation,
and discuss measure change and stable convergence. Along with Section 9 and Appendix A, this
section can be read independently of the rest of the paper.

2.1 Data Generating Mechanism

In general, we shall work with a p-variate Itô process Xt = (X(1)
t , ..., X

(p)
t )T , given by the system

dXt = µtdt + σtdWt, X0 = x0, (7)

where µt and σt are adapted random processes, of dimension p and p × p respectively, and Wt is
a p-dimensional Brownian motion. The underlying filtration will be called (Ft). The probability
distribution will be called P . If we set

ζt = σT
t σt, (8)

then the integrated volatility process is given as

〈X, X〉t =
∫ t

0
ζudu. (9)
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Note that by Lévy’s Theorem (see, for example, Theorem II.4.4 (p. 102) of Jacod and Shiryaev
(2003), or Theorem 3.16 (p. 157) of Karatzas and Shreve (1991)), one can take σt to be the
symmetric square root of ζt. One understands the differential σtdWt to be a p-dimensional vector
with r1’th component

∑p
r2=1 σ

(r1,r2)
t dW

(r2)
t .

Definition 1. A process on the form (7) will be called an Itô process. We always assume (as part
of the definition) that both µt and ζt are locally bounded.

We shall suppose that the process Xt is observed at times 0 = t0 < t1 < ... < tn = T . Thus,
for the moment, we assume synchronous observation of all the p components of the vector Xt. We
explain in Section 6.3 how the results encompass the asynchronous case.

Assumption 1. (Sampling times). In asymptotic analysis, we suppose that tj = tn,j (the additional
subscript will normally be suppressed). The grids Gn = {0 = tn,0 < tn,1 < ... < tn,n = T} will not
be assumed to be nested when n varies. We then do asymptotics as n →∞. The basic assumption
is that

max
1≤i≤n

|tn,j − tn,j−1| = o(1). (10)

We also suppose that the observation times tn,j are nonrandom, but irregular.

2.2 A simplifying strategy for inference

We bring out the heavy machinery right away. The advantage is that this substantially cleans
up the further presentation. The general principles laid out here will also be an ingredient in the
presentation of the later discretization results.

When carrying out inference for observations in a fixed time interval [0, T ], the process µt cannot
be consistently estimated. This follows from Girsanov’s Theorem (see, for example, Chapter 5.5 of
Karatzas and Shreve (1991)). For most purposes, µt simply drops out of the calculations, and is
only a nuisance parameter. It is also a nuisance in that it complicates calculations substantially.

To deal with this most effectively, we shall borrow an idea from asset pricing theory, and consider
a probability distribution P ∗ which is measure theoretically equivalent to P , and under which Xt

is a (local) martingale. Specifically, under P ∗

dXt = σtdW ∗
t , X0 = x0, (11)

where W ∗
t is a P ∗-Brownian motion.

Our plan is now the following: carry out the analysis under P ∗, and adjust results back to P

using the likelihood ratio (Radon-Nikodym derivative) dP ∗/dP . Specifically suppose that θ is a
quantity to be estimated (such as

∫ T
0 σ2

t dt,
∫ T
0 σ4

t dt, or the leverage effect). An estimator θ̂n is then
found with the help of P ∗, and an asymptotic result is established whereby, say,

n1/2(θ̂n − θ) L→N(b, a2), (12)
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under P ∗. It then follows directly from the measure theoretic equivalence that n1/2(θ̂n − θ) also
converges in law under P . In particular, consistency and rate of convergence is unaffected by the
change of measure. We emphasize that this is due to the finite (fixed) time horizon T .

The asymptotic law may be different under P ∗ and P . While the normal distribution remains,
the distributions of b and a2 (if random) may change. The main concept is stable convergence.

Definition 2. Suppose that all relevant processes (Xt, σt, etc) are adapted to filtration (Ft). Let
Zn be a sequence of FT -measurable random variables, We say that Zn converges stably in law to Z

as n →∞ if Z is measurable with respect to an extension of FT so that for all A ∈ FT and for all
bounded continuous g, EIAg(Zn) → EIAg(Z) as n →∞.

In the context of (12), Zn = n1/2(θ̂n − θ) and Z = N(b, a2). For further discussion of stable
convergence, see Rényi (1963), Aldous and Eagleson (1978), Chapter 3 (p. 56) of Hall and Heyde
(1980), Rootzén (1980) and Section 2 (p. 169-170) of Jacod and Protter (1998).

With this tool in hand, assume that the convergence in (12) is stable. Then the same convergence
holds under P . The technical result is as follows.

Proposition 1. Suppose that Zn is a sequence of random variables which converges stably to
N(b, a2) under P ∗. By this we mean that N(b, a2) = b + aN(0, 1), where N(0, 1) is a standard
normal variable independent of FT , also a and b are FT measurable. Then Zn converges stably in
law to b + aN(0, 1) under P , where N(0, 1) remains independent of FT under P .

Proof of Proposition. EIAg(Zn) = E∗ dP
dP ∗ IAg(Zn) → E∗ dP

dP ∗ IAg(Z) = EIAg(Z) by uniform
integrability of dP

dP ∗ IAg(Zn).

Proposition 1 substantially simplifies calculations and results. In fact, the same strategy will be
helpful for the localization results that come next in the paper. It will turn out that the relationship
between the localized and continuous process can also be characterized by absolute continuity and
likelihood ratios.

Remark 1. It should be noted that after adjusting back from P ∗ to P , the process µt may show up
in expressions for asymptotic distributions. For instances of this, see Examples 3 and 4 below. One
should always keep in mind that drift most likely is present, and may affect inference. 2

Remark 2. As noted, our device is comparable to the use of equivalent martingale measures in
options pricing theory (Ross (1976), Harrison and Kreps (1979), Harrison and Pliska (1981), see
also Duffie (1996)) in that it affords a convenient probability distribution with which to make
computations. In our econometric case, one can always take the drift to be zero, while in the
options pricing case, this can only be done for discounted securities prices. In both cases, however,
the computational purpose is to get rid of a nuisance “dt term”.
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The idea of combining stable convergence with measure change appears to go back to Rootzén
(1980). We have earlier used the idea in Zhang, Mykland, and Aı̈t-Sahalia (2005), cf the second
paragraph of the proof of Theorem 2 in that paper (p. 1410). The current description is meant to
be a more complete description of the same procedure. 2

Remark 3. Note that following Girsanov’s Theorem

dP ∗

dP
= exp

{
−
∫ T

0
σ−1

t µtdWt −
1
2

∫ T

0
µT

t (σT
t σt)−1µtdt

}
, (13)

with
dW ∗

t = dWt + σ−1
t µtdt. (14)

2

In order to carry out the measure change, we make the following assumption.

Assumption 2. (Structure of the instantaneous volatility). We assume that the matrix process σt

is itself an Itô processes, and that if λ
(p)
t is the smallest eigenvalue of σt, then inft λ

(p)
t > 0 a.s.

2.3 Main result concerning one period discretization

Our main result in this section is that for the purposes of high frequency inference one can replace
the system (11) by the following approximation:

P ∗
n : ∆Xtn,j+1 = σtn,j∆W̆tn,j+1 for j = 0, ..., n− 1;X0 = x0, (15)

where ∆Xtn,j+1 = Xtn,j+1 − Xtn,j , and similarly for ∆W̆tn,j+1 and ∆tn,j+1. One can view (15) as
holding σt constant for one period, from tn,j to tn,j+1. We call this a one period discretization (or
localization). We are not taking a position on what the W̆t process looks like in continuous time,
or even on whether it exists for other t than the sampling times tn,j . The only assumption is that
the random variables ∆W̆tn,j+1 are independent for different j (for fixed n), and that ∆W̆tn,j+1 has
distribution N(0,∆tn,j+1). Note that we here follow the convention from options pricing theory,
whereby, when the measure changes, the process (Xt) doesn’t change, while the driving Brownian
motion changes.

To describe the nature of our approximations, focus on the random variables:

U
(1)
tn,j

= Xtn,j

U
(2)
tn,j

= (σtn,j , 〈σ,W 〉′tn,j
, 〈σ, σ〉′tn,j

) (16)

Utn,j = (U (1)
tn,j

, U
(2)
tn,j

).

for j = 0, ..., n.
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Definition 3. (First order approximation). Define the probability P ∗
n recursively by:

(i) U0 has same distribution under P ∗
n as under P ∗;

(ii) The conditional P ∗
n-distribution of U

(1)
tn,j+1

given U0, ..., Utn,j is given by (15); and

(iii) The conditional P ∗
n-distribution of U

(2)
tn,j+1

given U0, ..., Utn,j , U
(1)
tn,j+1

is the same as under P ∗.

Also, denote by Xn,j the σ-field generated by Utn,ι, ι = 0, ..., j.

Here 〈σ,W 〉′t is a three (p×p×p) dimensional object (tensor) consisting of elements 〈σ(r1,r2),W (r3)〉′t
(r1 = 1, ..., p, r2 = 1, ..., p, r3 = 1, ..., p), where prime denotes differentiation with respect to time.
Similarly, 〈σ, σ〉′t is a four dimensional tensor with elements of the form 〈σ(r1,r2), σ(r3,r4)〉′t.

Remark 4. The quantity U
(2)
tn,j+1

thus contains information about the behavior of the σt process,
and also (via the tensor 〈σ,W 〉′t) leverage effect. 2

To the extent that conditional densities are defined, one can describe the relationship between
P ∗ and P ∗

n as

f(Utn,1 ..., Utn,j , ..., Utn,n |U0) =
n∏

j=1

f(U (1)
tn,j
|U0, ..., Utn,j−1)︸ ︷︷ ︸

altered from P ∗ to P ∗n

n∏
j=1

f(U (2)
tn,j
|U0, ..., Utn,j−1 , U

(1)
tn,j

)︸ ︷︷ ︸
unchanged from P ∗ to P ∗n

(17)

To state the main theorem, define

dζ̌t = σ−1
t dζtσ

−1
t (18)

and
k

(r1,r2,r3)
t = 〈ζ̌(r1,r2),W (r3)〉′t[3] (19)

where the “[3]” means that the right hand side of (19) is a sum over three terms where r3 can
change position with either r1 or r2: 〈ζ̌(r1,r2),W (r3)〉′t[3] = 〈ζ̌(r1,r2),W (r3)〉′t + 〈ζ̌(r1,r3),W (r1)〉′t +
〈ζ̌(r3,r2),W (r1)〉′t (note that 〈ζ̌(r1,r2),W (r3)〉′t is symmetric in its two first arguments). For further
discussion of this notation, see Chapter 2.3 (p. 29-30) of McCullagh (1987). Note that k

(r1,r2,r3)
tn,j

is
measurable with respect to the σ-field Xn,j generated by Utn,ι , ι = 0, ..., j. Finally, set

Γ0 =
1
24

∫ T

0

p∑
r1,r2,r3=1

(k(r1,r2,r3)
t )2dt. (20)

We now state the main result for one period discretization.

Theorem 1. P ∗ and P ∗
n are mutually absolutely continuous on the σ-field Xn,n generated by Utn,j ,

j = 0, ..., n. Furthermore, let (dP ∗/dP ∗
n)(Ut0 , ..., Utn,j , ..., Utn,n) be the likelihood ratio (Radon-

Nikodym derivative) on Xn,n. Then,

dP ∗

dP ∗
n

(Ut0 , ..., Utn,j , ..., Utn,n) L→ exp{Γ1/2
0 N(0, 1)− 1

2
Γ0} (21)

stably in law, under P ∗
n , as n →∞.
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Based on Theorem 1, one can (for a fixed time period) carry out inference under the model
(15), and asymptotic results will transfer back to the continuous model (11) by absolute continuity.
This is much the same strategy as the one to eliminate the drift described in Section 2.2. The main
difference is that we use an asymptotic version of absolute continuity. This concept is known as
contiguity, and is well known in classical statistical literature (see Remark 5 below). We state the
following result, in analogy with Proposition 1.

Corollary 1. Suppose that Zn (say, n1/2(θ̂n − θ)) converges stably in law under P ∗
n . The same

statement then holds under P ∗ and P . The converse is also true.

In particular, if an estimator is consistent under P ∗
n , it is also consistent under P ∗ (and P ).

Unlike the situation in Section 2.2, the stable convergence in Corollary 1 does not assure that
n1/2(θ̂n−θ) is asymptotically independent of the normal distribution N(0, 1) in Theorem 1. It only
assures independence from FT -measurable quantities. The asymptotic law of n1/2(θ̂n − θ) may,
therefore, require an adjustment from P ∗

n to P ∗.

Remark 5. Theorem 1 says that P ∗ and the approximation P ∗
n are contiguous in the sense of Hájek

and Sidak (1967) (Chapter IV), LeCam (1986), LeCam and Yang (1986), and Jacod and Shiryaev
(2003) (Chapter IV) . This follows from Theorem 1 since dP ∗/dP ∗

n is uniformly integrable under P ∗
n

(since the sequence dP ∗
n/dP ∗ is nonnegative, also the limit integrates to one under P ∗). 2

Remark 6. A nonzero 〈σ,W 〉′t can occur in other cases than what is usually termed “leverage
effect”. An important instance of this occurs in Section 4.2, where 〈σ,W 〉′t can be nonzero due to
the nonlinear relationship between an option Y and the underlying security X. 2

Remark 7. The approximation (15) goes along with the high frequency setting, where T is fixed
and the data is sampled more finely with n. It is in this setting that (15) yields estimators that are
consistent and have the right order of convergence. For a discussion (in the parametric framework)
of such approximation in the low frequency setting where T → ∞, we refer to the discussion in
Sections 4.2-4.3 (p. 2201-2206) of Aı̈t-Sahalia and Mykland (2003). For intermediate types of data
frequency, there may be some uncertainty about what form of asymptotic regime is most suitable,
and a combined regime may be appropriate. See, for example, Kessler (1997) and Sørensen (2007).
2

2.4 Adjusting for the Change from P ∗ to P ∗
n

Following (15), write
∆W̆tn,j+1 = σ−1

tn,j
∆Xtn,j+1 . (22)

Under the approximating measure P ∗
n , ∆W̆tn,j+1 has distribution N(0, I∆tn,j+1) and is independent

of the past.
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Define the third order Hermite polynomials by hr1r2r3(x) = xr1xr2xr3 − xr1δr2,r3 [3], where,
again, “[3]” represents the sum over all three possible terms for this form, and δr2,r3 = 1 if r2 = r3,
and zero otherwise. Set

M (0)
n =

1
12

n−1∑
j=0

(∆tn,j+1)1/2
p∑

r1,r2,r3=1

k
(r1,r2,r3)
tn,j

hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2) (23)

The adjustment result is now as follows:

Theorem 2. Assume the setup in Theorem 1. Suppose that under P ∗
n , (Zn,M

(0)
n ) converges stably

to a bivariate distribution b+aN(0, I), where N(0, I) is a bivariate standard normal vector indepen-
dent of FT and where the vector b = (b1, b2)T and the symmetric 2×2 matrix a are FT measurable.
Set A = a2. It is then the case that Zn converges stably under P ∗ to b1 + A12 + (A11)1/2N(0, 1),
where N(0, 1) is independent of FT .

Note that under the conditions of Theorem 1, M
(0)
n converges stably under P ∗

n to a (mixed)
normal distribution with mean zero and (random, but FT -measurable) variance Γ0 (so b2 = 0 and
A22 = Γ0).

Thus, when adjusting from P ∗
n to P ∗, the asymptotic variance of Zn is unchanged, while the

asymptotic bias may change.

Remark 8. The fact that the asymptotic variance remains unchanged in Theorem 2 is a special case
of a stochastic process property (the preservation of quadratic variation under limit operations).
We refer to the discussion in Chapter VI.6 (p. 376-388) in Jacod and Shiryaev (2003) for a general
treatment. 2

2.5 Some initial examples

The following is meant for illustration only. The in-depth applications are in Section 4. We only
consider one dimensional systems (p = 1).

Example 1. (Integral of absolute powers of ∆X). It is customary to estimate
∫ T
0 |σt|pdt by∑n

j=1 |∆Xtn,j |p. A general theory for this is given in Jacod (1994, 2006). For the important
cases p = 2 and p = 4, see also Jacod and Protter (1998), Zhang (2001), Barndorff-Nielsen and
Shephard (2002), Mykland and Zhang (2006), and other work by the same authors.

We here see how the same estimators can be analyzed using the technology of this paper. Further
developments concerning the estimation of

∫ T
0 |σt|pdt are discussed in Section 4.1. However, there

is some added conceptual understanding to the present analysis.

To do the analysis, note that under P ∗
n , the law of |∆Xtn,j+1 |p given Xn,j is |σtn,jN(0, 1)|p∆t

p/2
n,j+1,
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whereby

E∗
n(|∆Xtn,j+1 |p | Xn,j) = |σtn,j |pE|N(0, 1)|p∆t

p/2
n,j+1

Var∗n(|∆Xtn,j+1 |p | Xn,j) = |σtn,j |2pVar(|N(0, 1)|p)∆tpn,j+1 and

Cov∗n(|∆Xtn,j+1 |p,∆W̆tn,j+1 | Xn,j) = 0. (24)

Thus, the natural estimator of θ =
∫ T
0 |σt|pdt becomes

θ̂n =
1

E|N(0, 1)|p
n−1∑
j=0

∆t
1− p

2
n,j+1|∆Xtn,j+1 |p. (25)

From (24), it follows that θ̂n−
∑n−1

j=0 |σtn,j |p∆tn,j+1 is the end point of a martingale orthogonal to W ,

and with discrete time quadratic variation Var(|N(0,1)|p)
(E|N(0,1)|p)2

∑n−1
j=0 |σtn,j |2p∆t2n,j+1. By the usual martin-

gale central limit considerations (Jacod and Shiryaev (2003)), and since θ−
∑n−1

j=0 |σtn,j |p∆tn,j+1 =
Op(n−1), it follows that

n1/2(θ̂n − θ) L→Z ×
(

Var(|N(0, 1)|p)
(E|N(0, 1)|p)2

T

∫ T

0
σ2p

t dH(t)
)1/2

(26)

stably in law under P ∗
n , where Z is a standard normal random variable. Here, H(t) is the “Asymp-

totic Quadratic Variation of Time” (AQVT), given by

H(t) = lim
n→∞

n

T

∑
tn,j+1≤t

(tn,j+1 − tn,j)2, (27)

provided that the limit exists. For further references on this quantity, see (Zhang (2001, 2006), and
Mykland and Zhang (2006).

Note that in the case of equally spaced observations, θ̂n is proportional to
∑n

j=1 |∆Xtn,j |p, and
also H(t) = t. Finally, recall that

E|N(0, 1)|r = 2
r
2 π−

1
2 Γ(

r + 1
2

) (28)

where Γ is the Gamma-function. (And similarly for variances).

To get from the convergence under P ∗
n to convergence under P ∗, we note that |N(0, 1)|p is

uncorrelated with N(0, 1) and N(0, 1)3. We therefore obtain from Theorems 1 and 2 that the
stable convergence in (26) holds under P ∗. The same is true under the true probability P by
Proposition 1.

2

Example 2. (Bi- and multipower estimators.) The same considerations as in Example 1 apply to
bi- and multipower estimators (see, in particular, Barndorff-Nielsen and Shephard (2004), Woerner
(2004) and Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2006)). The derivations
are much the same. In particular, no adjustment is needed from P ∗

n to P ∗. 2
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Example 3. (Sum of third moments). We here consider quantities of the form

Zn =
n

T

n−1∑
j=0

(∆Xtn,j+1)
3. (29)

To avoid clutter, we shall look at the equally spaced case only (∆tn,j+1 = ∆t = T/n for all j, n).

Our study of the quantity Zn started out as the consideration of a strange example, but has
gradually grown into something more important. We shall see in Section 4.3 that similar quantities
can be parlayed into estimators of the leverage effect. For now, we just show what the simplest
calculation will bring. An important issue, which sets (29) apart from most other cases is that
there is a need for an adjustment from P ∗

n to P ∗, and also from P ∗ to P . This is what will, in turn,
yield interesting results in Section 4.3.

By the same reasoning as in Example 1,

E∗
n(∆X3

tn,j+1
| Xn,j) = 0

Var∗n(∆X3
tn,j+1

| Xn,j) = σ6
tn,j

Var(N(0, 1)3)∆t3 = 15σ6
tn,j

∆t3 and

Cov∗n(∆X3
tn,j+1

,∆W̆tn,j+1 | Xn,j) = σ3
tn,j

Cov(N(0, 1)3, N(0, 1))∆t2 = 3σ3
tn,j

∆t2. (30)

Thus, Zn is the end point of a P ∗
n martingale, and, Zn

L→N(b, a2) stably under P ∗
n , where

b = 3
∫ T

0
σ3

t dW ∗
t and

a2 = 6
∫ T

0
σ6

t dt. (31)

Note that in this example, b 6= 0. Even more interestingly, the distributional result needs to be
adjusted from P ∗

n to P ∗. To see this, denote h3(x) = x3 − 3x (the third Hermite polynomial in the
scalar case). Then,

Cov∗n(∆X3
tn,j+1

, h3(∆W̆tn,j+1/∆t1/2) | Xn,j)∆t1/2 = σ3
tn,j

Cov(N(0, 1)3, h3(N(0, 1)))∆t2

= 6σ3
tn,j

∆t2 (32)

Thus, if M
(0)
n is as given in Section 2.4, it follows that (Zn,M

(0)
n ) converge jointly, and stably, under

P ∗
n to a normal distribution, where the asymptotic covariance is

A12 =
1
2

∫ T

0
ktσ

3
t dt

=
3
2
〈σ2, X〉T , (33)

since ktσ
3
t dt = 3σ−2

t 〈ζ, W 〉′tσ3
t dt = 3d〈ζ, X〉t = 3d〈σ2, X〉t. Thus, by Theorem 2, under P ∗,

Zn
L→N(b′, a2) stably, where a2 is as in (31), while

b′ = 3
∫ T

0
σ3

t dW ∗
t +

3
2
〈σ2, X〉T . (34)
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We thus have a limit which relates to the leverage effect, which is interesting, but unfortunately
obscured by the rest of b′, and by the random term with variance a2.

There is finally a need to adjust from P ∗ to P . From (14), we have dW ∗
t = dWt + σ−1

t µtdt, it
follows that

b′ = 3
∫ T

0
σ3

t (dWt + σ−1
t µtdt) +

3
2
〈σ2, X〉T . (35)

Thus, b′ is unchanged from P ∗ to P , but it has different distributional properties. In particular, µt

now appears in the expression. This is unusual in the high frequency context.

It seems to be a general phenomenon that if there is random bias under P ∗, then µ will occur
in the expression for bias under P . This occurs again in Example 4 in Section 4.3.2. 2

3 Holding σ constant over longer time periods

3.1 Setup

We have shown in the above that it is asymptotically valid to consider systems where σ is constant
from one time point to the next. We shall in the following show that it is also possible to consider
approximate systems where σ is constant over longer time periods.

We suppose that there are Kn intervals of constancy, on the form (τn,i−1, τn,i], where

Hn = {0 = τn,0 < τn,1 < ... < τn,Kn = T} ⊆ Gn (36)

If we set

Mn,i = #{tn,j ∈ (τn,i−1, τn,i]}
= number of intervals (tn,j−1, tn,j ] in (τn,i−1, τn,i] (37)

we shall suppose that
max

i
Mn,i = O(1) as n →∞, (38)

from which it follows that Kn is of exact order O(n).

We now define the approximate measure, called Qn, given by

X0 = x0

for each i = 1,Kn :

∆Xtj+1 = στn,i−1∆WQ
tj+1

for tn,j+1 ∈ (τn,i−1, τn,i]. (39)

To implement this, we use a variation over Definition 3. Formally, we define the approximation as
follows.
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Definition 4. (Block approximation). Define the probability Qn recursively by:
(i) U0 has same distribution under Qn as under P ∗;
(ii) The conditional Qn-distribution of U

(1)
tn,j+1

given U0, ..., Utn,j is given by (39); and

(iii) The conditional P ∗
n-distribution of U

(2)
tn,j+1

given U0, ..., Utn,j , U
(1)
tn,j+1

is the same as under P ∗.

We can now describe the relationship between Qn and P ∗
n , as follows. Let the Gaussian log

likelihood be given by

`(∆x; ζ) = −1
2

log det(ζ)− 1
2
∆xT ζ−1∆x. (40)

We then obtain directly that

Proposition 2. The likelihood ratio between Qn and P ∗
n is given by

log
dQn

dP ∗
n

(Ut0 , ..., Utn,j , ..., Utn,n)

=
∑

i

∑
τi−1≤tj<τi

{
`(∆Xtj+1 ; ζτn,i−1∆tj+1)− `(∆Xtj+1 ; ζtn,j∆tj+1)

}
(41)

Definition 5. To measure the extent to which we hold the volatility constant, we define the fol-
lowing “Asymptotic Decoupling Delay” (ADD) by

K(t) = lim
n→∞

∑
i

∑
tn,j∈(τn,i−1,τn,i]∩[0,t]

(tn,j − τn,i−1), (42)

provided the limit exists.

From (10) and (38), every subsequence has a further subsequence for which K(·) exists (by
Helly’s Theorem, see, for example, p. 336 in Billingsley (1995). Thus one can take the limits to
exist without any major loss of generality. Also, when the limit exists, it is Lipschitz continuous.

Noted that in the case of equidistant observations and equally sized blocks of M observations,
the ADD takes the form

K(t) =
1
2
(M − 1)t. (43)

3.2 Main Contiguity Theorem for the Block Approximation

We obtain the following main result, which is proved in Appendix B.

Theorem 3. (Contiguity of P ∗
n and Qn). Suppose that Assumptions 1-2 are satisfied. Assume that

the Asymptotic Decoupling Delay (K, equation (42)) exists. Set

Z(1)
n =

1
2

∑
i

∑
tn,j∈[τn,i−1,τn,i)

(
∆XT

tn,j+1
(ζ−1

tn,j
− ζ−1

τn,i−1
)∆Xtn,j+1∆t−1

n,j+1

)
(44)
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and let M
(1)
n be the end point of the P ∗

n-martingale part of Z
(1)
n (see (B.23) and (B.25) in Appendix

B for the explicit formula). Define

Γ1 =
1
2

∫ T

0
tr(ζ−2

t 〈ζ, ζ〉′t)dK(t), (45)

where “tr” denotes the trace of the matrix. Then, as n → ∞, M
(1)
n converges stably in law under

P ∗ to a normal distribution with mean zero and variance Γ1. Also, under P ∗,

log
dQn

dP ∗
n

= M (1)
n − 1

2
Γ1 + op(1). (46)

Furthermore, if M
(0)
n is as defined in (23), then the pair (M (0)

n ,M
(1)
n ) converges stably to (Γ1/2

0 V0,Γ
1/2
1 V1),

where V0 and V1 are iid N(0,1), and independent FT .

The theorem says that P ∗
n and the approximation Qn are contiguous, cf. Remark 5 in Section

2.3. By the earlier Theorem 1, it follows that Qn and P ∗ (and P ) are contiguous. In particular,
as before, if an estimator is consistent under Qn, it is also consistent under P ∗ and P . Rates of
convergence (typically n1/2) are also preserved, but the asymptotic distribution may change.

Remark 9. (Which probability?) We have now done several approximations. The true probability
is P , and we are proposing to behave as if it is Qn. We thus have the following alterations of
probability

log
dP

dQn
= log

dP

dP ∗ + log
dP ∗

dP ∗
n

+ log
dP ∗

n

dQn
. (47)

To make matters slightly more transparent, we have stated Theorem 3 under the same probability
(P ∗

n) as Theorems 1 and 2. Since computations would normally be made under Qn, however, we
note that Theorem 2 applies equally if one replaces P ∗

n by Qn, and M
(0)
n by M

(0,Q)
n , given as in (23),

with ∆WQ
tn,j+1

replacing ∆W̆tn,j+1 . (Since M
(0,Q)
n = M

(0)
n + op(1)). Similarly, if one lets M

(1,Q)
n

be endpoint of the Qn-martingale part of −Z
(1)
n , one gets the same stable convergence under Qn.

Obviously, (46) should be replaced by

log
dP ∗

n

dQn
= M (1,Q)

n − 1
2
Γ1 + op(1). (48)

and M
(1,Q)
n = −M

(1)
n + Γ1 + op(1). 2

3.3 Measure change and Hermite polynomials

The three measure changes in Remark 9 turn out to all have a representation in terms of Hermite
polynomials.
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Recall that the standardized Hermite polynomials are given by hr1(x) = xr1 , hr1r2(x) = xr1xr2−
δr1,r2 , and hr1r2r3(x) = xr1xr2xr3−xr1δr2,r3 [3], where, again, “[3]” represents the sum over all three
possible combinations, and δr2,r3 = 1 if r2 = r3, and zero otherwise. From Remark 9,

M (0,Q)
n =

1
12

n−1∑
j=0

(∆tn,j+1)1/2
p∑

r1,r2,r3=1

k
(r1,r2,r3)
tn,j

hr1r2r3(∆WQ
tn,j+1

/(∆tn,j+1)1/2), and

M (1,Q)
n = −1

2

∑
i

∑
tn,j∈(τn,i−1,τn,i]

tr
(
στn,i−1(ζ

−1
tn,j

− ζ−1
τn,i−1

)στn,i−1h··(∆WQ
tn,j+1

/(∆tn,j+1)1/2)
)

. (49)

Similarly, define a discretized version of M (G) =
∫ T
0 σ−1

t µtdW ∗
t by

M (G,Q)
n =

n−1∑
j=0

(∆tn,j+1)1/2
(
σ−1

τn,i−1
µτn,i−1h·(∆WQ

tn,j+1
/(∆tn,j+1)1/2)

)
(50)

(“G” is for Girsanov; h· is the vector of first order Hermite polynomials, similarly h·· is the matrix
of second order such polynomials). We also set

ΓG =
∫ T

0
µT

t (σT
t σt)−1µtdt. (51)

We therefore get the following summary of our results:

log
dP

dP ∗ = M (G,Q)
n − 1

2
ΓG + op(1)

log
dP ∗

dP ∗
n

= M (0,Q)
n − 1

2
Γ0 + op(1) (52)

log
dP ∗

n

dQn
= M (1,Q)

n − 1
2
Γ1 + op(1).

Furthermore, by the Hermite polynomial property, we obtain that these three martingales have, by
construction, zero predictable covariation (under Qn). In particular, the triplet (M (G,Q)

n ,M
(0)
n ,M

(1)
n )

converges stably to (M (G),Γ1/2
0 V0,Γ

1/2
1 V1), where V0 and V1 are iid N(0,1), and independent FT .

Remark 10. Note that the M
(G,Q)
n is in many ways different from M

(0)
n and M

(1)
n . The convergence

of the former is in probability, while the latter converge only in law. Thus, for example, the property
discussed in Remark 8 (see also Theorem 4 in the next section) does not apply to M

(G,Q)
n . If Zn

and M
(G,Q)
n have joint covariation, this yields a smaller asymptotic variance for Zn, but also bias.

For instances of this, see Example 3 in Section 2.5, and also Example 4 in Section 4.3.2 below.
2

3.4 Adjusting for the Change from P ∗ to Qn

The adjustment result is now similar to that of Section 2.4
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Theorem 4. Assume the setup in Theorems 1-3. Suppose that, under Qn, (Zn,M
(0)
n ,M

(1)
n ) con-

verges stably to a trivariate distribution b+aN(0, I), where N(0, I) is a trivariate vector independent
of FT , where the vector b = (b1, b2, b3)T and the symmetric 3× 3 matrix a are FT measurable. Set
A = a2. Then Zn converges stably under P ∗ to b1 + A12 + A13 + (A11)1/2N(0, 1), where N(0, 1) is
independent of FT .

Recall that b2 = b3 = A23 = 0, A22 = Γ0, and A33 = Γ1. The proof is the same as for Theorem
2.

Theorem 4 that when adjusting from Qn to P ∗, the asymptotic variance of Zn is unchanged,
while the asymptotic bias may change.

4 Applications

We here discuss various applications of our theory. For simplicity, assume in following that sampling
is equispaced (so ∆tn,j = ∆tn = T/n for all j). We return to the question of irregular sampling in
Section 6. Except in Section 4.2, we also take (Xt) to be a scalar process. We take the block size
M to be independent of i (except possibly for the first and last block, and this does not matter for
asymptotics).

Define

σ̂2
τn,i

=
1

∆tn(Mn − 1)

∑
tn,j∈(τn,i−1,τn,i]

(∆Xtn,j+1 −∆Xτn,i)
2 and

∆Xτn,i =
1

Mn

∑
tn,j∈(τn,i−1,τn,i]

∆Xtn,j+1 =
1

Mn
(Xτn,i −Xτn,i−1) (53)

To analyze estimators, denote by Yn,i the information at time τn,i. Note that Yn,i = Xn,j , where j

is such that tn,j = τn,i.

4.1 Estimation of integrals of |σt|p

We return to the question of estimating

θ =
∫ T

0
|σt|pdt.

We shall not use estimators of the form
∑n

j=1 |∆Xtn,j |p, as in Example 1. We show how to get
more efficient estimators by using the block approximation.
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4.1.1 Analysis

We observe that under Qn, the ∆Xtn,j+1 are iid N(0, σ2
τn,i

) within each block. From the theory of
unbiased minimum variance (UMVU) estimation (see, for example, Lehmann (1983)), the optimal
estimator of |στn,i |p is

̂|στn,i |p = c−1
M−1,p(σ̂

2
τn,i

)p/2 (54)

This also follows from sufficiency considerations. Here, cM,p is the normalizing constant which gives
unbiasedness, namely

cM,p = E
(
(χ2

M/M)p/2
)

=
(

2
M

)p/2 Γ(p+M
2 )

Γ(M
2 )

(55)

where χM is the standard χ2 distribution with M degrees of freedom, and Γ is the Gamma function.

Our estimator of θ (which is blockwise UMVU under Qn) therefore becomes

θ̂n = (M∆t)
∑

i

̂|στn,i |p (56)

It is easy to see that θ̂n asymptotically has no covariation with any of the Hermite polynomials in
Section 3.3, and so, by standard arguments,

n1/2(θ̂n − θ) L→N(0, 1)

(
TM

(
cM−1,2p

c2
M−1,p

− 1

)∫ T

0
σ2p

t dt

)1/2

(57)

stably in law, under P (and P ∗, P ∗
n , and Qn). This is because, under Qn,

Var((M∆t)
∑

i

̂(|στn,i |p) | Yn,i) = σ2p
τn,i

(M∆t)2c−2
M−1,pVar

(
(χ2

M−1/(M − 1))p/2
)

= σ2p
τn,i

(M∆t)
TM

n

(
cM−1,2p

c2
M−1,p

− 1

)
. (58)

Remark 11. (Not taking out the mean). One can replace σ̂2
τn,i

by

σ̃2
τn,i

=
1

∆tnMn

∑
tn,j∈(τn,i−1,τn,i]

(∆Xtn,j+1)
2, (59)

and take
˜|στn,i |p = c−1

M,p(σ̃
2
τn,i

)p/2 (60)

and define θ̃n accordingly. The above analysis goes through. The (random) asymptotic variance
becomes

TM

(
cM,2p

c2
M,p

− 1

)∫ T

0
σ2p

t dt. (61)

2
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4.1.2 Asymptotic Efficiency

We note that for large M ,

asymptotic variance of n1/2(θ̂n − θ) ↓ T
p2

2

∫ T

0
σ2p

t dt. (62)

This is also the minimal asymptotic variance of the parametric MLE when σ2 is constant. Thus,
by choosing M largeish, say M = 20, one can get close to parametric efficiency (see Figure 1).

To see the gain from the procedure, compare to the asymptotic variance of the estimator in

Example 1, which can be written as T

(
c1,2p

c21,p
− 1
)∫ T

0 σ2p
t dt. Compared to the variance in (62), the

earlier estimator has asymptotic relative efficiency (ARE)

ARE(estimator from Example 1) =
asymptotic variance in (62)

asymptotic variance of estimator from Example 1

=
p2

2

(
c1,2p

c2
1,p

− 1

)−1

(63)

Note that except for p = 2, ARE < 1. Figure 1 gives a plot of the ARE as a function of p. As one
can see, there can be substantial gain from using the proposed estimator (56).

Remark 12. In terms of asymptotic distribution, there is further gain in using the estimator from
Remark 11. Specifically, AREM (θ̃)/AREM (θ̂) = M/(M − 1). This is borne out by Figure 1.
However, it is likely that the drift µ, as well as the block size M , would show up in a higher order
bias calculation. This would make σ̃ less attractive. In connection with estimating the leverage
effect, it is crucial to use σ̂ rather than σ̃, cf. Section 4.3.2. 2

Remark 13. We emphasize again that M has to be fixed in the present calculation, so that the
ideal asymptotic rate on the right hand side of (62) is only approximately attained. It would be
desirable to build a theory where M →∞ as n →∞. Such a theory would presumably be able to
pick up any biases due to the blocking. 2
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Figure 1. Asymptotic relative efficiency (ARE) of three estimators of θ =
∫ T
0 σp

t dt,

as a function of p. The dotted curve corresponds to the traditional estimator,

which is proportional to
∑n

j=1 |∆Xtn,j |p. The solid and dashed lines are the ARE’s

of the block based estimators using, respectively, σ̂ (solid) and σ̃ (dashed). Block

sizes M = 20 and M = 100 are given. The ideal value is ARE = 1. Blocking is seen

to improve efficiency, especially away from p = 2. There is some cost to removing

the mean in each block (the difference between the dashed and the solid curve).

4.2 ANOVA (Analysis of variance/variation)

We here revisit the problem from Zhang (2001) and Mykland and Zhang (2006). Consider processes
X

(1)
t , ..., X

(p)
t and Yt which are observed synchronously at times 0 = tN,0 < tN,1 < ... < tN,n1 = T .

These processes are related by

dYt =
p∑

i=1

f (i)
s dX(i)

s + dZt, with 〈X(i), Z〉t = 0 for all t and i. (64)

The problem is how to estimate 〈Z,Z〉T , i.e., the residual quadratic variation of Y after regressing
on X. As documented in Zhang (2001) and Mykland and Zhang (2006), this is useful for statistical
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and trading purposes.

Following the theoretical development in the early sections, one strategy is as follows. Take the
block size M > p. In each block, regress ∆Ytj on ∆Xtj linearly, and without intercept. Call the
residuals ∆̂Ztj . A natural estimator for 〈Z,Z〉T is therefore

̂〈Z,Z〉T =
M

M − p

n1∑
j=1

∆̂Z
2

tj . (65)

This strategy was analyzed in the simpler setting of Mykland (2006). In the more complex setting
of this paper, one can see that

n1/2( ̂〈Z,Z〉T − 〈Z,Z〉T ) L→ N(0, 1)
(

2
M

M − p

∫ T

0
(〈Z,Z〉′t)2dt

)1/2

(66)

stably in law under P .

Remark 14. Compared to the results of Zhang (2001) and Mykland and Zhang (2006), the differ-
ence in method is that M is finite and fixed, while in the earlier paper, M →∞ with n. In terms
of results, the estimator in (65) has no asymptotic bias, whereas bias is present, though correctable
from the data, in the earlier work. On the other hand, the current estimator is not quite efficient,
as the asymptotic variance in Zhang (2001) and Mykland and Zhang (2006) is

2
∫ T

0
(〈Z,Z〉′t)2dt. (67)

Of course, the variance in (66) converges to that of (67) as M →∞. 2

4.2.1 The case of regression with intercept

The system

dYt = f (0)
s ds +

p∑
i=1

f (i)
s dX(i)

s + dZt, with 〈X(i), Z〉t = 0 for all t and i. (68)

can be treated similarly. In each block, one regresses ∆Ytj on ∆Xtj linearly, but now with intercept.
The procedure is otherwise similar. It is easy to see that the asymptotic variance in (66) becomes

2
M

M − (p + 1)

∫ T

0
(〈Z,Z〉′t)2dt. (69)

4.3 Estimation of Leverage Effect

We here seek to estimate 〈σ2, X〉T . We have seen in Example 3 that this quantity can appear in
asymptotic distributions, and we shall here see how the sum of third powers can be refined into an
estimate of this quantity.
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The natural estimator would be

˜〈σ2, X〉T =
∑

i

(σ̂2
τn,i+1

− σ̂2
τn,i

)(Xτn,i+1 −Xτn,i), (70)

where σ̂2
τn,i

and ∆Xτn,i are given above in (53). Section 4.3.1 shows that this estimator is asymp-
totically biased. Accordingly, we define an asymptotically unbiased estimator of leverage effect
by

̂〈σ2, X〉T =
2M

2M + 3

∑
i

(σ̂2
τn,i+1

− σ̂2
τn,i

)(Xτn,i+1 −Xτn,i), (71)

In other words, ̂〈σ2, X〉T = 2M
2M+3

˜〈σ2, X〉T . Following Proposition 3 in Section 4.3.1,

̂〈σ2, X〉T − 〈σ
2, X〉 L→ c

1/2
M N(0, 1) (72)

stably under P ∗ and P , where

cM =
4

M − 1

(
2M

2M + 3

)2 ∫ T

0
σ6

t dt. (73)

It is important to note that the bias comes from error induced by the one period discretization (the
adjustment from P ∗ to P ∗

n). Thus, this is an instance where näıve discretization does not work.

For fixed M , the estimator ̂〈σ2, X〉T is not consistent. By choosing large M , however, one can
make the error as small as one wishes.

Remark 15. It is conjectured that there is an optimal rate of M = O(n1/2) as n → ∞. The
presumed optimal convergence rate is n1/4, in analogy with the results in Zhang (2006). This
makes sense because σ̂2

t is a noisy measurement of σ2
t . The problem of estimating 〈σ2, X〉T is

therefore similar to estimating volatility in the presence of microstructure noise.

It would clearly be desirable to have a theory for the case where M depends on n, but this is
beyond the scope of this paper. 2

4.3.1 Analysis

We here show how to arrive at the final result (72). This serves as a fairly extensive illustration of
how to apply the theory development in the earlier sections.

By rearranging terms, write

˜〈σ2, X〉T =
∑

i

(σ2
τn,i+1

− σ2
τn,i

)(Xτn,i+1 −Xτn,i)

+
∑

i

(σ̂2
τn,i

− σ2
τn,i

)(Xτn,i −Xτn,i−1)

−
∑

i

(σ̂2
τn,i

− σ2
τn,i

)(Xτn,i+1 −Xτn,i) + Op(n−1), (74)
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where the Op(n−1) term comes from edge effects. Note that by conditional Gaussianity, both the
two last sums in (74) are Qn-martingales with respect to the sigma-fields Yn,i. They are also
orthogonal, in the sense that

CovQ
n ((σ̂2

τn,i
− σ2

τn,i
)(Xτn,i −Xτn,i−1), (σ̂

2
τn,i

− σ2
τn,i

)(Xτn,i+1 −Xτn,i) | Yn,i) = 0 (75)

Under Qn and conditionally on the information up to time τn,i−1, σ̂2
τn,i

= σ2
τn,i

χ2
M−1/(M − 1) and

∆Xτn,i = στn,i(∆t/M)1/2N(0, 1), where χ2
M−1 and N(0, 1) are independent. It follows that

VarQ
n ((σ̂2

τn,i
− σ2

τn,i
)(Xτn,i −Xτn,i−1) | Yn,i)

= σ4
τn,i

(M − 1)−2(Xτn,i −Xτn,i−1)
2Var(χ2

M−1)

= 2σ4
τn,i

(M − 1)−1(Xτn,i −Xτn,i−1)
2 (76)

Hence, under Qn, the quadratic variation of
∑

i(σ̂
2
τn,i

− σ2
τn,i

)(Xτn,i −Xτn,i−1) converges to

2
M − 1

∫ T

0
σ6

t dt. (77)

At the same time, it is easy to see that this sum has asymptotically zero covariation with the
increments of M

(0,Q)
n and M

(1,Q)
n , and also with WQ. Hence

∑
i(σ̂

2
τn,i

− σ2
τn,i

)(Xτn,i − Xτn,i−1)
converges stably under P to a normal distribution with mean zero and variance (77).

The situation with the other sum
∑

i(σ̂
2
τn,i

− σ2
τn,i

)(Xτn,i+1 −Xτn,i) is more complicated. First
of all,

VarQ
n ((σ̂2

τn,i
− σ2

τn,i
)(Xτn,i+1 −Xτn,i) | Yn,i)

= σ6
τn,i

(M∆t)Var((
χ2

M−1

M − 1
− 1)N(0, 1))

=
2

M − 1
σ6

τn,i
(M∆t). (78)

Hence the asymptotic quadratic variation is

2
M − 1

∫ T

0
σ6

t dt. (79)

The sum is asymptotically uncorrelated with M
(1,Q)
n and WQ. To see the latter, note that

CovQ
n ((σ̂2

τn,i
− σ2

τn,i
)(Xτn,i+1 −Xτn,i),Wτn,i+1 −Wτn,i | Yn,i)

= σ3
τn,i

(M∆t)Cov((
χ2

M−1

M − 1
− 1)N(0, 1), N(0, 1))

= 0. (80)
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Overall, under both Qn and P ∗
n ,

∑
i

(σ̂2
τn,i

− σ2
τn,i

)(Xτn,i+1 −Xτn,i)
L→ N(0, 1)

(
2

M − 1

∫ T

0
σ6

t dt

)1/2

, (81)

stably.

There is, however, covariation between this sum and M
(0,Q)
n . It is shown below in Remark 16

(see equation (89)) that A12 = 3
2M 〈σ2, X〉T , where A12 has the same meaning as in Theorems 2

and 4 (in Sections 2.4 and 3.4, respectively). Thus, by these theorems, under P ∗, we have (stably)

∑
i

(σ̂2
τn,i

− σ2
τn,i

)(Xτn,i+1 −Xτn,i)
L→ 3

2M
〈σ2, X〉T + N(0, 1)

(
2

M − 1

∫ T

0
σ6

t dt

)1/2

. (82)

Because of the orthogonality (75), and since
∑

i(σ
2
τn,i+1

− σ2
τn,i

)(Xτn,i+1 − Xτn,i) − 〈σ2, X〉T =

Op(n−1/2) by Proposition 1 of Mykland and Zhang (2006), it follows that ̂〈σ2, X〉T − 〈σ2, X〉
converges stably (under P ∗) to a normal distribution with mean as in equation (82), and variance
contributed by the second and third terms on the right hand side of (74). In other words:

Proposition 3. In the equally spaced case, under both P ∗ and P , and as n →∞,

˜〈σ2, X〉T
L→
(

1 +
3

2M

)
〈σ2, X〉+ N(0, 1)×

(
4

M − 1

∫ T

0
σ6

t dt

)1/2

(83)

stably in law, where N(0, 1) is independent of FT .

This shows the result (72).

Remark 16. (Sample of calculation). To see how the reasoning works in the case of covariations,
consider the case of covariation between

∑
i(σ̂

2
τn,i

− σ2
τn,i

)(Xτn,i+1 −Xτn,i) and M
(0,Q)
n . We proceed

as follows.

If hr is the r’th (scalar) Hermite polynomial, set

Gr,i =
∑

tn,j∈(τn,i,τn,i+1]

hr(∆WQ
tn,j+1

/∆t1/2), (84)

note that

Xτn,i+1 −Xτn,i = στn,i∆t1/2G1,i and

σ̂2
τn,i

− σ2
τn,i

=
σ2

τn,i

M − 1

(
G2,i −

1
M

G2
1,i + 1

)
(85)

At the same time,

M (0,Q)
n =

1
12

(∆t)1/2
∑

i

kτn,iG3,i + op(1) (86)
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The covariance for each i-increment becomes

CovQ
n ((σ̂2

τn,i
− σ2

τn,i
)(Xτn,i+1 −Xτn,i),

1
12

(∆t)1/2kτn,iG3,i | Yn,i)

=
1
12

∆t
kτn,iσ

3
τn,i

M − 1
CovQ

n ((G2,i −
1
M

G2
1,i + 1)G1,i, G3,i | Yn,i)

=
1
2
(M∆t)

kτn,iσ
3
τn,i

M
(87)

since, by orthogonality of the Hermite polynomials, and by normality,

CovQ
n ((G2,i −

1
M

G2
1,i + 1)G1,i, G3,i | Yn,i)

= cumQ
3,n(G1,i, G2,i, G3,i | Yn,i)−

1
M

cumQ
4,n(G1,i, G1,i, G1,i, G3,i | Yn,i)

= Mcum3(h1(N(0, 1)), h2(N(0, 1), h3(N(0, 1)))

− cum4(h1(N(0, 1)), h1(N(0, 1), h1(N(0, 1)), h3(N(0, 1)))

= 6(M − 1). (88)

The covariation with M
(0,Q)
n therefore converges to

A12 =
1

2M

∫ T

0
ktσ

3
t dt

=
3

2M
〈σ2, X〉T (89)

as in (33). 2

4.3.2 The rôle of µ

In the development above, the drift µ did not surface. The following example gives evidence that
the drift can matter. We shall see that if one does not take out the drift when estimating σ2, µ

can appear in the asymptotic bias.

Example 4. (Not removing the mean from the estimate of σ2). Suppose that one wishes
to use the estimator (70), but replacing σ̂2

τn,i
by the estimator σ̃2

τn,i
from (59). An estimator

analogous to ˜〈σ2, X〉T is then

˜〈σ2, X〉
with mean

T =
∑

i

(σ̃2
τn,i+1

− σ̃2
τn,i

)(Xτn,i+1 −Xτn,i), (90)

We have the representation

σ̃2
τn,i

− σ2
τn,i

=
σ2

τn,i

M
G2,i. (91)
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We now consider the terms in (74). First note that
∑

i(σ̃
2
τn,i

−σ2
τn,i

)(Xτn,i−Xτn,i−1) is unaffected
by this change. However, this is not true for the term

∑
i(σ̃

2
τn,i

− σ2
τn,i

)(Xτn,i+1 −Xτn,i), which we
analyze in the following.

Since cum3(h1(N(0, 1)), h2(N(0, 1), h3(N(0, 1))) = 6, it now follows as in (87) that

CovQ
n ((σ̃2

τn,i
− σ2

τn,i
)(Xτn,i+1 −Xτn,i),

1
12

∆t1/2kτn,iG3,i | Yn,i) = ∆t
kτn,iσ

3
τn,i

2M

= ∆t
3〈σ2, X〉′τn,i

2M
. (92)

More importantly,

CovQ
n ((σ̃2

τn,i
− σ2

τn,i
)(Xτn,i+1 −Xτn,i),W

Q
τn,i+1

−WQ
τn,i

| Yn,i)

= CovQ
n (

σ2
τn,i

M
G2,iστn,i∆t1/2G1,i,∆t1/2G1,i | Yn,i)

= ∆t
σ3

τn,i

M
CovQ

n (G2,iG1,i, G1,i | Yn,i)

= ∆tσ3
τn,i

Cov(h2(N(0, 1))h1(N(0, 1)), h1(N(0, 1)))

= 2∆tσ3
τn,i

. (93)

Finally,

VarQ
n ((σ̃2

τn,i
− σ2

τn,i
)(Xτn,i+1 −Xτn,i) | Yn,i)

= ∆t
σ6

τn,i

M2
Var(G2,iG1,i | Yn,i)

=
(
2 + 6M−1

)
∆tσ6

τn,i
(94)

Since the term
∑

i(σ̃
2
τn,i

−σ2
τn,i

)(Xτn,i+1−Xτn,i) remains a martingale, we therefor obtain that under
Qn,

˜〈σ2, X〉
with mean

T
L→〈σ2, X〉T +

2
M

∫ T

0
σ3dW̆ + N(0, 1)

(
2
M + 1

M

∫ T

0
σ6dt

)1/2

. (95)

stably in law. From (92), we obtain from Theorem 4 that under P ∗

2M

2M + 3
˜〈σ2, X〉

with mean

T
L→ 〈σ2, X〉T +

4
2M + 3

∫ T

0
σ3dW ∗ + N(0, 1)

(
8
M(M + 1)
(2M + 3)2

∫ T

0
σ6dt

)1/2

(96)
We now, therefore, have an asymptotic bias. If one replaces P ∗ by P , we get that the bias becomes

4
2M + 3

∫ T

0
σ3(dW + σ−1

t µtdt). (97)

2
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5 Abstract summary of applications

We here summarize the procedure which is implemented in the applications section above. We
remain in the scalar case.

In the type of problems we have considered, the parameter θ to be estimated can be written as

θ =
∑

i

θn,i + Op(n−1) (98)

where, under the approximating measure, θn,i is approximately an integral from τn,i−1 to τn,i.
Estimators are of the form

θ̂n =
∑

i

θ̂n,i, (99)

where θ̂n,i uses M or (in the case of the leverage effect) 2M increments. If one sets Zn,i = nα(θ̂n,i−
θn,i), we need that Zn,i is a martingale under Qn. α can be 0, 1/2 or any other number smaller
than 1. We then show in each individual case that, in probability,∑

i

VarQ
n (Zn,i | Yn,i) →

∫ T

0
f2

t dt

∑
i

CovQ
n (Zn,i,W

Q
τn,i+1

−WQ
τn,i

| Yn,i) →
∫ T

0
gtdt (100)

for some functions (processes) ft and gt. We also find the following limits in probability:

A12 =
1
12

lim
n→∞

∑
i

CovQ
n

Zn,i,
∑

tn,j∈(τn,i−1,τn,i]

(∆tn,j+1)1/2ktn,jh3(∆WQ
tn,j+1

/(∆tn,j+1)1/2) | Yn,i


and

A13 = −1
2

lim
n→∞

∑
i

CovQ
n

Zn,i,
∑

tn,j∈(τn,i−1,τn,i]

(
σ2

τn,i−1
(ζ−1

tn,j
− ζ−1

τn,i−1
)h2(∆WQ

tn,j+1
/(∆tn,j+1)1/2)

)
| Yn,i

 .

(101)

We finally obtain

Theorem 5. (Summary of method in the scalar case). In the setting described, and subject to
regularity conditions,

nα(θ̂n − θn) L→ b + A12 + A13 + N(0, 1)
(∫ T

0
(f2

t − g2
t )dt

)1/2

(102)

stably in law under P ∗ and P , with N(0, 1) independent of FT . b is given by

b =
∫ T

0
gtdW ∗

t =
∫ T

0
gt(dWt + σ−1

t µtdt). (103)
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6 Irregularly spaced and asynchronous data

The general results stated in the paper cover irregularly spaced data. The theory therefore permits
the analysis of estimators in this setting. However, It does not necessarily tell us what is the best
estimator in the irregular sampling setting.

To clarify the issue, we show in Section 6.1 that one should not blindly assume that data can be
considered as equispaced. We discuss in Section 6.2 some ideas for how one can approach irregularly
spaced data.

The same general situation applies to asynchronous data. This is discussed in Section 6.3.

6.1 A second block approximation.

The approximation in Section 3 reduces the problem (in each block) to a case of independent (but
not identically distributed) increments. Can we do better than this, and go to iid observations?

To answer this question, consider another approximate probability measure Rn:

X0 = x0

for each i = 1,Kn :

∆Xtj+1 = στn,i−1(
∆τi

∆tj+1Mi
)1/2∆W ∗

tj+1
for tn,j+1 ∈ (τn,i−1, τn,i] (104)

Formally, we define the approximation as follows.

Definition 6. Rn is defined as Qn in Definition 4, but with (104) replacing (39).

The crucial fact will be that under Rn, the observables ∆Xtj+1 are conditionally iid N(0, ζτn,i−1∆τi/Mi)
for tn,j+1 ∈ (τn,i−1, τn,i]

We can now describe the relationship between Rn and P ∗
n . In analogy with the previous propo-

sition, we obtain that

Proposition 4.

log
dRn

dP ∗
n

(Ut0 , ..., Utn,j , ..., Utn,n)

=
∑

i

∑
τi−1≤tj<τi

{
`(∆Xtj+1 ; ζτn,i−1∆τi/Mi)− `(∆Xtj+1 ; ζtn,j∆tj+1)

}
(105)

The contiguity question is then addressed as follows. Recall that

log
dRn

dP ∗
n

= log
dRn

dQn
+ log

dQn

dP ∗
n

. (106)
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Define

Bn,j =

(
∆tn,j+1

(
∆τn,i

Mi

)−1

− 1

)
(107)

Theorem 6. (Asymptotic relationship between P ∗
n , Qn and Rn). Assume the conditions of Theorem

3. Assume that the following limits exist:

Γ2 =
p

2
lim

n→∞

∑
j

B2
n,j and Γ3 =

p

2
lim

n→∞

∑
j

log(1 + Bn,j). (108)

Let Z
(1)
n and M

(1)
n be as in Theorem 3, set

Z(2)
n =

1
2

∑
i

∑
tn,j∈(τn,i−1,τn,i]

∆XT
tn,j

(ζ−1
τn,i−1

)∆Xtn,j

(
∆t−1

n,j+1 −
(

∆τn,i

Mi

)−1
)

, (109)

and let M
(2)
n be the end point of the martingale part of Z

(2)
n (see (B.23) and (B.25) in Appendix

B for the explicit formula). Then, as n → ∞, (M (1)
n ,M

(2)
n ) converges stably in law under P ∗ to a

normal distribution with mean zero and diagonal variance matrix with diagonal elements Γ1 and
Γ2. Also, under P ∗,

log
dRn

dQn
= M (2)

n + Γ3 + op(1). (110)

The theorem can be viewed from the angle of contiguity:

Corollary 2. Under the assumptions of Theorem 6, the following statements are equivalent, as
n →∞:
(i) Rn is contiguous to P ∗

n .
(ii) Rn is contiguous to Qn.
(iii) The following relationship holds:

Γ3 = −1
2
Γ2. (111)

As we shall see, the requirement (111) is a substantial restriction. Corollary 2 says that unlike
the case of Qn, inference under Rn may not give rise to desired results. Part of the probability
mass under Qn (and hence P ∗) is not preserved under Rn.

To understand the requirement (111), note that

p

2

∑
j

log(1 + Bn,j) = −p

4

∑
j

B2
n,j +

p

6

∑
j

B3
n,j − ... (112)

since
∑

j Bn,j = 0. Hence, (111) will, for example, be satisfied if maxj |Bn,j | → 0 as n → ∞. One
such example is

tn,j = f(j/n) and f is continuously differentiable. (113)

However, (113) will not hold in more general settings, as we shall see from the following examples.
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Example 5. (Poisson sampling.) Suppose that the sampling time points follow a Poisson process
with parameter λ. If one conditions on the number of sampling points n, these points behave like the
order statistics of n uniformly distributed random variables (see, for example, Chapter 2.3 in Ross
(1996)). Consider the case where Mi = M for all but (possibly) the last interval in Hn. In this case,
Kn is the smallest integer larger than or equal to n/M . Let Yi be the M -tuple (Bj , τi−1 ≤ tj < τi).

We now obtain, by passing between the conditional and unconditional, that Y1, ..., YKn−1 are
iid, and the distribution can be described by

Y1 = M(U(1), U(2) − U(1), ..., U(M−1) − U(M−2), 1− U(M−1))− 1, (114)

where U(1), ..., U(M−1) is the order statistic of M − 1 independent uniform random variables on
(0, 1). It follows that ∑

j

B2
n,j =

n

M
(M2EU2

(1) − 1) + op(n)

∑
j

log(1 + Bn,j) =
n

M
E log(MU(1)) + op(n) (115)

since EU2
(1) = 2/(M + 1)(M + 2). Hence, both Γ2 and Γ3 are infinite. The contiguity between

Rn and the other probabilities fails. On the other hand all our assumptions up to Section 3 are
satisfied, and so P , P ∗, P ∗

n and Qn are all contiguous. The AQVT (equation (27)) is given by
H(t) = 2t . Also, if the block size is constant (size M), the ADD is K(t) = (M − 1)t . 2

Example 6. (Systematic irregularity.) Let ε be a small positive number, and let ∆tn,j =
(1+ε)T/n for odd j and ∆tn,j = (1−ε)T/n for even j (with ∆tn,j = T/n for odd n). Again, all our
assumptions up to Section 3 are satisfied. The AQVT is given by H(t) = t(1 + ε2). If we suppose
that all Mi = 2, the ADD becomes K(t) = t. On the other hand, Bn,j = ±ε, so that, again, both
Γ2 and Γ3 are infinite. The contiguity between Rn and the other probabilities thus fails in the same
radical fashion as in the case of Poisson sampling. 2

6.2 What to do about irregularly spaced data

In view of the above, one cannot blindly assume that data are equispaced. What should one do?

6.2.1 If the sampling times are reliable

In this case, the cure-all is to simply standardize increments to have (within block) equal vari-
ance. In other words, for the estimators discussed in Section 4, simply replace ∆Xtn,j+1 by
∆Xtn,j+1(∆tn,i/∆tn,j+1)1/2, where ∆tn,i = (τn,i − τn,i−1)/Mn,i. Also, normalization by ∆t gets
replaced (in each block) by normalization by ∆tn,i. This reduces all sums of powers to the same
form as the Hermite polynomial sums in Section 3.3.
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In this approach, results from the equispaced case go through with little modification. For con-
stant block size (in terms of number of observations), the results are the same as in the equispaced
case. Thus, the bias and variances given in Section 4 are unchanged.

We note that this approach has been advocated by Jacod (1994).

6.2.2 If the sampling times are unreliable/unavailable

There is no simple solution in this case. We here only give some comments and conjectures.
The standard approach would be to write estimators as in the equispaced case, and then try to
compensate for the irregularity later. By way of example, consider the estimator of leverage effect
discussed in Section 4.3.

In equation (70), write more generally ˜〈σ2, X〉T =
∑

i(σ̂
2
τn,i+1

− σ̂2
τn,i

)(Xτn,i+1 −Xτn,i) , where

σ̂2
τn,i

=
1

∆tn,i(Mn,i − 1)

∑
tn,j∈(τn,i−1,τn,i]

(∆Xtn,j+1 −∆Xτn,i)
2 and

∆Xτn,i =
1

Mn,i

∑
tn,j∈(τn,i−1,τn,i]

∆Xtn,j+1 =
1

Mn,i
(Xτn,i −Xτn,i−1) (116)

It is shown below in Remark 17 that the asymptotic bias (equation (89)) is replaced by

A12 =
3

2M

∫
〈σ2, X〉′tdH3/2(t) (117)

where
H 3

2
(t) = lim

n→∞

∑
τn,i+1≤t

(τn,i+1 − τn,i)
1
M

∑
tn,j∈(τn,i,τn,i+1]

(∆tj+1/∆tn,i)3/2. (118)

The form of H 3
2
(t) = t is often simpler in applications. First of all, in the equispaced case,

H 3
2
(t) = t. This leads to the corrected estimator ̂〈σ2, X〉T proposed in Section 4.3. Second, the

correction leading to ̂〈σ2, X〉T is the minimal possible one. To wit, by Jensen’s Inequality, H ′
3
2

(t) ≥ 1
for all t.

In many cases, H ′
3
2

(t) will be a constant. For example, in the case of Poisson sampling,

H ′
3
2

(t) = 3M1/2 22M (M + 1)!M !
(2M + 2)!

(119)

(approximately 3
√

π/4 ≈ 1.33 for large M). In the case of constancy, an adjusted estimator might
be given by

̂〈σ2, X〉T =
(

1 +
3

2M
Ĥ ′

3
2

)−1
˜〈σ2, X〉T , (120)
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where Ĥ ′
3
2

is a suitably chosen estimator of H ′
3
2

. If the estimator Ĥ ′
3
2

is consistent, then ̂〈σ2, X〉T
will be asymptotically unbiased.

Similarly, if H ′
3
2

(t) is indeed time varying, one may also be able to adjust the sum locally.

There is clearly room for more research on finding good estimators in the unequally spaced case.
Our main contribution in this paper is to provide the tool to analyze such estimators, and we do
not claim to have final proposals for estimators.

Remark 17. We here give the calculations for the asymptotic bias of ˜〈σ2, X〉T , to illustrate how
to analyze the unequally spaced case. Set

Gr,i =
∑

tn,j∈(τn,i,τn,i+1]

hr(∆WQ
tn,j+1

/∆t
1/2
tn,j+1

), (121)

and
G̃r,i =

∑
tn,j∈(τn,i,τn,i+1]

hr(∆WQ
tn,j+1

/∆t
1/2
n,i ). (122)

As in Section 4.3, the bias of ˜〈σ2, X〉T is a function of the correlation with M
(0)
n . In Remark 16,

the derivation goes through word for word if Gr,i is replaced by G̃r,i for r = 1, 2 (but not r = 3).
We set δj = ∆tj+1/∆tn,i, and replace equation (88) by

CovQ
n ((G̃2,i −

1
M

G̃2
1,i + 1)G̃1,i, G3,i | Yn,i)

= 6
M − 1

M

∑
tn,j∈(τn,i,τn,i+1]

δ
3/2
j (123)

Thus, in analogy with (87)

CovQ
n ((σ̂2

τn,i
− σ2

τn,i
)(Xτn,i+1 −Xτn,i),

1
12

∆t
1/2
n,i kτn,iG3,i | Yn,i)

=
1
12

∆tn,i

kτn,iσ
3
τn,i

M − 1
CovQ

n ((G2,i −
1
M

G2
1,i + 1)G1,i, G3,i | Yn,i)

=
3
2
(τn,i+1 − τn,i)

〈σ2, X〉′τn,i

M

1
M

∑
tn,j∈(τn,i,τn,i+1]

δ
3/2
j (124)

Hence (89) is replaced by

A12 =
3

2M

∫
〈σ2, X〉′tdH3/2(t). (125)

This shows the asymptotic bias result given above. 2
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6.3 Asynchronous data

For purposes of analysis, asynchronous data does not pose any difficulty. One includes all obser-
vation times when computing the likelihood ratios in the contiguity theorems. It does not matter
that some components of the vector are not observed at all these times. (A further elaboration of
this principle is discussed in Section 8.2 below). In a sense, they are just treated as missing data.
Just as in the case of irregular times for scalar processes, this does not necessarily mean that it is
straightforward to write down sensible estimators.

For example, consider a bivariate process (X(1)
t , X

(2)
t ). If process (X(r)

t ) is observed at times
G(r)

n = {0 ≤ t
(r)
n,0 < t

(r)
n,1 < ... < t

(r)
n,n1 ≤ T}, one would normally use the grid Gn = G(1)

n ∪G(2)
n ∪{0, T}

to compute the quantities in Theorems 1-3.

7 Moving windows

The paper so far has considered chopping n data up into K non-overlapping windows of size M

each. We here give a heuristic account of how the technology can be adapted to the moving window
setting. This is given in the style of Section 5. The process (Xt) is assumed to be scalar.

It should be noted that the moving window is close to the concept of a moving kernel, and this
may be a promising avenue of further investigation. See, in particular, Linton (2007).

7.1 Description of the result

We still assume that estimators are computed using blocks of size M . To define asymptotic vari-
ances, we set up a locally discretized measure as follows. Q

(M,j)
n is identical to P ∗

n up to observation
Xtn,j . This is followed by one block, of size 2M , where updating is done as in Definition 4. After

time tn,j+M, Q
(M,j)
n does not need to be defined.

Suppose the parameter to be estimated is θ =
∫ T
0 ωtdt, and let θn,j = M∆tωtn,j−M . Then

θ =
1
M

n∑
j=M+1

θn,j + Op(n−1). (126)

Let θ̂n,j be an estimator of θn,j , with the property that for any M≥ M ,

EQM,j−M
n (θ̂n,j − θn,j | Xtn,j−M) = 0. (127)

We suppose that θ̂n,j is a function of ∆Xtn,j−M+1 , ...,∆Xtn,j The overall estimator of θ is

θ̂n =
1
M

n∑
j=M+1

θ̂n,j . (128)
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We set Zn,j = nα(θ̂n,j − θn,j), and suppose that the following limits exist in probability:

1
M

∑
j

VarQ2M,j−M
n (Zn,j | Xn,j−M ) +

2
M2

∑
j

M∑
l=1

CovQ2M,j−M
n (Zn,j , Zn,j+l | Xn,j−M ) →

∫ T

0
f2

t dt

1
M

∑
j

CovQ2M,j−M
n (Zn,j ,W

Q
tn,j

−WQ
tn,j−M

| Xn,j−M ) →
∫ T

0
gtdt (129)

for some functions (processes) ft and gt. Also find the following limits in probability:

A12 =
1

12M
lim

n→∞

∑
j

M−1∑
l=0

CovQ2M,j−M
n

(
Zn,j , (∆tn,j−l)1/2ktn,j−M h3(∆WQ

tn,j−l
/(∆tn,j−l)1/2) | Xn,j−M

)
and

A13 = − 1
2M

lim
n→∞

∑
j

M−1∑
l=0

CovQ2M,j−M
n

(
Zn,j , σ

2
tn,j−M

(ζ−1
tn,j−l

− ζ−1
tn,j−M

)h2(∆WQ
tn,j−l

/(∆tn,j−l)1/2) | Xn,j−M

)
.

(130)

It is then the case, as in Theorem 5, that subject to regularity conditions,

nα(θ̂n − θn) L→ b + A12 + A13 + N(0, 1)
(∫ T

0
(f2

t − g2
t )dt

)1/2

(131)

stably in law under P ∗ and P , with N(0, 1) independent of FT . As before, b =
∫ T
0 gtdW ∗

t =∫ T
0 gt(dWt + σ−1

t µtdt)

7.2 The underlying analysis

We emphasize that the following is a quite summary development. Define yet another QM
n using

larger intervals of constancy (τn,i−1, τn,i]. We assume for simplicity that the first block starts at
zero, and that all blocks (except the last one) satisfies.

M = #{tn,j ∈ (τn,i−1, τn,i]}, (132)

where M≥ M . Write

Z̃n,i =
1
M

∑
τn,i−1≤tn,j−M<tn,j≤τn,i

Zn,j , (133)

and note that EQ
n (Z̃n,i | Yn,i−1) = 0. We can now use our theory on the Qn-martingale sum

Z̃n =
∑

i Z̃n,i. For large M, the variances and covariances then become as described in the previous
section. The remainder nα(θ̂n − θn)− Z̃n (which is the sum of the remaining Zn,j) is shown (using
another blocking, with block size M, but starting the second block at M−M) to be Op(1), but
this term is arbitrarily small by taking M big enough. This shows the result. (A rigorous proof
would, needless to say, take quite long. It is, however, easy to develop using the ideas given).
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8 More complicated data generating mechanisms

8.1 Jumps

We only consider the case of finitely many jumps (compound Poisson processes, and similar). The
conceptually simplest approach is to remove these jumps using the procedure described in Mancini
(2001) and Lee and Mykland (2006). The procedure will detect all intervals (tn,j−1, tn,j ] containing
jumps, with probability tending to one (exponentially fast) as n → ∞. If one simply removes
the detected intervals from the analysis, it is easy to see that our asymptotic results go through
unchanged.

The case of infinitely many jumps is more complicated, and beyond the scope of this paper.

Note that there is a range of approaches for estimating the continuous part of volatility in
such data. Methods include bi- and multi-power (Barndorff-Nielsen and Shephard (2004), see also
Example 2 above). Other devices are considered by Aı̈t-Sahalia (2004), and Aı̈t-Sahalia and Jacod
(2007). One can use our method of analysis for all of these approaches.

8.2 Microstructure noise

The presence of noise does not alter the analysis in any major way. Suppose one observes

Ytn,j = Xtn,j + εn,j (134)

where the εn,j ’s are independent of the (Xt) process. The latter still follows (7). We take the σ-field
Xn,n to be generated by {Xtn,j , εn,j , 0 ≤ j ≤ n}. Suppose that P1 and P2 are two measures on
Xn,n for which: (1) the variables {εn,j , 0 ≤ j ≤ n} are independent of {Xn,j , 0 ≤ j ≤ n}, and (2)
the variables {εn,j , 0 ≤ j ≤ n} have the same distribution under P1 and P2. Then, from standard
results in measure theory,

dP2

dP1
((Xn,j , εn,j), 0 ≤ j ≤ n) =

dP2

dP1
(Xn,j , 0 ≤ j ≤ n) (135)

The results in our theorems are therefore unchanged in the case of microstructure noise (unless one
also wants to change the probability distribution of the noise). We note that this remains the case
irrespective of the internal dependence structure of the noise.

The key observation which leads to this easy extension is that our results do not require that the
observables Ytn,j generate the σ-field Xn,n. It is only required that the observables be measurable
with respect to this σ-field. The same principle was invoked in Section 6.3.

The extension does not, obviously, solve all problems relating to microstructure noise, since this
type of data generating mechanism is best treated with an asymptotics where M →∞ as n →∞.
This is currently under investigation.
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9 Alternative Representations of the One Period Discretization

In the remaining sections, we discuss the more technical aspects of the theory, and give some proofs.
This section is concerned with the one period discretization.

To understand the properties of this approximation, consider the following “strong approxima-
tion”. Set

dσt = σ̃tdt + ftdW ∗
t + gtdBt (136)

where ft is a tensor and gtdBt is a matrix, with B a Brownian motion independent of W ∗

(g and B can be tensor processes). For example, component (r1, r2) of the matrix ftdW ∗
t is∑p

r3=1 f
(r1,r2,r3)
t dW ∗(r3). Note that σt is an Itô process by Assumption 2. Then

∆Xtn,j+1 = σtn,j∆W ∗
tn,j+1

+
∫ tn,j+1

tn,j

(σu − σtn,j )dW ∗
u

= σtn,j∆Wtn,j+1 + ftn,j

∫ tn,j+1

tn,j

(∫ u

tn,j

dW ∗
u

)
dW ∗

t

+ dB-term + higher order terms . (137)

It will turn out that the two first terms on the right hand side will matter in our approximation.
We first give this approximation, and then we return to the simpler system (15). Note first that
by taking quadratic covariations, one obtains

f
(r1,r2,r3)
t = 〈σ(r1,r2),W (r3)〉′t. (138)

Similarly, a higher order approximation is given (with reference to (16 ):

Definition 7. (Second order approximation). Define the probability P ∗∗
n recursively by:

(i) U0 has same distribution under P ∗
n as under P ∗;

(ii) The conditional P ∗∗
n -distribution of U

(1)
tn,j+1

given U0, ..., Utn,j is given by

∆Xtj+1 = σtn,j∆W ∗
tj+1

+ ftn,j

∫ tn,j+1

tn,j

(∫ u

tn,j

dW ∗
u

)
dW ∗

t ; and (139)

(iii) The conditional P ∗
n-distribution of U

(2)
tn,j+1

given U0, ..., Utn,j , U
(1)
tn,j+1

is the same as under P ∗.

We first state the main result, and then comment on it.

Theorem 7. P ∗ and P ∗∗
n are mutually absolutely continuous on the σ-field Xn generated by Utn,j ,

j = 0, ..., n. Furthermore, let (dP ∗/dP ∗∗
n )(Ut0 , ..., Utn,j , ..., Utn,n) be the likelihood ratio (Radon-

Nikodym derivative) on Xn. Then,

dP ∗

dP ∗∗
n

(Ut0 , ..., Utn,j , ..., Utn,n) = 1 + op(1) (140)

under P ∗∗
n , as n →∞.
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Theorem 7 says that one can (for a fixed time period) carry out inference under the model
(139), and asymptotic results will transfer to the continuous model (11) by asymptotic absolute
continuity (contiguity). We state the following result, in analogy with Proposition 1.

Corollary 3. Suppose that n1/2(θ̂n− θ) converges stably in law to b + aN(0, 1) under P ∗∗
n , where

N(0, 1) is independent of FT . The same statement then holds under P ∗ and P . The converse is
also true.

Unlike the situation is Theorems 1-2, there is here no need for adjustment from the approximate
probability to P ∗.

Remark 18. (Connection to Milstein schemes) The approximation (137) specializes to a Milstein
scheme when (Xt) is a Markov process (cf. Chapter 10.3 (p. 345-351) of Kloeden and Platen
(1992)). Theorem 7 says that by using a partial Milstein approximation, econometric properties are
unaffected in terms of asymptotic behavior. One can also use the full second order approximation
(including the dB terms), but this is not necessary for (140). Presumably, higher order properties,
such as Edgeworth expansions, may be affected. 2

Remark 19. (Symmetrized higher order schemes) The approximation (139) involves a double
stochastic integral. For our purposes, this can be eliminated as follows. Let P sym

n be as P ∗∗
n , but

with (139) replaced by
∆Xtj+1 = σtn,j∆W̆ ∗

tj+1
(141)

where
∆W̆ ∗

tj+1
= ∆W ∗

tj+1
+

1
12

ktn,j (∆W ∗
tn,j+1

∆W ∗
tn,j+1

− 1
2
I∆tn,j+1). (142)

To spell this out in coordinate form, component r1 of ktn,j (∆W ∗
tn,j+1

∆W ∗
tn,j+1

− 1
2I∆tn,j+1) is∑

r2,r3
k

(r1,r2,r3)
tn,j

(∆W
∗,(r2)
tn,j+1

∆W
∗,(r3)
tn,j+1

− 1
2δr2,r3∆tn,j+1). It is then shown in Appendix A that

dP ∗

dP sym
n

(Ut0 , ..., Utn,j , ..., Utn,n) = 1 + op(1) (143)

under P sym
n , as n →∞. 2

The approximation (139) is very good, but having second order terms can complicate inference.
In comparison, the linear one-period (Euler) approximation (15) has substantial conceptual value,
but it requires a post-limit adjustment, as required in Theorem 2.

10 Conclusion

The main finding of the paper is that one can in broad generality use first order approximations when
defining and analyzing estimators. Such approximations require an ex post adjustment involving
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asymptotic likelihood ratios, and these are given. Several examples (powers of volatility, leverage
effect, ANOVA) are provided.

The theory relies heavily on the interplay between stable convergence and measure change, and
on asymptotic expansions for martingales.

A number of unsolved questions remain. The approach provided is a tool for analyzing estima-
tors, and it does not always give guidance as to how to define estimators in the first place. Also, the
theory requires block sizes (M) to stay bounded as the number of observations increases. It would
be desirable to have a theory where M →∞ with n. This is not possible with the likelihood ratios
we consider, but may be available in other settings, such as with microstructure noise. Causality
effects from observation times to the process, such as in Renault and Werker (2006), would also
need an extended theory. Finally, while compound Poisson jumps are easy to screen out, there is
no theory as yet for how to handle the case of infinitely many jumps.
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APPENDIX: PROOFS

A Proofs of Theorems 1 and 2

First some further notation. Define

dσ̆t = σ−1
t dσt and f̆

(r1,r2,r3)
t = 〈σ̆(r1,r2),W (r3)〉′t =

p∑
r4=1

(σ−1
t )(r1,r4)f

(r1,r2,r3)
t (A.1)

σ̆
(r1,r2)
t and f̆t(r1, r2, r3) are not symmetric in (r1, r2). However, since dζt = d(σt)2 = σtdσt +

(σtdσt)∗ + dt terms, we obtain from (18) that dζ̌t = σ−1
t dσt + (σ−1

t dσt)∗ + dt terms. Hence

〈ζ̌(r1,r2),W (r3)〉′t = f̆
(r1,r2,r3)
t + f̆

(r2,r1,r3)
t . (A.2)

Also
k

(r1,r2,r3)
t = 〈ζ̌(r1,r2),W (r3)〉′t[3] = f̆

(r1,r2,r3)
t [6] (A.3)

Finally, we let ∆t = T/n (the average ∆tn,j+1).

Proof of Theorem 1. Note that, from (22) and (137)

∆W̆tn,j+1 = ∆Wtn,j+1 + f̆tn,j

∫ tn,j+1

tn,j

(∫ u

tn,j

dW ∗
u

)
dW ∗

t

+ dB-term + higher order terms . (A.4)

In the representation (A.4), we obtain, up to Op(∆t5/2), .

cum3(∆W̆
(r1)
tn,j+1

,∆W
(r2)
tn,j+1

,∆W
(r3)
tn,j+1

|Ftn,j )

.= cum(
∑
s2,s3

f̆
(r1,s2,s3)
tn,j

∫ tn,j+1

tn,j

(∫ u

tn,j

dW ∗(s3)
u

)
dW

∗(s2)
t ,∆W

(r2)
tn,j+1

,∆W
(r3)
tn,j+1

|Ftn,j )

=
∑
s2,s3

f̆
(r1,s2,s3)
tn,j

cum(
∫ tn,j+1

tn,j

(∫ u

tn,j

dW ∗(s3)
u

)
dW

∗(s2)
t ,∆W

(r2)
tn,j+1

,∆W
(r3)
tn,j+1

|Ftn,j )

=
∑
s2,s3

f̆
(r1,s2,s3)
tn,j

Cov(
∫ tn,j+1

tn,j

(∫ u

tn,j

dW ∗(s3)
u

)
dtδs2,r2 ,∆W

(r3)
tn,j+1

|Ftn,j )[2]

=
∑
s3

f̆
(r1,r2,s3)
tn,j

Cov(
∫ tn,j+1

tn,j

(∫ u

tn,j

dW ∗(s3)
u

)
dt,∆W

(r3)
tn,j+1

|Ftn,j )[2]

=
∫ tn,j+1

tn,j

dt
∑
s3

f̆
(r1,r2,s3)
tn,j

Cov(
∫ u

tn,j

dW ∗(s3)
u ,∆W

(r3)
tn,j+1

|Ftn,j )[2]

=
∫ tn,j+1

tn,j

dt
∑
s3

f̆
(r1,r2,s3)
tn,j

(u− tn,j)δs3, r3[2]

=
1
2
∆t2n,j+1f̆

(r1,r2,r3)
tn,j

[2], (A.5)
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where “[2]” represents the swapping of r2 and r3 (see p. 29-30 of McCullagh (1987) for a discussion
of the notation). Hence

cum3(∆W̆
(r1)
tn,j+1

,∆W̆
(r2)
tn,j+1

,∆W̆
(r3)
tn,j+1

|Ftn,j )

=
1
2
∆t2n,j+1f̆

(r1,r2,r3)
tn,j

[6] + Op(∆t5/2)

=
1
2
∆t2n,j+1〈ζ̌(r1,r2),W (r3)〉′tn,j

[3] + Op(∆t5/2) (A.6)

by symmetry, Hence, from (19),

κr1,r2,r3 =
1
2
∆t

1/2
n,j+1f̆

(r1,r2,r3)
tn,j

[3] + Op(∆t)

=
1
2
∆t

1/2
n,j+1k

(r1,r2,r3)
tn,j

+ Op(∆t). (A.7)

At the same time (dζ = ζ̃dt + d martingale),

Cov(∆X
(r1)
tn,j+1

,∆X
(r2)
tn,j+1

|Ftn,j ) = ∆tn,j+1ζ
(r1,r2)
tn,j

+ E(
∫ tn,j+1

tn,j

(ζ(r1,r2)
u − ζ

(r1,r2)
tn,j

)du|Ftn,j )

= ∆tn,j+1ζ
(r1,r2)
tn,j

+ E(
∫ tn,j+1

tn,j

du

∫ u

tn,j

ζ̃(r1,r2)
v dv|Ftn,j )

= ∆tn,j+1ζ
(r1,r2)
tn,j

+
1
2
∆t2n,j+1ζ̃

(r1,r2)
tn,j

+ Op(∆t3), (A.8)

so that Cov(∆W̆
(r1)
tn,j+1

,∆W̆
(r2)
tn,j+1

|Ftn,j ) = ∆tn,j+1δ
r1,r2 + Op(∆t2), and

κr1,r2 = δr1,r2
tn,j

+ Op(∆t). (A.9)

Since X is a martingale, we also have κr = E(∆W̆
(r)
tn,j+1

|Ftn,j ) = 0.

In the notation of Chapter 5 of McCullagh (1987), we take λr1,r2 = δr1,r2 , and let the other λ’s
be zero. From now on, we also use the summation convention. By the development in Chapter
5.2.2 of this work, we obtain the Edgeworth expansion for the density fn,j+1 of ∆Xtn,j+1 given
Ftn,j , on the log scale as

log fn,j+1(x) = log φ(x; δr1,r2) +
1
3!

κr1,r2,r3hr1r2r3(x)

+
1
2
(κr1,r2 − λr1,r2)hr1r2(x) +

1
4!

κr1,r2,r3,r4hr1r2r3r4(x)

+ κr1,r2,r3κr4,r5,r6hr1r2r3r4r5r6(x)
[10]
6!

+
1
72

(κr1,r2,r3hr1r2r3(x))2 + Op(∆t3/2) (A.10)

where we for simplicity have used the summation convention. Note that the three last lines contain
terms of order Op(∆t) (or smaller).
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We note, following formula (5.7) (p. 149) in McCullagh (1987), that hr1r2r3 = hr1hr2hr3 −
hr1δr2,r3[3], with hr1 = δr1,r2x

r2. Observe that

Zr1 = hr1(∆W̆tn,j+1/(∆tn,j+1)1/2) = δr1,r2∆W̆ r2
tn,j+1

/(∆tn,j+1)1/2. (A.11)

Under the approximating measure, therefore, the vector consisting of elements Zr1 is conditionally
normally distributed with mean zero and covariance matrix δr1,r2.

It follows that

hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2) = Zr1Zr2Zr3 − Zr1δr2,r3[3] (A.12)

Under the approximating measure, therefore, En(hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2)|Ftn,j ) = 0, while

Covn(hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2), hr4r5r6(∆W̆tn,j+1/(∆tn,j+1)1/2)|Ftn,j ) = δr1,r4δr2,r5δr3,r6[6]
(A.13)

where the “[6]” refers to all six combinations where each δ has one index from {r1, r2, r3} and one
from {r4, r5, r6}. It follows that

Varn(
1
3!

κr1,r2,r3hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2)|Ftn,j )

=
1
36

κr1,r2,r3κr4,r5,r6Covn(hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2), hr4r5r6(∆W̆tn,j+1/(∆tn,j+1)1/2)|Ftn,j )

=
1
6
κr1,r2,r3κr4,r5,r6δr1,r4δr2,r5δr3,r6

= ∆tn,j+1
1
24

kr1,r2,r3
tn,j

kr4,r5,r6
tn,j

δr1,r4δr2,r5δr3,r6 + Op(∆t3/2) (A.14)

by symmetry of the κ’s. Thus∑
tn,j+1≤t

Varn(
1
3!

κr1,r2,r3hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2)|Ftn,j )
p→
∫ t

0

1
24

kr1,r2,r3
t kr4,r5,r6

t δr1,r4δr2,r5δr3,r6dt

(A.15)
under P ∗

n . By the same methods, and since Hermite polynomials of different orders are otherogonal
under the approximating measure,∑

tn,j+1≤t

Covn( hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2), hr4(∆Xtn,j+1/(∆tn,j+1)1/2|Ftn,j )
p→0. (A.16)

By the methods of Jacod and Shiryaev (2003), it follows that

M̌ (0)
n =

n∑
j=0

1
3!

κr1,r2,r3hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2) (A.17)

converges stably in law to a normal distribution with random variance Γ0. (Note that M̌
(0)
n =

M
(0)
n + Op(∆t1/2) from (23)). We now note that, in the notation of (A.10),

log
dP ∗

dP ∗
n

=
n−1∑
j=0

(fn,j+1 − log φ) (∆W̆tn,j+1/(∆tn,j+1)1/2). (A.18)

By the same reasoning as above, the terms other than M̌
(0)
n and its discrete time quadratic variation

(A.15), go away. Thus log dP ∗

dP ∗n
= M̌

(0)
n − 1

2Γ0 + op(1), and the result follows.



Inference for Continuous Semimartingales Observed at High Frequency 47

Remark 20. The proof of Theorem 1 uses the Edgeworth expansion (A.10). The proof of the broad
availability of such expansions in the martingale case goes back to Mykland (1993, 1995b,a), which
uses a test function topology. The formal existence of Edgeworth expansions in our current case is
proved by iterating the expansion (137) as many times as necessary, and bounding the remainder.
In the diffusion case, similar arguments have been used in the estimation and computation theory
in Aı̈t-Sahalia (2002). 2

Proof of Theorem 2. It follows from the development in the proof of Theorem 1 that

log
dP ∗

dP ∗
n

= M (0)
n − 1

2
Γ0 + op(1) (A.19)

where M
(0)
n is as defined in equation (23). Write that, under P ∗

n , (Zn,M
(0)
n ) L→(Z,M), with

M = Γ1/2
0 V1, and Z = b1 + c1M + c2V2, where V1 and V2 are independent and standard nor-

mal (independent of FT ). Denote the distribution of (Z,M) as P ∗
∞ to avoid confusion.

It follows that, for bounded and continuous g, and by uniform integrability,

E∗g(Zn) = E∗
ng(Zn) exp{M (0)

n − 1
2
Γ0}(1 + o(1))

→ Eg(Z) exp{M − 1
2
Γ0}

= E∗
∞g(b1 + c1Γ

1/2
0 V1 + c2V2) exp{Γ1/2

0 V1 −
1
2
Γ0}

=
∫ ∞

−∞
E∗
∞g(b1 + c1Γ

1/2
0 v + c2V2) exp{Γ1/2

0 v − 1
2
Γ0}(2π)−1/2 exp{−1

2
v2}dv

=
∫ ∞

−∞
E∗
∞g(b1 + c1Γ

1/2
0 (u + Γ1/2

0 ) + c2V2)(2π)−1/2 exp{−1
2
u2}du (u = v − Γ1/2

0 )

= E∗
∞g(Z + c1Γ0) (A.20)

The result then follows since c1Γ0 = A12.

Proof of Theorem 7. The exact same derivations that are used in the proof of Theorem 1
show that

log
dP ∗∗

n

dP ∗
n

= log
dP ∗

dP ∗
n

+ op(1) (A.21)

Thus proves the result.

Proof of Remark 19. By Itô’s formula, d(W ∗,r2
t − W ∗,r2

tn,j
)(W ∗,r3

t − W ∗,r3
tn,j

) = (W ∗,r2
t −

W ∗,r2
tn,j

)dW ∗,r3
t [2] + δr2,r3dt, so that ∆W

∗,(r2)
tn,j+1

∆W
∗,(r3)
tn,j+1

− 1
2δr2,r3∆tn,j+1 =

(∫ u
tn,j

dW
∗(r2)
u

)
dW

∗(r3)
t [2].

The scheme given in Remark 19 therefore amounts to replacing f in (139) by 1
6σk. This in turn

amounts to replacing f̆ by 1
6k. However, to first order, dP ∗/dP ∗∗

n only depends on f̆ through k,
and therefore, dP ∗/dP ∗∗

n = dP ∗/dP sym
n (1 + op(1)). This shows the result.
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B Proof of Theorems 3 and 6

Common initial development.

Let Z
(1)
n and Z

(2)
n be given by (44) and (109), respectively. Set

∆Z
(1)
n,tn,j+1

=
1
2
∆XT

tn,j+1
(ζ−1

tn,j
− ζ−1

τn,i−1
)∆Xtn,j+1∆t−1

n,j+1

∆Z
(2)
n,tn,j+1

=
1
2
∆XT

tn,j+1
(ζ−1

τn,i−1
)∆Xtn,j+1

(
∆t−1

n,j+1 −
(

∆τn,i

Mi

)−1
)

(B.22)

and note that Z
(v)
n =

∑
j ∆Z

(v)
n,tn,j+1

for v = 1, 2. Set Aj = ζ
1/2
tn,j

ζ−1
τn,i−1

ζ
1/2
tn,j

− I and Bj =(
∆tn,j+1

(
∆τn,i

Mi

)−1
− 1
)

(the latter is a scalar). Set Cj = ζ
1/2
tn,j

ζ−1
τn,i−1

ζ
1/2
tn,j

(
∆tn,j+1

(
∆τn,i

Mi

)−1
− 1
)

=

(I + Aj)Bj .

Since ∆Xtn,j is conditionally Gaussian, we obtain (under P ∗
n)

EP ∗n (∆Z
(1)
n,tn,j+1

|Xn,tn,j ) = −1
2
tr(Aj)

EP ∗n (∆Z
(2)
n,tn,j+1

|Xn,tn,j ) = −1
2
tr(Cj) = −1

2
(p + tr(Aj))Bj (B.23)

and
conditional covariance of
∆Z

(1)
n,tn,j+1

and ∆Z
(2)
n,tn,j+1

=
1
2

(
tr(A2

j ) tr(AjCj)
tr(AjCj) tr(C2

j )

)
(B.24)

Finally, let M
(v)
n be the (end point of the) martingale part (under P ∗) of Z

(v)
n (v = 1, 2), so that

M (1)
n = Z(1) + (1/2)

∑
j

tr(Aj) and M (2)
n = Z(2) + (1/2)

∑
j

tr(Cj). (B.25)

If 〈·, ·〉G represents discrete time predictable quadratic variation on the grid G, then equation
(B.24) yields(

〈M (1)
n ,M

(1)
n 〉G 〈M (1)

n ,M
(2)
n 〉G

〈M (1)
n ,M

(2)
n 〉G 〈M (2)

n ,M
(2)
n 〉G

)
=

1
2

∑
j

(
tr(A2

j ) tr(AjCj)
tr(AjCj) tr(C2

j )

)
. (B.26)

Proof of Theorem 3. First note that, by analogy to the development in Zhang (2001),
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Mykland and Zhang (2006), Zhang, Mykland, and Aı̈t-Sahalia (2005), and Zhang (2006),

〈M (1)
n ,M (1)

n 〉G =
1
2

∑
j

tr(ζ−2
τn,i−1

(ζtn,j − ζτn,i−1)
2)

=
1
2

∑
j

tr(ζ−2
τn,i−1

(〈ζ, ζ〉tn,j − 〈ζ, ζ〉τn,i−1)) + op(1)

=
1
2

∑
j

tr(ζ−2
τn,i−1

〈ζ, ζ〉′τn,i−1
)(tn,j − τn,i−1) + op(1)

=
1
2

∫ T

0
tr(ζ−2

t 〈ζ, ζ〉′t)dK(t) + op(1)

= Γ1 + op(1), (B.27)

where K is the ADD given by equation (42).

At this point, note that Assumption 2 entails, in view of Lemma 2 in Mykland and Zhang
(2006), that

sup
j

tr(A2
j ) → 0 as n →∞. (B.28)

Since also,
for r > 2, |tr(Ar

j)| ≤ tr(A2
j )

r/2, (B.29)

it follows that

log
dQn

dP ∗
n

= Z(1)
n +

1
2

∑
i

∑
tn,j∈(τn,i−1,τn,i]

(log det ζtn,j − log det ζτn,i−1)

= Z(1)
n +

1
2

∑
j

log det(I + Aj)

= Z(1)
n +

1
2

∑
j

(tr(Aj)− tr(A2
j )/2 + tr(A3

j )/3 + ...)

= M (1)
n − 1

4

∑
j

tr(A2
j ) +

1
6

∑
j

tr(A3
j ) + ...

= M (1)
n − 1

2
〈M (1)

n ,M (1)
n 〉G + op(1)

(B.30)

At this point, let 〈M (1)
n ,M

(1)
n 〉 be the quadratic variation of the continuous martingale that coincides

at points tn,j with the discrete time martingale leading up to the end point M
(1)
n . By a standard

quarticity argument (as in the proof of Remark 2 in Mykland and Zhang (2006)), (B.27)-(B.29)
and the conditional normality of ∆Z

(1)
n,tn,j+1

yield that 〈M (1)
n ,M

(1)
n 〉 = 〈M (1)

n ,M
(1)
n 〉G + op(1). The

stable convergence to a normal distribution with variance Γ1 then follows by the same methods as
in Zhang, Mykland, and Aı̈t-Sahalia (2005). The result is thus proved.
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Proof of Theorem 6. The joint stable convergence of M
(1)
n and M

(1)
n follows analogously to

the proof of Theorem 3 by referring to (B.26) and observing that, by (B.27)-(B.29),∑
j

tr(C2
j ) =

∑
j

tr(Ip)B2
j +

∑
j

tr(Aj)B2
j +

∑
j

tr(A2
j )B

2
j

= p
∑

j

B2
j + op(1)

= 2Γ2 + op(1), (B.31)

and ∑
j

tr(AjCj) =
∑

j

tr(Aj)Bj +
∑

j

tr(A2
j )Bj

=
∑

j

tr(Aj)Bj + op(1)

= op(1) (B.32)

where the last transition follows by Assumption 2. Meanwhile, since

log
dRn

dP ∗
n

= log
dRn

dQn
+ log

dQn

dP ∗
n

, (B.33)

we obtain similarly that

log
dRn

dQn
= Z(2)

n +
p

2

∑
j

log(1 + Bj)

= M (2)
n + Γ3 + op(1), (B.34)

whence the Theorem is proved.
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