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Abstract

Let S denote the price process of a security, and suppose that S follow a geometric Brownian

motion with volatility σ2. We consider the case when the observations at the discrete time

points 0, 1/n, 2/n, · · · , 1 are the rounded-off values S
(αn)
i/n = αnbSi/n/αnc (i = 0, · · · , n),

where αn > 0 is the round-off level corresponding to the sample frequency n. We investigate

the asymptotic behavior of the “Realized Volatility” V n =
∑n

i=1(log(S(αn)
i/n ) − log(S(αn)

(i−1)/n))2,

which is commonly used as an estimator of the volatility σ2.

We prove the convergence of V n or scaled V n under different conditions on αn. A bias

corrected estimator of the volatility is proposed and an associated central limit theorem is

shown. Simulation results show that improvement in statistical properties can be substantial.
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ity; Rounding Errors.
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1 INTRODUCTION

We consider a security price process S, which is the solution to the following stochastic differential

equation

dSt = µStdt + σStdBt, t ∈ [0, 1] (1)

where Bt is a standard Brownian motion, and µ ∈ R and σ ∈ (0,∞) are constants.

It is a common practice in finance to use the sum of frequently sampled squared returns (the

“Realized Volatility” (RV)) to estimate the integrated volatility
∫ 1
0 σ2dt (for process (1), this is

simply the volatility σ2). However, recent empirical studies in finance showed evidence that market

microstructure makes this estimator fail when the prices are sampled at high frequencies, and

sampling sparsely gives more reasonable estimates. We investigate the case when the contamination

due to market microstructure is simply round-off errors, and we are interested in the limiting

behavior of the RV.

More specifically, let αn be a sequence of positive numbers which represents the accuracy of

measurement when one observes the process n times during the time period [0,1]. Suppose at time

i/n (i = 0, · · ·n), one observe the value kα when the true value Si/n is in [kα, (k +1)α) with k ∈ Z.

For every real s we denote by s(αn) = αnbs/αnc its rounded-off value at level αn. We investigate

the asymptotic behavior of the estimator (the RV)

V n =
n∑

i=1

(log(S(αn)
i/n )− log(S(αn)

(i−1)/n))2. (2)

Jacod (1996) and Delattre and Jacod (1997) have previously studied the problem of inference for

volatility based on a rounded Brownian motion. While this work is the inspiration for the current

paper, these earlier results are not quite as relevant to securities prices, as rounding happens on the

original (dollar, euro, etc) scale and not on the log scale. As we shall see in this paper, the more

realistic type of rounding leads to a bias which is no longer nonrandom (as in section 4 of Delattre
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and Jacod (1997)), but instead requires a somewhat more complicated correction. We emphasize,

however, that we owe a lot to the earlier developments by Delattre and Jacod. Rounding has also

been studied by Zeng (2003), who has developed a Bayesian inference algorithm for this problem.

We prove the convergence of V n or scaled V n, under different assumptions on αn. The theorems

show the problems of using realized volatility as an estimator of the volatility in the presence

of rounding errors, and explain why “sampling sparsely ” could be a practically helpful way to

estimate the volatility (but “sampling sparsely ” doesn’t solve all the problems). We then propose

a bias corrected estimator, and prove an associated central limit theorem. Simulation results show

that substantial improvement in statistical properties can be achieved. These main results are

presented in section 2. Section 3 is devoted to prove the theorems. And Section 4 for conclusions

and discussion.

Our main bias correction applies to the case of “small rounding”, as in Delattre and Jacod

(1997). This kind of asymptotics is quite realistic in practice, cf. the findings for additive error in

Zhang, Mykland, and Aı̈t-Sahalia (2005a). Small rounding asymptotics has also been studied in

Kolassa and McCullagh (1990), where it is shown to be related to additive error.

2 THE MAIN RESULTS

2.1 The Theorems

Theorem 1. Let the accuracy of measurement αn ≡ α be independent on the number of observa-

tions n. Redefine S
(α)
i/n = α if S

(α)
i/n = 0. Then,

1√
n

V n →P
1
σ

√
2
π

∞∑

k=1

L
log(kα)
1 (log(1 +

1
k
))2,
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where La
T is the local time of the continuous semimartingale Xt = log St, t ∈ [0, T ]; defined as in

Revuz and Yor (1999), page 222.

One sees that the realized volatility V n blows up as the sample frequency n becomes higher,

just as in Jacod (1996), though the form of the limit is different.

Now let βn = αn
√

n.

Theorem 2. If αn → 0 as n →∞ in such a way that βn → β ∈ [0,∞), then

V n →P σ2 +
β2

6

∫ 1

0

1
S2

t

dt− β2

π2

∫ 1

0

1
S2

t

∞∑

k=1

1
k2

exp{−2π2k2 σ2S2
t

β2
}dt.

The above limit is a quantity increasing in β, and always bigger than σ2 when β 6= 0. It blows

up to ∞ as β approaches ∞.

In the case that βn → 0, V n converges to σ2 at the limit; but before the limit, V n is always

biased as an estimator of σ2.

If βn → 0 fast enough, one has the following central limit theorems:

Theorem 3. If
√

nβ2
n → γ < ∞, then

√
n[V n − σ2 − β2

n

6

∫ 1

0

1
S2

t

dt] →L N(0, 2σ4).

In this case, one can estimate the bias and find a bias-corrected estimator of σ2 :

Theorem 4. If
√

nβ2
n → γ < ∞, let V n

0 := V n − α2
n
6

∑n
i=1

1

(S
(αn)
i/n

)2
, one has

√
n[V n

0 − σ2] →L N(0, 2σ4).
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The above theorems clearly show the problems of using realized volatility as an estimator of

the volatility in the presence of rounding errors. And one can see that in all the cases, when one

uses a sub-sampled frequency nsparse < n to do the estimation, the ill-posedness of the estimation

problems could be weaken. This is consistent with what people have recently found in the context

of additive error (see, for example, Zhang, Mykland, and Aı̈t-Sahalia (2005b)).

When αn → 0 fast enough, the realized volatility converges to σ2, but one needs to do a bias

correction to solve the finite-sample estimation problem. This can give rise to substantial improved

confidence intervals, as we shall now see.

2.2 The Simulation Results

Denote by V n CI the nominal 95% confidence interval (CI) based on V n and V n
0 CI the nominal

95% confidence interval based on V n
0 , as follows.

The naive CI based on V n relies on the classical theory of the realized volatility, which says

that when there is no observation error,

√
n[V n − σ2] →L N(0, 2σ4).

The resulting nominal 95% CI is

V n CI =
[
V n − 1.96 ∗

√
2(V n)2/n, V n + 1.96 ∗

√
2(V n)2/n

]
.

Since our findings above indicate that there are some problems with using the classical theory

of the realized volatility when the rounding errors are present. We propose a new estimator

V n
0 = V n − α2

n

6

n∑

i=1

1

(S(αn)
i/n )2

.
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By Theorem 4,
√

n[V n
0 − σ2] →L N(0, 2σ4).

Our adjusted nominal 95% CI is then

V n
0 CI =

[
V n

0 − 1.96 ∗
√

2(V n
0 )2/n, V n

0 + 1.96 ∗
√

2(V n
0 )2/n

]
.

To examine the performance of the new estimator V n
0 , we did the following simulation:

We simulated sample paths from (1) with µ = 0.02 and σ = 0.2. Assume the observations at the

time points 0, 1/n, 2/n, · · · , 1 are the rounded-off values S
(αn)
i/n = αnbSi/n/αnc (i = 0, · · · , n) with

round-off level αn satisfying α2
nn3/2 = 1. For each sample frequency n = 1000, 2000, · · · , 10000,

1000 sample paths were simulated. And correspondingly, 1000 V n CI’s and 1000 V n
0 CI’s were

worked out. The (actual) coverage probability of V n CI is estimated by the ratio of the total

number of times that the true parameter σ2 lies inside the V n CI’s to the total number of sample

paths 1000. And by the same way the coverage probability of V n
0 CI is estimated.

Figure 1 records the estimated coverage probabilities of V n CI and V n
0 CI. One can read

from Figure 1 that for each n, the nominal 95% CI based on V n only has an estimated coverage

probability of 20%−30%. While the nominal 95% CI based on V n
0 seems to be worthy of the name.
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Figure 1: The Estimated Coverage Probabilities, V n
0 CI versus V n CI. The nominal coverage

probability is 95%.
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3 PROOFS OF THE MAIN RESULTS

3.1 Proof of Theorem 1

The proof of this theorem is very similar to the proof of Theorem 3 in Li and Mykland (2006)

with T = 1 (except that here we consider the rounding to be “rounding down”; in Li and Mykland

(2006), the rounding is “rounding to the nearest multiple of α” ). The basic framework of the

proofs relies on Jacod (1996). Please refer to the above papers for the details.

3.2 Preparations for proofs of Theorem 2-4:

Notations:

Am := {ω ∈ Ω : St(ω)t∈[0,1] ∈ [
1
m

, m]};

Bm,n := {ω ∈ Ω : max
1≤i≤n

√
n|Si/n − S(i−1)/n| ≤ 2mσ(2 log n)

1
2 };

Yi,n :=
√

n(S(αn)
i/n − S

(αn)
(i−1)/n);

U(n, φ) =
1
n

n∑

i=1

φ(S(αn)
(i−1)/n, Yi,n) for function φ on R2; (3)

h(·) : density of the standard normal law ;

hs(·) : density of the normal law N(0, s2).

Lemma 1. ∀m, P (Am
⋂

Bc
m,n) → 0 as n →∞.



Determining the Volatility of a Price Process in The Presence of Rounding Errors 9

Proof:

dSt = µStdt + σStdBt

⇒St = S0 exp{(µ− 1
2
σ2)t + σBt}

⇒√n|Si/n − S(i−1)/n| = S(i−1)/n|
√

n(exp{ σ√
n

Zi + (µ− 1
2
σ2)

1
n
} − 1)|,

where Zi ∼ N(0, 1), i.i.d., i = 1, 2, · · · , n.

For any kn,

P ( max
1≤i≤n

√
n|Si/n − S(i−1)/n| > kn, St{t∈[0,1]} ∈ [1/m,m])

≤P ( max
1≤i≤n

| exp{ σ√
n

Zi + (µ− 1
2
σ2)

1
n
} − 1| > kn

m
√

n
, St{t∈[0,1]} ∈ [1/m,m])

≤P ( max
1≤i≤n

| exp{ σ√
n

Zi + (µ− 1
2
σ2)

1
n
} − 1| > kn

m
√

n
)

≤P ( max
1≤i≤n

(1− exp{ σ√
n

Zi + (µ− 1
2
σ2)

1
n
}) >

kn

m
√

n
)+

P ( max
1≤i≤n

(exp{ σ√
n

Zi + (µ− 1
2
σ2)

1
n
} − 1) >

kn

m
√

n
).

Let Mn = max1≤i≤n Zi, cn = (2 log n)
1
2 − 1

2(2 log n)−
1
2 (log(4π) + log log n), sn = (2 log n)−

1
2 . The

extreme value theorem says (c.f. Aldous (1989) page 46 or Ferguson (1996) page 99)

Mn − cn

sn
→D ξ,

where ξ has support (−∞,∞) and P (ξ ≤ x) = e−e−x
. It follows that
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P ( max
1≤i≤n

(1− exp{ σ√
n

Zi + (µ− 1
2
σ2)

1
n
}) >

kn

m
√

n
)

=P ( min
1≤i≤n

exp{ σ√
n

Zi + (µ− 1
2
σ2)

1
n
} < 1− kn

m
√

n
)

=P ( min
1≤i≤n

Zi < [(
1
2
σ2 − µ)

1
n

+ log(1− kn

m
√

n
)]
√

n

σ
)

=P (Mn > [(µ− 1
2
σ2)

1
n
− log(1− kn

m
√

n
)]
√

n

σ
)

=P (
Mn − cn

sn
>

[(µ− 1
2σ2) 1

n − log(1− kn

m
√

n
)]
√

n
σ − cn

sn
)

≈P (ξ >
[(µ− 1

2σ2) 1
n − log(1− kn

m
√

n
)]
√

n
σ − cn

sn
) for large n.

For kn = 2mσ(2 log n)
1
2 , the above probability goes to 0 as n →∞.

A parallel argument gives the same conclusion for P (max1≤i≤n(exp{ σ√
n
Zi +(µ− 1

2σ2) 1
n}−1) >

kn

m
√

n
) when kn = 2mσ(2 log n)

1
2 .

In summary,

P ( max
1≤i≤n

√
n|Si/n − S(i−1)/n| > kn, St{t∈[0,1]} ∈ [1/m,m]) → 0 as n →∞ for kn = 2mσ(2 log n)

1
2 ,

i.e. P (Am

⋂
Bc

m,n) → 0 as n →∞.

Lemma 2. Given
√

nαn → β ∈ [0,∞), on Am, there exists N, cm ∈ (0, 1
m ], such that for all

n ≥ N, i = 0, 1, 2, · · · , n, S
(αn)
i/n ≥ cm.

Proof:

∀i = 0, 1, 2, · · · , n, S
(αn)
i/n ≥ Si/n − αn;

and

Si/n ≥
1
m

on Am, and αn → 0 as n →∞,
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hence the conclusion.

Lemma 3. Given βn =
√

nαn → β ∈ [0,∞), ∀m > 0,
Yi,n√

nS
(αn)
(i−1)/n

= O
(

2 log n
n

)1/2
on Am

⋂
Bm,n.

Proof: On Bm,n,

Yi,n =
√

n|S(αn)
i/n − S

(αn)
(i−1)/n| ≤

√
n(|Si/n − S(i−1)/n|+ 2αn) ≤ 2mσ(2 log n)1/2 + 2βn.

By lemma 2, one can find a cm ∈ (0, 1
m ] such that for large n, on Am

⋂
Bm,n,

Yi,n√
nS

(αn)
(i−1)/n

≤ 2mσ(2 log n)1/2 + 2βn√
ncm

.

Since βn → β < ∞, the above inequality implies that Yi,n√
nS

(αn)
(i−1)/n

is O
(

2 log n
n

)1/2
or smaller.

Lemma 4.

∫ 1

0

∫
h(y)(

βbu + yσx/βc
x

)2dydu = σ2 +
1
x2

(
β2

6
− β2

π2

∞∑

k=1

1
k2

exp{−2π2k2 σ2x2

β2
}).
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Proof: ∫ 1

0

∫
h(y)(

βbu + yσx/βc
x

)2dydu

=E

(
βbU + Y σx/βc

x

)2

, U ∼ unif [0, 1], Y ∼ N(0, 1)

=
β2

x2
E(bU + Y σx/βc)2

=
β2

x2
E(bU + Zc)2, Z ∼ N(0,

σ2x2

β2
)

=
β2

x2

∑

l

∫ l+1

l
hσ2x2

β2
[l2(l + 1− z) + (l + 1)2(z − l)]dz

=
β2

x2

∑

l

∫ l+1

l
hσ2x2

β2
(z2 + {z} − {z}2)dz

=
β2

x2
[EZ2 + E({Z}(1− {Z}))], Z ∼ N(0,

σ2x2

β2
)

=σ2 +
1
x2

(
β2

6
− β2

π2

∞∑

k=1

1
k2

exp{−2π2k2 σ2x2

β2
}),

where {z} = z − bzc, is the fractional part of z.

The last equality above is proved by using the Fourier expansion:

Let f(z) = {z} − {z}2 for z ∈ R. Let L = 1/2, f(z) has Fourier coefficients

bk(f) = 0;

a0(f) =
1
L

∫ L

−L
f(z)dz =

1
3
;
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ak(f) =
1
L

∫ L

−L
f(z) cos(

kπz

L
)dz

=2
∫ 1

2

− 1
2

z(1− z) cos(2kπz)dz

=2
∫ 1

0
z(1− z) cos(2kπz)dz

=− 1
k2π2

.

Therefore,

f(z) =
1
6
− 1

π2

∞∑

k=1

1
k2

cos2kπz

and

E(f(Z)) =
1
6
− 1

π2

∞∑

k=1

1
k2
RφZ(2kπ),

where RφZ(·) represents the real part of the characteristic function of Z.

For Z ∼ N(0, σ2x2

β2 ), one has,

E(f(Z)) = E({Z}(1− {Z})) =
1
6
− 1

π2

∞∑

k=1

1
k2

exp{−2π2k2 σ2x2

β2
},

which finishes the proof of lemma 4.
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3.3 Proof of Theorem 2

Recall that V n is defined in (2). For large n,

V nIAm∩Bm,n

=
n∑

i=1

(log S
(αn)
i/n − log S

(αn)
(i−1)/n)2IAm∩Bm,n

=
1
n

n∑

i=1

[
√

n log(
S

(αn)
i/n − S

(αn)
(i−1)/n

S
(αn)
(i−1)/n

+ 1)]2IAm∩Bm,n

=
1
n

n∑

i=1

[
√

n log(
Yi,n√

nS
(αn)
(i−1)/n

+ 1)]2IAm∩Bm,n

=
1
n

n∑

i=1

[
√

n(
Yi,n√

nS
(αn)
(i−1)/n

− 1
2
(

Yi,n√
nS

(αn)
(i−1)/n

)2 +
1
3
θ3)]2IAm∩Bm,n , θ ∈ (0,

Yi,n√
nS

(αn)
(i−1)/n

).

(4)

By lemma 2, one can find

cm ∈ (0,
1
m

] such that for large n, S
(αn)
i/n ≥ cm for all i = 0, 1, 2, · · · , n. (5)

Define

φcm(x, y) =





(
y

x
)2, when x ≥ cm;

(
3

cm
4
x2 − 8

cm
3
x +

6
cm

2
)y2, when x < cm.

(6)

For n large enough, by lemma 2 and lemma 3, (4) can be further written as

V nIAm∩Bm,n =
1
n

n∑

i=1

φcm(S(αn)
(i−1)/n, Yi,n)IAm∩Bm,n + O(

(2 log n)3/2

n1/2
)IAm∩Bm,n

=U(n, φcm)IAm∩Bm,n + O(
(2 log n)3/2

n1/2
)IAm∩Bm,n ,

where U(·, ·) is defined in (3).
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Furthermore,

V nIAm = V nIAm∩Bm,n + V nIAm∩Bc
m,n

= U(n, φcm)IAm∩Bm,n + O(
(2 log n)3/2

n1/2
)IAm∩Bm,n + V nIAm∩Bc

m,n

= U(n, φcm)IAm + (V n − U(n, φcm))IAm∩Bc
m,n

+ O(
(2 log n)3/2

n1/2
)IAm∩Bm,n

= U(n, φcm)IAm + op(1) (by Lemma 1).

By Delattre and Jacod (1997),

U(n, φcm) →P





∫ 1

0

∫ 1

0

∫
h(y)φcm(St, βbu + yσSt/βc)dydudt, if β > 0;

∫ 1

0

∫
h(y)φcm(St, yσSt)dydt, if β = 0.

Note that cm ≤ 1/m,

φcm(S(i−1)/n, Y ) =
(

Y

S(i−1)/n

)2

IAm + φcm(S(i−1)/n, Y )IAc
m

.

Lemma 4 gives, when β > 0,

U(n, φcm)IAm →P

∫ 1

0

1
S2

t

(σ2S2
t +

β2

6
− β2

π2

∞∑

k=1

1
k2

exp{−2π2k2 σ2S2
t

β2
})dtIAm

It is easy to check that the above convergence is also true when β = 0.
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Therefore, for β ∈ [0,∞),

V nIAm = U(n, φcm)IAm + op(1)

→P

∫ 1

0

1
S2

t

(σ2S2
t +

β2

6
− β2

π2

∞∑

k=1

1
k2

exp{−2π2k2 σ2S2
t

β2
})dtIAm .

That is to say, for any δ > 0, ε > 0, there exists N, such that for all n > N,

P (|V nIAm −
∫ 1

0

1
S2

t

(σ2S2
t +

β2

6
− β2

π2

∞∑

k=1

1
k2

exp{−2π2k2 σ2S2
t

β2
})dtIAm | > δ) < ε.

On the other hand, since Am ↗ Ω, there exists M large, such that

P (Ac
M ) < ε.

Therefore, for n > N,

P (|V n −
∫ 1

0

1
S2

t

(σ2S2
t +

β2

6
− β2

π2

∞∑

k=1

1
k2

exp{−2π2k2 σ2S2
t

β2
})dt| > δ)

≤P (Ac
M ) + P (|V nIAM

−
∫ 1

0

1
S2

t

(σ2S2
t +

β2

6
− β2

π2

∞∑

k=1

1
k2

exp{−2π2k2 σ2S2
t

β2
})dtIAM

| > δ)

<2ε.

This proves Theorem 2.
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3.4 Proof of Theorem 3 and Theorem 4

By (4), for large n,

√
nV nIAm∩Bm,n

=
√

n
1
n

n∑

i=1

[
√

n(
Yi,n√

nS
(αn)
(i−1)/n

− 1
2
(

Yi,n√
nS

(αn)
(i−1)/n

)2 +
1
3
θ3)]2IAm∩Bm,n , θ ∈ (0,

Yi,n√
nS

(αn)
(i−1)/n

).
(7)

Using the cm ∈ (0, 1
m ] as in (5), we define

ψcm(x, y) =





(
y

x
)3, when x ≥ cm;

(
4

cm
3
− 3x

cm
4
)y3, when x < cm.

(8)

(7) can be further written as

√
nV nIAm∩Bm,n =

√
nU(n, φcm)IAm∩Bm,n − U(n, ψcm)IAm∩Bm,n + O(

(2 log n)2

n1/2
)IAm∩Bm,n ;

and √
nV nIAm

=
√

nV nIAm∩Bm,n +
√

nV nIAm∩Bc
m,n

=(
√

nU(n, φcm)− U(n, ψcm))IAm

+ (
√

nV n −√nU(n, φcm) + U(n, ψcm))IAm∩Bc
m,n

+ O(
(2 log n)2

n1/2
)IAm∩Bm,n

=
√

nU(n, φcm)IAm − U(n, ψcm)IAm + op(1),

where φcm is defined in (6), ψcm in (8) and U(·, ·) in (3).
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Note that ψcm(St, σSty) is an odd function of y, and β = 0; by Delattre and Jacod (1997),

U(n, ψcm) →P

∫ 1

0

∫
h(y)ψcm(St, σSty)dydt = 0.

Therefore,

U(n, ψcm)IAm →P 0.

As a consequence,
√

nV nIAm =
√

nU(n, φcm)IAm + op(1). (9)

Also by Delattre and Jacod (1997),

√
n[U(n, φcm)−

∫ 1

0
Γφcm(St, βn)dt] →stably in law

∫ 1

0
∆(φcm , φcm)(St, 0)1/2dBs, (10)

where

Γφcm(St, βn)

=
∫ 1

0

∫
h(y)φcm(St, βnbu + yσSt/βnc)dydu

=
∫ 1

0

∫
h(y)

(
(
βnbu + yσSt/βnc

St
)2IAm + φcm(St, βnbu + yσSt/βnc)IAc

m

)
dydu

=(σ2 +
β2

n

6
1
S2

t

− β2
n

π2

1
S2

t

∞∑

k=1

1
k2

exp{−2π2k2 σ2S2
t

β2
n

})IAm+

∫ 1

0

∫
h(y)φcm(St, βnbu + yσSt/βnc)dyduIAc

m
(by Lemma 4) ;

(11)



Determining the Volatility of a Price Process in The Presence of Rounding Errors 19

and

∆(φcm , φcm)(St, 0)

=
∫

hσSt(y)φ2
cm

dy − (
∫

hσSt(y)φcmdy)2

=
∫

hσSt(y)[(
y

St
)4IAm + φ2

cm
(St, y)IAc

m
]dy − (

∫
hσSt(y)[(

y

St
)2IAm + φcm(St, y)IAc

m
]dy)2

=[
∫

hσSt(y)(
y

St
)4dy − (

∫
hσSt(y)(

y

St
)2dy)2]IAm+

[
∫

hσSt(y)φcm(St, y)2dy − (
∫

hσSt(y)φcm(St, y)dy)2]IAc
m

;

hence

∆(φcm , φcm)(St, 0)1/2

=[
∫

hσSt(y)(
y

St
)4dy − (

∫
hσSt(y)(

y

St
)2dy)2]1/2IAm+

[
∫

hσSt(y)φcm(St, y)2dy − (
∫

hσSt(y)φcm(St, y)dy)2]1/2IAc
m

=(2σ4)1/2IAm + [
∫

hσSt(y)φcm(St, y)2dy − (
∫

hσSt(y)φcm(St, y)dy)2]1/2IAc
m

.

(12)

Plugging (11) and (12) into (10), and note that
√

nβ2
n

π2

∫ 1
0

1
S2

t

∑∞
k=1

1
k2 exp{−2π2k2 σ2S2

t
β2

n
}dt point-

wise goes to zero on the set Am as n →∞, one has,

√
n[U(n, φcm)− (σ2 +

β2
n

6

∫ 1

0

1
S2

t

dt)]IAm +
√

n[U(n, φcm)−
∫ 1

0
Γφcm(St, βn)dt]IAc

m

→ stably in law N(0, 2σ4)IAm +
∫ 1

0
[
∫

hσSt(y)φcm(St, y)2dy − (
∫

hσSt(y)φcm(St, y)dy)2]1/2dBsIAc
m

.

For any continuous function g that vanishes outside a compact set, the above stable convergence

implies

E[g(
√

n[U(n, φcm)− (σ2 +
β2

n

6

∫ 1

0

1
S2

t

dt)]IAm)IAm ] → E[g(N(0, 2σ4)IAm)IAm ]. (13)
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And by defining ηcm(·, ·) to be

ηcm(x, y) =





(
1
x

)2, when x ≥ cm;

(
3

cm
4
x2 − 8

cm
3
x +

6
cm

2
), when x < cm,

one has,

V n
0 IAm = V nIAm −

β2
n

6
U(n, ηcm)IAm . (14)

Again, by Delattre and Jacod (1997),

U(n, ηcm) →P

∫ 1

0

∫
h(y)ηcm(St, σSty)dydt.

As a consequence,

U(n, ηcm)IAm =
1
n

n∑

i=1

1

(S(αn)
i/n )2

IAm →P

∫ 1

0

1
S2

t

dtIAm .

By the assumption that
√

nβ2
n → γ < ∞,

one has

√
n(

β2
n

6
U(n, ηcm)− β2

n

6

∫ 1

0

1
S2

t

dt)IAm →P 0. (15)

By (9), (14) and (15),

√
nV n

0 IAm =
√

n(U(n, φcm)− β2
n

6

∫ 1

0

1
S2

t

dt)IAm + op(1).
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Also since that g is uniformly continuous,

lim
n→∞E[g(

√
n(V n

0 − σ2)IAm)IAm ]

= lim
n→∞E[g(

√
n[U(n, φcm)− (σ2 +

β2
n

6

∫ 1

0

1
S2

t

dt)]IAm)IAm ]

=E[g(N(0, 2σ4)IAm)IAm ] (by (13)),

which implies, for any ε > 0, there exists N , such that ∀n ≥ N ,

|E[g(
√

n[V n
0 − σ2]IAM

)IAM
]− E[g(N(0, 2σ4)IAM

)IAM
]| < ε.

Note also that g is bounded, suppose |g| ≤ Mg. Recall that P (Ac
M ) → 0 , one can choose M such

that P (Ac
M ) < ε/Mg.

So for n ≥ N,

|E[g(
√

n[V n
0 − σ2])]−E[g(N(0, 2σ4))]|

≤|E[g(
√

n[V n
0 − σ2]IAM

)IAM
]− E[g(N(0, 2σ4)IAM

)IAM
]|+

|E[g(
√

n[V n
0 − σ2]IAc

M
)IAc

M
]|+ |E[g(N(0, 2σ4)IAc

M
)IAc

M
]|

≤|E[g(
√

n[V n
0 − σ2]IAM

)IAM
]− E[g(N(0, 2σ4)IAM

)IAM
]|+ 2Mg ∗ P (Ac

M )

≤3ε

Hence we’ve proved that for all continuous g that vanishes outside a compact set,

lim
n→∞E[g(

√
n[V n

0 − σ2])] = E[g(N(0, 2σ4))],
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i.e.,
√

n[V n
0 − σ2] →L N(0, 2σ4).

This finishes the proof of Theorem 4. The proof of Theorem 3 is basically contained in the

proof above.

4 CONCLUSIONS AND DISCUSSION

In summary, we have proved the following convergence in probability:

• If αn ≡ α ∈ (0,∞):

1√
n

V n →P
1
σ

√
2
π

∞∑

k=1

L
log(kα)
1 (log(1 +

1
k
))2.

• If
√

nαn → β ∈ [0,∞):

V n →P σ2 +
β2

6

∫ 1

0

1
S2

t

dt− β2

π2

∫ 1

0

1
S2

t

∞∑

k=1

1
k2

exp{−2π2k2 σ2S2
t

β2
}dt.

And we have proved the central limit theorem that if
√

nβ2
n → γ < ∞,

• √n[V n − σ2 − β2
n
6

∫ 1
0

1
S2

t
dt] →L N(0, 2σ4) and

√
n[V n − α2

n
6

∑n
i=1

1

(S
(αn)
i/n

)2
− σ2] →L N(0, 2σ4).

We have used the later result to create a bias-correction that works for “small rounding”.

Note that while we work with observations on a time interval [0, 1], results for the more general

case of time interval [0, T ] is obtained by rescaling. The case of time varying volatility and/or

unequal observation times can be studied using the methods of Jacod and Protter (1998) and

Mykland and Zhang (2006).



Determining the Volatility of a Price Process in The Presence of Rounding Errors 23

REFERENCES

Aldous, D. (1989), Probability Approximations Via The Poisson Clumping Heuristic, New York:

Springer.

Delattre, S. and Jacod, J. (1997), “A Central Limit Theorem for Normalized Functions of the

Increments of a Diffusion Process, in the Presence of Round-Off Errors,” Bernoulli, 3, 1–28.

Ferguson, T. S. (1996), A Course in Large Sample Theory, London, U.K.: Chapman and Hall.

Jacod, J. (1996), “La Variation Quadratique du Brownien en Présence d’Erreurs d’Arrondi,”
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