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Abstract: We consider asymptotic properties of curve-crossing counts of linear processes

and nonlinear time series by curves. Central limit theorems are obtained for curve-crossing

counts of short-range dependent processes. For the long-range dependence case, the asymp-

totic distributions are shown to be either multiple Wiener-Itô integrals or integrals with

respect to stable Lévy processes, depending on the heaviness of tails of the underlying

processes.
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integral; non-central limit theorem; nonlinear time series.

1 Introduction

Let (Xi)i∈Z be a random process and µ = (µi)i∈Z be a sequence of real numbers. Define

Cn(µ) =
n

∑

i=1

1(Xi−1−µi−1)(Xi−µi)≤0, (1)

where 1A = 1 or 0 depending on whether event A occurs or not. The quantity Cn(µ) is the

number of i, 0 ≤ i ≤ n, such that Xi−1 ≤ µi−1 and Xi ≥ µi or Xi−1 > µi−1 and Xi ≤ µi.

In other words, Cn(µ) is the number of times that the process (Xi)
n
i=0 crosses the sequence

(µi)
n
i=0. Special cases of µ include (i) µi = m1(i/n) for some function m1 on [0, 1] and (ii)

µi = m2(i) for some function m2 on R. These two formulations of µ have different ranges

of applicability. The former is a reasonable choice if one aims to capture the feature that

the sequence being crossed is smoother than the underlying stochastic part. The latter

can be used for curves such as m2(u) = cos(u) that oscillate more heavily. See Fan and

Yao [10] (pp. 225-226) for further details on these two formulations.

When µ is a constant sequence, Cn(µ) is the level-crossing count. In particular, Cn(0)

is the zero-crossing count. Level-crossing analysis has been widely used in engineering,

physics, speech recognition and other fields; see [11, 19, 20, 21, 30, 34]. For example, if
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Xi =
∑k

j=1[Aj cos(iωj) +Bj sin(iωj)] + ei for independent normal random variables Aj, Bj

and ei, then one can estimate the frequencies ωj by considering the zero-crossing counts

of Xi and its differencing sequences; see [21]. In the literature of level-crossing analysis,

attention has been mainly focused on the mean number of crossings of processes at fixed

levels. For example, Benzaquen and Cabaña [1], Bulinskaya [2], Rice [31] and Ylvisaker [45]

considered stationary Gaussian processes with continuous sample paths. In [21], asymp-

totic means and variances are obtained for level-crossing counts by Gaussian processes.

More recently, Shimizu and Tanaka [35] obtained the expected number of two-level level-

crossing counts by stationary ellipsoidal processes and Kratz and León [22] established an

Hermite expansion for level-crossing counts by stationary Gaussian processes. For statisti-

cal inference including confidence intervals construction and hypothesis testing, however,

it is desirable to have an asymptotic distributional theory for Cn(µ). In the context of

level-crossing counts, Cuzick [4] and Kedem [21] obtained central limit theorems (CLT) for

Gaussian processes and Wu [40, 41] considered linear processes.

This paper aims at establishing an asymptotic distributional theory for Cn(µ) for non-

constant sequences µ. Such results can provide an inferential theory for statistical anal-

ysis using the curve-crossing method. For the number of curve-crossings by stationary

continuous-time Gaussian processes, Slud [36] gave a multiple Wiener-Itô integral repre-

sentation; Kratz and León [23] derived an Hermite expansion and applied their results to

the specular points problem proposed in [26]. These results can not be directly applied to

discrete time non-Gaussian processes. Here we shall consider linear processes with finite

or infinite variances and some popular nonlinear time series. For processes with infinite

variances the classical spectral and time domain approaches seem inappropriate and the

curve-crossing analysis provides a useful alternative.

In this paper we consider stationary processes of the form

Xn = g(εn, εn−1, . . .), (2)

where g is a measurable function and εi, i ∈ Z, are independent and identically dis-

tributed (iid) random variables. The framework (2) does not seem to be overly restrictive.

The Wiener-Rosenblatt conjecture states that, for every stationary and ergodic process

(Xk)k∈Z, there exists a measurable function g and iid εi such that the distributional equal-

ity (Xk)k∈Z =D (g(εk, εk−1, . . .))k∈Z holds; see [17, 33, 39].
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We now introduce some notation. Denote by FX and F the distribution functions

of X0 and (X0, X1), respectively, and let G(x, y) = P[(X0 − x)(X1 − y) ≤ 0]. Assume

throughout the paper that F is continuous. Then G(x, y) = FX(x)+FX(y)−2F (x, y). Let

Fn = (εn, εn−1, . . .) be the shift process and F ′
n = (εn, . . . , ε1, ε

′
0, ε−1, . . .) a coupled process

of Fn, where (ε′i)i∈Z is an iid copy of (εi)i∈Z. For a random variable Z write Z ∈ Lq, q > 0, if

‖Z‖q := [E(|Z|q)]1/q <∞. Define the detail projection PkZ = E(Z|Fk)−E(Z|Fk−1), k ∈ Z.

For a, b ∈ R let a∧ b = min(a, b), a∨ b = max(a, b) and a+ = a∨ 0. For two real sequences

(an) and (bn), write an = O(bn) if there exists a constant c such that |an| ≤ c|bn| for

large n and an = o(bn) if limn→∞ an/bn = 0. For a real function g(x, y) and integers

r ≥ s ≥ 0, denote by g(r,s) the partial derivative ∂rg(x, y)/∂xs∂yr−s if it exists. Denote

by Cp = {g : supx,y∈R |g(r,s)(x, y)| < ∞, 0 ≤ s ≤ r ≤ p} the set of bivariate functions with

bounded partial derivatives up to order p.

The rest of the paper is structured as follows. We present main results in Section 2,

where applications are made to nonlinear time series, long-memory linear processes and

heavy-tailed processes which are widely used in practice. The limiting distributions are

shown to be normal or non-normal, depending on the heaviness of the tails and the strength

of dependence of the processes. Proofs are given in Section 3.

2 Main Results

Asymptotic behavior of Cn(µ) should certainly depend on the underlying process (Xi) and

the sequence (µi). A general central limit theorem is given below.

Theorem 1. Assume that, for each fixed integer k, the limit

lim
n→∞

1

n

n
∑

i=1

cov[1(X0−µi−1)(X1−µi)≤0, 1(Xk−µi+k−1)(Xk+1−µi+k)≤0] = γk (say) (3)

exists. Further assume that F (·, ·) is continuous and that

∞
∑

i=0

δi <∞, where δi = sup
x,y∈R

‖P01(Xi−1−x)(Xi−y)≤0‖2. (4)

Then σ2 :=
∑

k∈Z
γk <∞, ‖Cn(µ) − ECn(µ)‖2

2/n→ σ2 as n→ ∞ and

Cn(µ) − ECn(µ)√
n

⇒ N(0, σ2). (5)
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In Theorem 1, (4) is basically a short-range dependence condition. In Sections 2.1 and

2.2 we shall verify (4) for nonlinear time series and short-range dependent linear processes.

For long-range dependent processes, (4) is violated and the limiting behavior of Cn(µ) has

more detailed structures; see Section 2.3. Condition (3) is imposed in such a way that it

can allow various forms of µ; see Examples 1 and 2 below.

Example 1. For the level-crossing case with µi ≡ c, we have γk = cov(V0, Vk), where

Vi = 1(Xi−c)(Xi+1−c)≤0. If µi = m1(i/n), where m1 is a piecewise continuous function on

[0, 1] with finitely many jumps, elementary calculations show that (3) holds with

γk =

∫ 1

0

cov(1[X0−m1(t)][X1−m1(t)]≤0, 1[Xk−m1(t)][Xk+1−m1(t)]≤0)dt. (6)

Example 2. Let µi = cos(2πωi) for some ω ∈ R. If ω = a/b is a rational number with

a, b ∈ N, then elementary calculations show that (3) holds with

γk =
1

b

b
∑

j=1

cov(V0,j, Vk,j), where Vi,j = 1[Xi−cos(2πω(i+j−1))][Xi+1−cos(2πω(i+j))]≤0. (7)

If ω is irrational, then the sequence (iω)i∈N, is uniformly distributed modulo 1 [24]. Hence

for Zk(u) = Xk − cos[2π(u+ kω)], by Theorem 1.1 in [24] we have

γk =

∫ 1

0

cov(1Z0(u)Z1(u)≤0, 1Zk(u)Zk+1(u)≤0)du. (8)

Remark 1. To apply Theorem 1, one needs to estimate the limiting variance σ2. For

stationary processes the latter problem is closely related to the long-run variance estima-

tion. Unfortunately, due to the non-stationarity of Zi = 1(Xi−1−µi−1)(Xi−µi)≤0 −G(µi−1, µi),

the estimation of σ2 is not straightforward. Let Ĝ be an estimate of G. For example, we

can take Ĝ(x, y) = n−1
∑n

i=1 1(Xi−1−x)(Xi−y)≤0. As the proof of Theorem 1 (cf Section 3.1)

suggests, one can propose the truncated estimate

σ̂2
k =

1

n

n
∑

i,j=1

ẐiẐj1|i−j|≤k, where Ẑi = 1(Xi−1−µi−1)(Xi−µi)≤0 − Ĝ(µi−1, µi).

Here k = kn satisfies k → ∞ and k/n→ 0. We conjecture that, under (3) and (4), σ̂2
k → σ2

in probability. It is also unclear how to choose optimal k. ♦
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Remark 2. Recall that (ε′i)i∈Z is an iid copy of (εi)i∈Z. Let h be a measurable func-

tion such that Yn = h(εn, εn−1, . . .) ∈ Lq for some q ≥ 1. Then (4) suggests a way of

defining dependence in the sequence (Yn)n∈Z : δi(q) = ‖P0Yi‖q, i ≥ 0; see [43]. Note that

E(Yi|F−1) = E(Y ′
i |F0), where Y ′

i = h(F ′
i). By Jensen’s inequality, δi(q) ≤ ‖Yi−Y ′

i ‖q =: ωi,q

(say). Dedecker and Prieur [5] considered the following coupling coefficients:

ω̃i,q = ‖Yi − Y ∗
i ‖q, where Y ∗

i = h(εi, . . . , ε1, ε
′
0, ε

′
−1, . . .). (9)

The difference between the two coupling versions Y ′
i and Y ∗

i of Yi is that the former

replaces ε0 with ε′0 while the latter replaces εi with ε′i for all i ≤ 0. By triangle inequality,

ω̃i,q ≤ ∑∞
j=i ωj,q. See [5] for more details. It seems difficult to use their dependence

coefficients to obtain results derived in the current paper, especially when the process

exhibit long-range dependence. ♦

2.1 Nonlinear Time Series

Let εi be iid random variables and define recursively

Xn = Rεn
(Xn−1), (10)

where Rε(·) = R(·, ε) is a measurable random map. Many popular nonlinear time series

models are of the form (10), for example, threshold autoregressive model [39]: Xn =

a(Xn−1 ∨ 0) + b(Xn−1 ∧ 0) + εn, autoregressive conditional heteroscedasticity (ARCH)

model [9]: Xn = εn

√

a2 + b2X2
n−1, random coefficient model [29]: Xn = (a+ bεn)Xn−1 +εn

and exponential autoregressive model [13]: Xn = (a + be−cX2
n−1)Xn−1 + εn among others.

For properties of iterated random functions see [25, 28, 7, 8].

Proposition 1. Assume that there exists x0 and α > 0 such that

Rε0
(x0) ∈ Lα and ρ := sup

x6=x′

‖Rε0
(x) − Rε0

(x′)‖α

|x− x′| < 1 (11)

Further assume that, for some p > 2,

sup
x∈R

|FX(x + t) − FX(x)| = O[(log |t|−1)−p] as t→ 0. (12)

Then (4) holds.
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Proof. Recall Fn = (εn, εn−1, . . .) and F ′
n = (εn, . . . , ε1, ε

′
0, ε−1, . . .), where (ε′i)i∈Z is an iid

copy of (εi)i∈Z. Define the coupled process F ∗
n = (εn, . . . , ε1, ε

′
0, ε

′
−1, . . .) with εi, i ≤ 0,

in Fn replaced by ε′i. By Theorem 2 in [44], if (11) is satisfied, then Xn has a unique

stationary solution of the form (2) with the function g satisfying

‖Xn − g(F∗
n)‖α = O(ρn). (13)

Let X ′
i = g(F ′

i), X
∗
i = g(F∗

i ) and κi = supx ‖1Xi≤x − 1X′

i≤x‖2. Since

E[1(Xi−1−x)(Xi−y)≤0|F−1] = E[1(X′

i−1
−x)(X′

i−y)≤0|F−1] = E[1(X′

i−1
−x)(X′

i−y)≤0|F0],

by Jensen’s inequality,

‖P01(Xi−1−x)(Xi−y)≤0‖2 ≤ ‖1(Xi−1−x)(Xi−y)≤0 − 1(X′

i−1
−x)(X′

i−y)≤0‖2 ≤ 2(κi + κi−1). (14)

Note that ‖1Xi≤x − 1X′

i≤x‖2 ≤ ‖1Xi≤x − 1X∗

i ≤x‖2 + ‖1Xi+1≤x − 1X∗

i+1
≤x‖2. Let τ = ρ1/(2α).

By (12) and (13),

P(Xi ≤ x,X∗
i ≥ x) ≤ P(Xi ≤ x,X∗

i ≥ x, |X∗
i −Xi| ≤ τ i) + P(|X∗

i −Xi| > τ i)

≤ P(|Xi − x| ≤ τ i) + τ−αi
E(|X∗

i −Xi|α) = O(i−p + ρi/2).

So
∑∞

i=0 κi <∞ and the proposition follows from (14). ♦

Example 3. Consider the ARCH model Xn = εn

√

a2 + b2Xn−1, where εi, i ∈ Z, are iid

innovations and a, b are real parameters. If ε0 ∈ Lα and |b|‖ε0‖α < 1, then (11) hold.

2.2 Short-range dependent linear processes

Let εi be iid random variables with ε0 ∈ Lq, q > 0. Assume E(ε0) = 0 if q ≥ 1. For a real

sequence (ai)i≥0 satisfying
∑∞

i=0 |ai|q∧2 <∞, the linear process

Xn =
∞

∑

i=0

aiεn−i (15)

is well-defined and is strictly stationary. Special cases of (15) include ARMA and frac-

tional ARIMA (FARIMA) processes. For m ≤ n define the truncated processes Xn,m =
∑n−m

j=0 ajεn−j and Xn,m =
∑∞

j=n−m ajεn−j. Note that Xn = Xn,m+1 + Xn,m and the two

summands are independent. Denote by Fk the distribution function of (X0,1−k, X1,1−k).
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Proposition 2. Let ε0 ∈ Lq, q > 0. Assume that Fκ ∈ C1 for some κ ∈ N. Then (4) holds

provided that

∞
∑

i=0

|ai|(q∧2)/2 <∞. (16)

Proof. Let Li(x, y) = 1(Xi−1−x)(Xi−y)≤0−G(x, y), Gj(x, y) = Fj(x,∞)+Fj(y,∞)−2Fj(x, y),

X ′
j,0 = Xj,0 + aj(ε

′
0 − ε0) and q0 = q ∧ 2. For i ≥ κ+ 1, by Schwarz’s inequality,

‖P0Li(x, y)‖2 = ‖E[Gi−1(x−X i−1,0, y −X i,0) −Gi−1(x−X ′
i−1,0, y −X ′

i,0)|F0]‖2

≤ ‖Gi−1(x−X i−1,0, y −X i,0) −Gi−1(x−X ′
i−1,0, y −X ′

i,0)‖q0/2
q0

= O(|ai−1|q0/2 + |ai|q0/2)

since by Lemma 3, G
(1,1)
i−1 and G

(1,0)
i−1 are bounded. So (16) entails (4). ♦

Proposition 2 allows innovations with heavy tails, in which case the traditional covari-

ance based spectral and time domain approaches are not directly applicable. If q = 2, then

(16) becomes
∑∞

i=1 |ai| <∞, a classical condition for short-range dependence.

Example 4. Let ε0 ∈ Lq, q > 0. Consider the ARMA(k, p) process Xn − ∑k
i=1 ϕiXn−i =

εn +
∑p

j=1 ψjεn−j, where ϕ1, . . . , ϕk, ψ1, . . . , ψp are real parameters. If all the roots of the

equation 1 − ∑k
i=1 ϕix

i = 0 lie outside of the unit circle, then Xn =
∑∞

i=0 aiεn−i with

|ai| = O(λi) for some λ ∈ (0, 1) and thus (16) holds. ♦

In Proposition 2 and Theorem 2 in Section 2.3, we assume that, for some κ ∈ N, Fκ

has bounded partial derivatives of certain order. Assume without loss of generality a0 6= 0.

Clearly, if the distribution function of ε0 has bounded derivatives up to order p, then so

does F1. An interesting example is the stable distribution with characteristic function

φ(t) = E[exp(
√
−1tε0)] = exp(

√
−1δt− γ|t|α), where δ ∈ R, γ > 0, α ∈ (0, 2].

Here
√
−1 is the imaginary unit. By the inversion formula, ε0 has bounded derivatives of

all orders. Examples 5 provides other sufficient conditions under which Fκ ∈ Cp.

Example 5. Let φ(t) = E[exp(
√
−1tε0)], t ∈ R, be the characteristic function of ε0.

Assume that for some λ > 0 and c < ∞, |φ(t)| ≤ c/(1 + |t|λ) (see [12]). Further assume
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that N = {an/an−1 : an−1 6= 0, n ∈ N} contains infinitely many different elements. Then

for any p, there exists κ ∈ N such that Fκ ∈ Cp. To this end, let

φk(t1, t2) = E[e
√
−1(t1X0,1−k+t2X1,1−k)], t1, t2 ∈ R,

be the characteristic function of the vector (X0,1−k, X1,1−k). By independence,

|φk(t1, t2)| = |φ(a0t2)|
k

∏

i=1

|φ(ai−1t1 + ait2)| ≤
ck+1

∏k
i=1[1 + |ai−1t1 + ait2|λ]

.

Since N has infinitely many elements, there exists a subsequence nj, j = 1, 2, . . ., such that

anj−1, anj
6= 0, bj := anj

/anj−1 6= 0 and bj 6= bj′ if j 6= j ′. Simple calculations show that

there exists ρj > 0 depending on anj−1, anj
, anj+1−1 and anj+1

such that

[1 + |anj−1t1 + anj
t2|λ][1 + |anj+1−1t1 + anj+1

t2|λ] ≥ 1 + ρj(|t1| + |t2|)λ.

Let rk = mini≤k ρi > 0, κ = n2k with k = b4p/λc+ 4. Then |φκ(t1, t2)| ≤ cκ+1[1 + rk(|t1|+
|t2|)λ]−k. By the inversion formula, Fκ ∈ Cp since kλ > 4p.

2.3 Long-range dependent linear processes

In this section we shall study the linear process (15) with an = n−βL(n), where β > 1/2

and L is a slowly varying function, i.e. for every λ > 0, L(λn)/L(n) → 1, n → ∞. Let

E(ε2
0) < ∞ and β < 1. By Karamata’s theorem, the covariances E(X0Xn) are of order

n1−2βL2(n) and not summable, suggesting long-range dependence. The case of β > 1 is

covered by Proposition 2. In the long-range dependence case, the behavior of Cn(µ) is

much more complicated. Here we shall establish an asymptotic expansion of Cn(µ).

For r ≥ 0 and a differentiable bivariate function g, define

∆r(g)(x, y) =

r
∑

i=0

r!

i!(r − i)!
g(r,i)(x, y) (17)

if it exists. Recall that G(x, y) = FX(x) + FX(y) − 2F (x, y). Let

Sn(µ; p) =

n
∑

i=1

Li(µi−1, µi; p) = Cn(µ) +

n
∑

i=1

p
∑

r=0

(−1)r+1∆r(G)(µi−1, µi)Ui(r), (18)
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where

Li(x, y; p) = 1(Xi−1−x)(Xi−y)≤0 +

p
∑

r=0

(−1)r+1∆r(G)(x, y)Ui(r), (19)

Ui(r) =
∑

0≤j1<...<jr

r
∏

s=1

ajs
εi−js

and Ui(0) = 1.

Note that Ui(r) is a rth order polynomial in εj. Intuitively, Sn(µ; p) can be viewed as the

pth order Taylor expansion of Cn(µ); see [14, 42] for the univariate case.

The long-range dependence case results in non-central limit theorems with limiting

distributions being multiple Wiener-Itô integrals (MWI, [27]) or integrals with respect to

stable Lévy processes. Let W (u) be a standard two-sided Brownian motion. For a > 1/2,

nonnegative integer k < 1/(2a− 1) and a bounded function f , define the MWI

Hk,a(f) = λ(k, a)

∫

Rk

∫ 1

0

f(t)
k

∏

i=1

[(t− ui)
+]−adtdW (u1) . . . dW (uk),

where λ(k, a) is a normalizing constant such that ‖Hk,a(f0)‖2 = 1 with f0 ≡ 1. Let

Zd(u), u ∈ R be a two-sided stable Lévy process with index d. We say that εi is in the

domain of attraction of stable law with index d ∈ (1, 2) (denoted by εi ∈ D(d)) if there

exists a slowly varying function Lε such that n−1/dL−1
ε (n)

∑n
i=1 εi converges in distribution

to a stable law with index d.

Theorem 2. Let µi = m1(i/n), where m1 is a piecewise continuous function on [0, 1] with

finitely many jumps, and an = n−βL(n), where β > 1/2 and L is a slowly varying function

satisfying L(n + 1)/L(n) = 1 + O(1/n). Assume that for some κ ∈ N, Fκ ∈ Cp+2. (i)

Assume ε0 ∈ Lq, q ≥ 2 and 2β ∈ (1, 1 + (p+ 1)−1). Let Sn(µ; p) be as in (18). Then

Sn(µ; p)

n1−(p+1)(β−1/2)Lp+1(n)‖ε0‖p+1
2

⇒ (−1)p+1Hp+1,β[∆p+1(G)(m1(·), m1(·))]. (20)

(ii) Let εi ∈ D(d), d ∈ (1, 2). Assume that 1/d < β < 1. Then there is a slowly varying

function L1 such that

Cn(µ) − ECn(µ)

n1−β+1/dL1(n)
⇒ (β − 1)

∫ 1

−∞

∫ 1−u

(−u)+
∆1(G)(m1(u+ t), m1(u+ t))t−βdtdZd(u).

As a special case of (20), let p = 0. Then Cn(µ)−ECn(µ) = Sn(µ; 0) is asymptotically

normal with a non-
√
n norming sequence n3/2−βL(n)‖ε0‖2.
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Example 6. Consider the FARIMA(k, θ, p) process Xn given by ϕ(B)(1 − B)θXn =

ψ(B)εn. Here ϕ(x) = 1 − ∑k
i=1 ϕix

i and ψ(x) = 1 +
∑p

i=1 ψix
i are two polynomials

of degrees k and p, respectively, B is the backward shift operator defined by BjXn =

Xn−j, j ≥ 0, and θ ∈ (−1/2, 1/2). Let Γ(x) =
∫ ∞
0
tx−1e−tdt be the gamma function. In

the simple case of p = k = 0, we have Xn =
∑∞

i=0 aiεn−i, where

an =
Γ(n + θ)

Γ(n+ 1)Γ(θ)
= n−(1−θ) Γ(n+ θ)n1−θ

Γ(n+ 1)Γ(θ)
:= n−(1−θ)L(n). (21)

By the Stirling formula Γ(x) =
√

2πe−xxx−1/2[1+O(1/x)], x→ ∞, we can show that L(n)

is a slowly varying function satisfying L(n + 1)/L(n) = 1 + O(1/n). If θ ∈ (0, 1/2) or

equivalently β := 1 − θ ∈ (1/2, 1), then Xn is long-range dependent. So Theorem 2 holds

with FARIMA(0, θ, 0) process under the conditions specified therein. Furthermore, by a

similar but more tedious argument, it can be shown that Theorem 2 also applies to general

FARIMA(k, θ, p) processes provided that ϕ(z) 6= 0 for all complex |z| ≤ 1 and ψ(1) 6= 0.

3 Proofs

In this section, c and cγ stand for generic positive constants which may vary among lines.

Recall Fn = (εn, εn−1, . . .), F ′
n = (εn, . . . , ε1, ε

′
0,F−1), and the detail projection operator

Pk· = E(·|Fk) − E(·|Fk−1), k ∈ Z. For m ≤ n let Fm
n = (εn, εn−1, . . . , εm).

3.1 Proof of Theorem 1.

Let Li(x, y) = 1(Xi−1−x)(Xi−y)≤0 −G(x, y), Sn(µ) = Cn(µ) − ECn(µ) and Zi = Li(µi−1, µi).

For r ≥ 0, since Pj, j ∈ Z, are orthogonal projections, we have

|cov(Zi, Zi+r)| = |E(ZiZi+r)| =

∣

∣

∣

∣

∣

E

[(

i
∑

j=−∞
PjZi

)(

i+r
∑

j′=−∞
Pj′Zi+r

)]

∣

∣

∣

∣

∣

=

i
∑

j=−∞
|E[(PjZi)(PjZi+r)]| ≤

i
∑

j=−∞
δi−jδi+r−j ≤

∞
∑

j=0

δjδj+r (22)

in view of Schwarz’s inequality. By (4), σ2 ≤ ∑

k∈Z
|γk| <∞. For k ∈ N write

1

n
‖Sn‖2

2 =
1

n

∑

|i−i′|≤k

cov(Zi, Zi′) +
1

n

∑

|i−i′|>k

cov(Zi, Zi′) := In,k + Jn,k.

10



Let sk =
∑

|`|≤k γ` and tk =
∑∞

j=k δj. By (3), limn→∞ In,k = sk. So

lim sup
n→∞

|‖Sn‖2
2/n− σ2| ≤ lim sup

n→∞
|In,k − sk| + lim sup

n→∞
|Jn,k| + |σ2 − sk|

≤
∞

∑

r=k

∞
∑

j=0

2δjδj+r + |σ2 − sk| ≤ 2t0tk + |σ2 − sk|.

Let k → ∞ we obtain limn→∞ ‖Sn‖2
2/n = σ2 =

∑

j∈Z
γj. If σ2 = 0, then the central limit

theorem (5) trivially holds. In the sequel we assume σ2 > 0. For m ∈ N let

Li,m(x, y) = E[1(Xi−1−x)(Xi−y)≤0|F i−m
i ] −G(x, y).

Define Sn,m =
∑n

i=1 Li,m(µi−1, µi), Di,j,m = Pi−j[Li(µi−1, µi) − Li,m(µi−1, µi)] and

Λm =

∞
∑

i=0

δi,m, where δi,m = sup
x,y∈R

‖P0[Li(x, y) − Li,m(x, y)]‖2. (23)

Next we show the identity P0E(X|F i−j
i ) = E[(P0X)|F i−j

0 ], i, j ≥ 0. If i ≥ j+1, then both

sides are zero. If i ≤ j, since F i−j
i is independent of F−∞

i−j−1, we have

P0E(X|F i−j
i ) = E[E(X|F i−j

i )|F0] − E[E(X|F i−j
i )|F−1]

= E[E(X|F i−j
i )|F i−j

0 ] − E[E(X|F i−j
i )|F i−j

−1 ]

= E(X|F i−j
0 ) − E(X|F i−j

−1 ) = E[(P0X)|F i−j
0 ].

Applying the preceding identity with X = Li,m(x, y), we have by Schwarz’s inequality

that supx,y ‖P0Li,m(x, y)‖2 ≤ δi for all m ≥ 0. So δi,m ≤ 2δi. On the other hand, δi,m ≤
supx,y∈R

‖Li(x, y) − Li,m(x, y)‖2 =: ηm (say). Therefore δi,m ≤ min(2δi, ηm). By Theorem

7.4.3 in [3], for any x, y, limm→∞ ‖1X0≤x,X1≤y − E(1X0≤x,X1≤y|F−m
1 )‖2 → 0. Hence by the

continuity of F , we have supx,y ‖1X0≤x,X1≤y − E(1X0≤x,X1≤y|F−m
1 )‖2 → 0 as m → ∞. So

limm→∞ ηm = 0, and by the Lebesgue dominated convergence theorem, limm→∞ Λm = 0.

Since {Di,j,m}n
i=1 form martingale differences with respect to Fi−j and ‖Di,j,m‖2 ≤ δi,m,

‖∑n
i=1Di,j,m‖2 ≤

√
nδj,m. Let LIM denote lim supm→∞ lim supn→∞. Then

LIM
‖Sn(µ) − Sn,m‖2√

n
= LIM

‖∑n
i=1

∑∞
j=0Di,j,m‖2√
n

≤ LIM

∑∞
j=0 ‖

∑n
i=1Di,j,m‖2√
n

≤ lim
m→∞

Λm = 0. (24)

Since σ2 > 0, for sufficiently large m, lim infn→∞ ‖Sn,m‖2
2/n > σ2/2 > 0. By the central

limit theorem form-dependent random variables (cf. [16] or [32]), Sn,m/‖Sn,m‖2 ⇒ N(0, 1).

Hence Sn(µ)/σ ⇒ N(0, 1). ♦
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3.2 Proof of Theorem 2

To prove Theorem 2, we need some lemmas. Lemma 1 is a simple consequence of Rothen-

sal’s inequality (cf Theorem 1.5.11 in [6]). Details are omitted.

Lemma 1. Let ε1 ∈ Lγ, γ > 0 and E(ε1) = 0 if γ ≥ 1; let γ ′ = γ ∧ 2 and γ′′ = γ ∨ 2.

Then there exists a cγ such that E|∑n
i=1 biεi|γ ≤ cγ(

∑n
i=1 |bi|γ

′

)γ′′/2 holds for all bi ∈ R.

Lemma 2. Let f ∈ C2. Then there exists a constant c < ∞, depending only on f , such

that for all γ ∈ [1, 2] and x, y, δ1, δ2 ∈ R,

|f(x+ δ1, y + δ2) − f(x, y) − f (1,1)(x, y)δ1 − f (1,0)(x, y)δ2| ≤ c

2
∑

i=1

(|δi|γ + 1|δi|≥1).

Proof. Let T = T (x, y, δ1, δ2) = f(x + δ1, y + δ2) − f(x, y) − f (1,1)(x, y)δ1 − f (1,0)(x, y)δ2.

If |δ1| ≤ 1, |δ2| ≤ 1, by Taylor’s expansion, |T | ≤ c(|δ1|2 + |δ2|2) ≤ c(|δ1|γ + |δ2|γ). By the

boundedness of f, f (1,1) and f (1,0),

|T |1|δ1|>1,|δ2|≤1 ≤ c(1 + |δ1|)1|δ1|>1,|δ2|≤1 ≤ c(|δ1|γ + 1|δ1|>1).

We can similarly deal with |T |1|δ1|≤1,|δ2|>1 and |T |1|δ1|>1,|δ2|>1. So Lemma 2 follows. ♦

Recall that Xn,m =
∑∞

j=n−m ajεn−j, Xn,m =
∑n−m

j=0 ajεn−j and that FX , F and Fk are

the distribution functions of X0, (X0, X1) and (X0,1−k, X1,1−k), respectively. For q ≥ 2 let

q′ = q ∧ 4, An(k) =
∑∞

i=n |ai|k, Bn(k) =
∑∞

i=n |ai − ai+1|k,

θn,p,q = |an − an−1| + |an|q
′/2 + |an|[Ap/2

n (2) + A1/2
n (q′) +B1/2

n (2)], (25)

Θn,p,q =
∑n

k=1 θk,p,q and Ξn,p,q = nΘ2
n,p,q +

∑∞
i=1(Θn+i,p,q − Θi,p,q)

2. Lemma 4 extends

Lemma 10 in [42] to the bivariate case.

Lemma 3. Assume that Fκ ∈ Cp for some κ, p ∈ N. Then Fm(x, y), F (x, y) ∈ Cp for all

m ≥ κ. Furthermore, for all n ≥ 0 and 0 ≤ γ ≤ r ≤ p,

F
(r,γ)
n+m(x, y) = EF (r,γ)

m

(

x−
n+m−1
∑

j=m

ajε
′
−j, y −

n+m
∑

j=m+1

ajε
′
1−j

)

,

F (r,γ)(x, y) = EF (r,γ)
m

(

x−
∞

∑

j=m

ajε
′
−j, y −

∞
∑

j=m+1

ajε
′
1−j

)

. (26)

12



Proof. For r = 0, a conditioning argument entails (26). For r ≥ 1, (26) follows from the

Lebesgue dominated convergence theorem. See Lemmas 6 and 7 in [42] for the details of

the proof in the univariate case. ♦

Lemma 4. Let Ln(x, y; p) be as in (19). Assume that ε0 ∈ Lq, q ≥ 2. Let q′ = q ∧ 4.

Further assume that Fκ ∈ Cp+1 for some integer κ > 0. Then

sup
x,y

‖P1Ln(x, y; p)‖2 = O(θn,p,q).

Proof. For notational convenience we shall often drop the arguments x, y. For example, we

write F = F (x, y). Let L◦
n(p) = 1Xn−1≤x,Xn≤y +

∑p
r=0(−1)r+1∆r(F )(x, y)Un(r). It suffices

to show that supx,y ‖P1L
◦
n(p)‖ = O(θn,p,q). We shall adopt the argument in the proof of

Lemma 9 in [42]. As in [42], we may assume n ≥ κ+ 1. For m ≤ n, let

um = un,m = (x−Xn,m, y −Xn+1,m), u∗m = u∗n,m = (x−X∗
n,m, y −X∗

n+1,m),

where X∗
n,m =

∑∞
j=n−m ajε

′
n−j is a coupled process of Xn,m. For 0 ≤ γ ≤ r − 1 ≤ p − 1,

since 1 ≤ q′/2 ≤ 2, by Lemmas 2 and 3,

‖F (r−1,γ)
n (u1) − F (r−1,γ)

n (u0) + F (r,γ+1)
n (u0)an−1ε1 + F (r,γ)

n (u0)anε1‖2
2

= O(|an−1|q
′

+ |an|q
′

). (27)

By Lemma 3,

F (r−1,γ)
n (u1) = E[F

(r−1,γ)
n−1 (u1 − (an−1ε

′
1, anε

′
1)) + F

(r,γ+1)
n−1 (u1)an−1ε

′
1 + F

(r,γ)
n−1 (u1)anε

′
1|F1].

Thus, by Schwarz’s inequality and Lemma 2,

‖F (r−1,γ)
n−1 (u1) − F (r−1,γ)

n (u1)‖2
2 ≤ ‖F (r−1,γ)

n−1 (u1) − F
(r−1,γ)
n−1 (u1 − (an−1ε

′
1, anε

′
1))

− F
(r,γ+1)
n−1 (u1)an−1ε

′
1 − F

(r,γ)
n−1 (u1)anε

′
1]‖2

2

= O(|an−1|q
′

+ |an|q
′

),

which together with (27) gives

‖F (r−1,γ)
n−1 (u1) − F (r−1,γ)

n (u0) + F (r,γ+1)
n (u0)an−1ε1 + F (r,γ)

n (u0)anε1‖2
2

= O(|an−1|q
′

+ |an|q
′

). (28)

13



For 0 ≤ γ + 1 ≤ r ≤ p, define

M (r,γ)
n = ∆1[F

(r−1,γ)
n (u0)] +

p
∑

i=r

(−1)i+r+1∆i−r+1(F
(r−1,γ))E[Un+1(i− r)|F0].

We shall use the induction argument to show that

sup
x,y

‖M (r,γ)
n ‖2

2 = O[Ap−r+1
n (2) + An(q′) +Bn(2)]. (29)

When r = p,

‖M (r,γ)
n ‖2

2 ≤ 2[‖F (r,γ+1)
n (u0) − F (r,γ+1)(x, y)‖2

2 + ‖F (r,γ)
n (u0) − F (r,γ)(x, y)‖2

2].

By Schwarz’s inequality and Lemma 3,

‖F (r,γ)
n (u0) − F (r,γ)(x, y)‖2

2 = ‖E[F (r,γ)
n (u0) − F (r,γ)

n (u∗0)|F0]‖2
2

≤ ‖F (r,γ)
n (u0) − F (r,γ)

n (u∗0)‖2
2 = O[An(2)]. (30)

Similarly, ‖F (r,γ+1)
n (u0)−F (r,γ+1)(x, y)‖2

2 = O[An(2)]. So (29) holds for r = p. Now suppose

it also holds for some r ≤ p and we consider r− 1. Note that for any j ≥ 0 and γ ≤ r− 2,

P−j∆1[F
(r−2,γ)
n (u0)] = ∆1[F

(r−2,γ)
n+j (u−j) − F

(r−2,γ)
n+j+1 (u−j−1)]. (31)

It is easily seen that

‖P−jM
(r−1,γ)
n ‖2 ≤ In(j) + Jn(j) + c|an+j+1 − an+j|,

where

In(j) = ‖P−j∆1[F
(r−2,γ)
n (u0)] + ∆1[F

(r−1,γ+1)
n+j+1 (u−j−1)]an+jε−j

+∆1[F
(r−1,γ)
n+j+1 (u−j−1)]an+j+1ε−j‖2 = O(|an+j|q

′/2 + |an+j+1|q
′/2)

by (28) and (31) and

Jn(j) = ‖∆1[∆1(F
(r−2,γ)
n+j+1 (u−j−1))]an+j+1ε−j

+

p
∑

i=r−1

(−1)i+r∆i−r+2[F
(r−2,γ)]P−jE[Un+1(i− r + 1)|F0]‖2.

Note that P−jE[Un+1(i − r + 1)|F0] = an+j+1ε−jE[Un+1(i − r)|F−j−1] if i ≥ r and it

vanishes if i = r − 1, and the decomposition ∆i−r+2(F
(r−2,γ)) = ∆i−r+1[∆1(F

(r−2,γ))].
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Then Jn(j) ≤ c|an+j+1|[‖M (r,γ+1)
n+j+1 ‖2 +‖M (r,γ)

n+j+1‖2]. Since M
(r−1,γ)
n =

∑∞
j=0 P−jM

(r−1,γ)
n and

Pj, j ∈ Z, are orthogonal projections, the induction is completed by observing that

‖M (r−1,γ)
n ‖2

2 =

∞
∑

j=0

‖P−jM
(r−1,γ)
n ‖2

2

≤ 3
∞

∑

j=0

[In(j)2 + Jn(j)2 + c|an+j+1 − an+j|2]

= O[Ap−r+2
n (2) + An(q′) +Bn(2)]. (32)

Lemma 4 now follows from (28) and (29) in view of

‖P1L
◦
n+1(p)‖2 = ‖Fn−1(u1) − Fn(u0) + F (1,1)

n (u0)an−1ε1 + F (1,0)
n (u0)anε1

−anε1M
(1,0)
n + F (1,1)

n (u0)(an − an−1)ε1‖2. (33)

♦
Recall (18) for Sn(µ; p). Proposition 3 below presents a reduction principle for Sn(µ; p).

Reduction principles are useful in proving asymptotic distributions for the long-range de-

pendent case (cf Theorem 2). See [15] for recent contributions of reduction principles. The

results in the latter paper are not applicable here.

Proposition 3. Let ε0 ∈ Lq, q > 0. Assume that Fκ ∈ Cp+1 for some integer κ > 0.

Let an = n−βL(n), where β > 1/2 and L is a slowly varying function satisfying L(n +

1)/L(n) = 1 + O(1/n). (i) Assume q ≥ 2 and q > 2/β. Then supµ ‖Sn(µ; p)|‖2 = O(
√
n)

if (p+1)(2β−1) > 1; supµ ‖Sn(µ; p)‖2 = O(
√
n)

∑n
i=0 |Lp+1(i)|/i if (p+1)(2β−1) = 1 and

supµ ‖Sn(µ; p)‖2 = O[n1−(p+1)(β−1/2)Lp+1(n)] if (p+ 1)(2β − 1) < 1. (ii) Assume q ∈ [1, 2)

and β ∈ (1/q, 1). Then for any ν ∈ (1/β, q]

sup
µ

‖Sn(µ; 1)‖ν = O[n1/ν+(1−βq/ν)+
n

∑

i=1

|Lq/ν(i)|/i+ n1/ν+(1+1/ν−2β)+
n

∑

i=1

|L2(i)|/i].

Proof. (i) Let λn = supx,y ‖P1Ln(x, y; p)‖2. Note that Sn(µ; p) =
∑n

j=−∞PjSn(µ; p). Since

Pj, j ∈ Z, are orthogonal projections and PjLn(x, y; p) = 0 for j ≥ n + 1, we have by

Lemma 4 that

‖Sn(µ; p)‖2
2 =

n
∑

j=−∞
‖PjSn(µ; p)‖2

2 ≤
n

∑

j=−∞
E

{

n
∑

i=1∨j

[PjLi(µi−1, µi; p)]
2

λi−j+1

n
∑

i=1∨j

λi−j+1

}

≤
n

∑

j=−∞

[

n
∑

i=1∨j

λi−j+1

]2

≤
n

∑

j=−∞

[

n
∑

i=1∨j

θi−j+1,p,q

]2

= O(Ξn,p,q).
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The argument in Lemma 5 in [42] shows that

Ξn,p,q = O(n), O(n)[

n
∑

i=1

|L(p+1)(i)|/i]2 or O[n2−(p+1)(2β−1)L2(p+1)(n)]

if (p+ 1)(2β − 1) > 1, (p+ 1)(2β − 1) = 1 or (p+ 1)(2β − 1) < 1 holds respectively. Then

we have (i).

(ii) The argument in the proof of Lemma 4 can be applied here to show that

sup
x,y

‖P1Ln(x, y; 1)‖ν = O[|an − an−1| + |an|q/ν + |an|A1/ν
n (ν)]

= O[n−βq/νLq/ν(n) + n−2β+1/νL2(n)], (34)

where the second equality follows from Karamata’s theorem. For example, since 1 ≤ q/ν ≤
2, (27) now becomes

‖Fn(u1) − Fn(u0) + F (1,1)
n (u0)an−1ε1 + F (1,0)

n (u0)anε1‖ν
ν = O(|an−1|q + |an|q)

in view of Lemma 2; (28) now becomes

‖Fn−1(u1) − Fn(u0) + F (1,1)
n (u0)an−1ε1 + F (1,0)

n (u0)anε1‖ν
ν = O(|an−1|q + |an|q);

when p = 1, by the argument of (30), we have

‖M (1,0)
n ‖ν

ν = ‖∆1[Fn(u0) − F (x, y)]‖ν
ν = O[An(ν)]

in view of Lemma 1. So (34) follows from (33). By the von Bahr-Esséen inequality,

‖Sn(µ; 1)‖ν
ν ≤ 2

n
∑

j=−∞
‖PjSn(µ; 1)‖ν

ν ≤ 2
n

∑

j=−∞

[

n
∑

i=1∨j

sup
x,y

‖P1Li−j+1(x, y; 1)‖ν

]ν

= O(n1+(ν−βq)+ [

n
∑

i=1

|Lq/ν(i)|/i]ν + n1+(1+ν−2βν)+ [

n
∑

i=1

|L2(i)|/i]ν).

♦

Proof of Theorem 2. (i). By Proposition 3, if (p + 2)(2β − 1) < 1, ‖Sn(µ; p + 1)‖2 =

O[n1−(p+2)(β−1/2)Lp+2(n)]; if (p + 1)(2β − 1) < 1 and (p + 2)(2β − 1) ≥ 1, ‖Sn(µ; p +

16



1)‖2 = O(
√
n)[1 +

∑n
i=0 |Lp+1(i)|/i]. In either case, ‖Sn(µ; p + 1)‖2 = o(σn,p+1), where

σn,p+1 = n1−(p+1)(β−1/2)Lp+1(n). Thus

Sn(µ; p) = Sn(µ; p) − Sn(µ; p+ 1) + op(σn,p+1)

= (−1)p+1

n
∑

i=1

∆p+1(G)(µi−1, µi)Ui(p+ 1) + op(σn,p+1).

We complete the proof by noting that
∑n

i=1 ∆p+1(G)(µi−1, µi)Ui(p+ 1)

σn,p+1‖ε0‖p+1
2

⇒ Hp+1,β[∆p+1(G)(m1(·), m1(·))],

which follows from the argument of Theorem 5.1 in [38] (see also Theorem 2 in [37]).

(ii). Let `n = n1−β+1/dL(n)Lε(n). Using the argument in the proof of Theorem 5.1 in

[18], we can show that
∑n

i=1 ∆1(G)(µi−1, µi)Xi

(1 − β)`n
⇒

∫ 1

−∞

[

∫ 1−u

(−u)+
∆1(G)(m1(u+ t), m1(u+ t))t−βdt

]

dZd(u).

Since d ∈ (1, 2) and 1/d < β < 1, for

η = max
{ 3βd− 1

β(βd+ 1)
,

d

β(1 + d− βd)

}

and ζ = max
{ 2d

βd+ 1
,

d

1 + d− βd

}

,

we have 1/β < η < d and ζ > 1/β. Choose q ∈ (η, d). Then ζ < (βq − 1)/(β − 1/d) < q.

Further choose ν ∈ (ζ, (βq − 1)/(β − 1/d)). Then 1/ν + (1 − βq/ν)+ < 1 − β + 1/d and

1/ν + (1 + 1/ν − 2β)+ < 1 − β + 1/d. Since L is slowly varying, by the argument of

Lemma 5 in [42], both
∑n

i=1 |Lq/ν(i)|/i and
∑n

i=1 |L2(i)|/i are slowly varying functions. By

Proposition 3 with the above constructed q and ν, ‖Sn(µ; 1)‖ν = o(`n), which completes

the proof since Sn(µ; 0) = Sn(µ; 1) − ∑n
i=1 ∆1(G)(µi−1, µi)Xi. ♦
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