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Inference of trends in time series

Wei Biao Wu and Zhibiao Zhao

Department of Statistics, The University of Chicago

Summary. We consider statistical inference of trends in mean non-stationary

models. A test statistic is proposed for the existence of structural breaks in

trends. Based on a strong invariance principle of stationary processes, we

construct simultaneous confidence bands with asymptotically correct nominal

coverage probabilities. The results are applied to global warming temperature

data and Nile river flow data. Our confidence band of the trend of the global

warming temperature series supports the claim that the trend is increasing over

the last 150 years.

Keywords: Confidence bands; Global warming; Invariance principle; Nonlinear

time series; Nonparametric regression

1 Introduction

An important problem in time series analysis is the estimation of trends. Assume that the

data X1, . . . , Xn, are observed from the model

Xk = µ(k/n) + ek, k = 1, . . . , n, (1)

where µ is an unknown regression function defined on [0, 1] and (ek) is a mean 0 stationary

process. The process (Xk) is mean non-stationary and it can be interpreted as a signal

(µ) plus noise (ek) model. The paper has two primary goals. The first one is to develop

statistical procedures to test whether the trend µ in the model (1) has structural breaks or

jumps. If the curve µ is smooth, our second goal is to construct simultaneous confidence

bands (SCB) for µ. Throughout the paper we consider a posteriori or off-line inference,

namely the data have already been collected before the analysis.

For the model (1), the classical change-point analysis concerns testing the null hypoth-

esis µ1 = . . . = µn versus the alternative of one or multiple change points

µ1 = . . . = µk1
6= µk1+1 = . . . = µk2

6= µk2+1 = . . . 6= µkJ+1 = . . . = µn, (2)
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where µk = µ(k/n) and k1, . . . , kJ are called change points. The alternative hypothesis

says that µ is piecewise constant. Here we shall generalize the classical setting of piecewise

constant functions to piecewise Lipschitz continuous functions. The latter setting seems

more reasonable in practical situations in which trends are expected to change smoothly

instead of staying at the same level between successive abrupt events. Let µ(t), t ∈ [0, 1], be

a piecewise Lipschitz continuous function. Discontinuous points of µ are called structural

breaks. In practice, structural breaks may be caused by sudden events, abrupt policy

changes and catastrophes among others.

Nonparametric inference of regression functions with jumps has been an active area of

research. It would be impossible to have a complete list here and we only mention some

representatives: Müller (1992), Wu and Chu (1993), Qiu and Yandell (1998), Spokoiny

(1998), Müller and Stadtmüller (1999), Grégoire and Hamrouni (2002), Qiu (2003) and

Gijbels and Goderniaux (2004). See also references therein for further information. In

the majority of the above mentioned results, the errors ek are assumed to be independent.

The independence assumption is a serious restriction and it excludes many important

applications. The restriction is particularly problematic in time series analysis in which

dependence is the rule rather than the exception and is actually one of the main objectives

of interest. Tang and MacNeill (1993) argued that the presence of serial correlation can

seriously affect the distributions of change-point statistics.

For our second goal of constructing SCB for µ, we assume that µ is smooth. SCB can be

used to find parametric forms of µ. For example, in the study of global temperature series,

an interesting problem is to test whether the trend is linear, quadratic or of other patterns.

Under the assumption of independent errors, the construction of SCB has been discussed

by Johnston (1982), Härdle (1989), Knafl et al (1985), Hall and Titterington (1988), Härdle

and Marron (1991), Eubank and Speckman (1993), Sun and Loader (1994), Xia (1998),

Cummins et al (2001) and Dümbgen (2003) among others. Eubank and Speckman (1993)

applied Kolmós et al (1975)’s strong invariance principle and constructed SCB for µ with

asymptotically correct nominal values. In the context of kernel density estimation, Bickel

and Rosenblatt (1973) obtained SCB for density functions. The construction of SCB

has been a difficult problem if the errors ek are dependent. Partial answers are given in

Bühlmann (1998). In this paper, by applying the strong invariance principle of stationary

processes in Wu (2005a), we shall provide a solution to the problem and construct SCB
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with asymptotically correct nominal coverage probabilities.

We now introduce some notation. Let I be an interval of R. A function f is said to be

Lipschitz continuous on I, denoted by f ∈ L(I), if supx6=x′ |f(x)−f(x′)|/|x−x′| <∞. Let

Cm[0, 1], m = 0, 1, . . ., denote the collection of functions having up tomth order derivatives.

For a function g we say that g has bounded variation if V (g) := sup
∑

i |g(ti)−g(ti−1)| <∞,

where the sup is taken over all . . . < ti−1 < ti < . . .. Denote by ⇒ convergence in

distribution and by N(m, σ2) the normal distribution with mean m and variance σ2. For

a random variable X write ‖X‖p = [E(|X|p)]1/p, p > 0, and ‖X‖ = ‖X‖2. Write Sn =
∑n

i=1 ei and S−n =
∑n

i=1 e−i, n ≥ 0. For two real sequences {an} and {bn} write an ∼ bn if

limn→∞ an/bn = 1 and an � bn if 0 < lim infn→∞ |an/bn| ≤ lim supn→∞ |an/bn| <∞.

The rest of the paper is organized as follows. Structural assumptions on the error

sequence (ei) are made in Section 2. Section 3 concerns testing the existence of structural

breaks of µ. Section 4 discusses the construction of SCB of µ in the presence of dependent

errors ei. To apply the results in Sections 3 and 4, we need to choose smoothing parameters

and estimate the long-run variance of (ei). The latter problem is discussed in Section 5. A

simulation study is carried out in Section 6. Section 7 contains applications in the global

warming temperature data and the Nile river data. Proofs are given in Section 8.

2 The error structure

We assume that the error process (ei) in the model (1) is stationary and causal. Let εi, i ∈
Z, be independent and identically distributed (iid) random variables and G a measurable

function such that

ei = G(. . . , εi−1, εi) (3)

is a proper random variable with mean 0 and finite variance. Many processes fall within the

framework of (3) [see Tong (1990) and Stine (1997) among others]. Prominent examples

are linear process and many widely used nonlinear time series including threshold autore-

gressive models, bilinear autoregressive models and (generalized) autoregressive models

with conditional heteroscedasticity; see Wu and Min (2005) for more examples.

As in Wiener (1958) and Wu (2005b), (3) can be interpreted as a physical system with

ηn = (. . . , εn−1, εn) being the input, G being a filter and en being the output. Let (ε′j) be
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an iid copy of (εj) and e∗i = G(. . . , ε−1, ε
′
0, ε1, . . . , εi−1, εi) a coupled process of ei. Assume

that E(|ei|p) <∞, p > 2, and
∞
∑

i=1

i‖ei − e∗i ‖p <∞. (4)

Wu (2005a) established the following strong approximation or strong invariance principle.

Under (4), there exists a standard Brownian motion IB such that on a richer probability

space, Si can be uniformly approximated by IB(i):

max
i≤n

|Si − σIB(i)| = oa.s.(n
1/p′ log n), p′ = min(4, p), (5)

where σ2 =
∑

k∈Z
E(e0ek) is the long-run variance. The celebrated strong invariance

principle of Komlós et al (1975) asserts that, if ei are iid, then (5) holds with the optimal

error bound oa.s.(n
1/p) and σ = ‖ei‖. In our problem the results by Komlós et al are not

applicable due to the dependence among ei.

Strong invariance principle is a very useful tool to access asymptotic properties of Sn

and it plays an important role in the related asymptotic inference since Brownian motions

have many nice analytical and probabilistic properties. Condition (4) is easily verifiable

since it is directly related to the data-generating mechanism of (ei). Wu (2005b) defined

‖ei−e∗i ‖p as the physical dependence measure which quantifies the degree of dependence of

outputs on inputs. Wu and Shao (2004) showed that, for a variety of nonlinear time series

models, ‖en − e∗n‖p = O(rn) for some r ∈ (0, 1) and hence (4) trivially holds. Consider

the ARMA process en −∑l
i=1 ψien−i =

∑q
j=0 θjεn−j, where ψ1, . . . , ψl, θ0, . . . , θq are real

parameters. If the roots of the equation λl −
∑l

i=1 ψiλ
l−i = 0 are all inside the unit disc,

then en =
∑∞

i=0 aiεn−i with |ai| = O(ri) for some r ∈ (0, 1) and thus (4) also holds.

With the help of the strong invariance principle (5), we are able to conduct a systematic

study of the asymptotic properties of estimates of µ. In the rest of the paper it is always

implicitly assumed that (4), and consequently (5), holds with p = 4 and σ > 0.

Nonparametric inference of µ in model (1) typically involves the quantity

Yn(t) =

n
∑

i=1

wn(t, i)ei, (6)

where wn(t, i) are suitable weights. To see how to apply (5) to (6), we introduce

Ωn(t) = |wn(t, 1)| +
n
∑

i=2

|wn(t, i) − wn(t, i− 1)|, Ωn = max
0≤t≤1

Ωn(t) (7)
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and the Gaussian process

Y �
n (t) =

n
∑

i=1

wn(t, i)σ[IB(i) − IB(i− 1)]. (8)

Sine (5) holds with p = 4, using the summation by parts formula, we have

|Yn(t) − Y �
n (t)| ≤ Ωn(t) max

i≤n
|Si − σIB(i)| = oa.s.[Ωn(t)n1/4 logn] (9)

and the uniform approximation

max
0≤t≤1

|Yn(t) − Y �
n (t)| = oa.s.(Ωnn

1/4 log n). (10)

If wn(t, i) is sufficiently smooth in i, then Ωn(t) and Ωn have tractable bounds. For example,

for the Priestley-Chao estimate (cf (18)), we have wn(t, i) = K[(t − i/n)/bn]/(nbn) and

hence Ωn = O((nbn)
−1) if K has bounded variation. For local linear estimates (cf Section

4.1 or Fan and Gijbels (1996)), if K is Lipschitz continuous and has bounded support,

elementary calculations show that Ωn = O((nbn)−1) also holds. Thus, with properly chosen

bn, the asymptotic properties of Yn(t) follow from those of Y �
n (t). In other words, (1) can

be reduced to the conventional model

X�
k = µ(k/n) + σZk, k = 1, . . . , n, (11)

where Zk are iid standard normals and σ and µ are unknown. This idea is implemented

in Sections 3 and 4 below.

3 Inference of structural breaks

Let PL[0, 1] be the set of piecewise Lipschitz continuous functions on [0, 1] with a finite

number of jumps. For a formal definition, f ∈ PL[0, 1] if there exists 0 = t0 < t1 <

. . . < tk < tk+1 = 1 with k < ∞ such that f is Lipschitz continuous on the interval

[tj, tj+1), j = 0, . . . , k, and the jumps f(tl) − f(tl−) 6= 0, 1 ≤ l ≤ k. Here the left limit

f(t−) = limu↑t f(u). We generically call jumps structural breaks. Assume µ ∈ PL[0, 1].

Important problems in the inference of structural breaks include (i) testing the hypoth-

esis of no structural change H0 : µ ∈ L[0, 1] and (ii) estimating the locations and sizes of

structural breaks. Various aspects of the second problem has been studied; see Pettitt
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(1980), Csörgő and Horváth (1997), Lavielle (1999) and Davis et al (2006) among others.

In this paper we focus on the first problem. The null hypothesis implies a smooth change

of the trend: for some constant c > 0, |µk+1−µk| ≤ c/n holds for all n ≥ 2 and 1 ≤ k < n.

In comparison, in the classical change-point inference, µk does not change.

The formulation µ ∈ PL[0, 1] is more general than the one in the classical setting. On

the other hand, however, without the piecewise constancy assumption, we can only use

local information since a Lipschitz continuous function can be locally approximated by a

constant. For example, to test whether a given t ∈ (0, 1) is a discontinuous point, we can

compare the local averages of Xj over nt < j < nt+ kn and over nt− kn < j < nt, where

kn is the block length satisfying kn → ∞ and kn/n → 0. If the two averages are close,

then t is unlikely a discontinuous point. A global measure of the discrepancy is

D∗
n =

1

kn
max

kn≤i≤n−kn

∣

∣

∣

∣

∣

kn+i
∑

j=i+1

Xj −
i
∑

j=i−kn+1

Xj

∣

∣

∣

∣

∣

. (12)

A non-overlapping version of D∗
n is given by

Dn = max
1≤i≤m−1

|Ai − Ai−1|, where Ai = Ai,n =
1

kn

kn
∑

j=1

Xj+ikn
. (13)

Here m = bn/knc is the largest integer not exceeding n/kn. Let ωi = E(Ai). For 1 ≤ i ≤ m

let the interval Ii = (ikn/n, (i + 1)kn/n]. If there is a discontinuous point of µ in Ii, then

one expects that either |Ai −Ai−1| or |Ai+1 −Ai| would take large values. So Dn can also

be used to test whether µ has discontinuous points. There certainly exist other ways to

detect discontinuities; see the references cited in Section 1.

Theorem 1 concerns the asymptotic distributions of Dn and D∗
n under the null hy-

pothesis of no structural changes H0 : µ ∈ L[0, 1]. Using (5), we show that after proper

centering and scaling both Dn and D∗
n have asymptotic extreme value distributions.

Theorem 1. Assume µ ∈ L[0, 1] and

k−1
n n1/2(log n)3 + n−2/3(logn)1/3kn → 0. (14)

Let γm = (4 logm− 2 log logm)1/2. Then we have

√

logm{k1/2
n σ−1Dn − γm} ⇒ V (15)
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and

√

logmk1/2
n σ−1D∗

n − (2 logm +
1

2
log logm) − log 3 ⇒ V, (16)

where V has the extreme value distribution P(V ≤ x) = exp(−π−1/2 exp(−x)).

In condition (14), the first part n1/2(log n)3 = o(kn) suggests that the block length

kn should not be too small, thus ensuring the validity of the strong approximation by

Brownian motions. On the other hand, the second part kn = o(n2/3(log n)−1/3) suggests

that kn should not be too large so that the maximum difference max1≤i≤m−1 |ωi − ωi−1|
can be controlled. If kn � nβ with β ∈ (1/2, 2/3), then (14) holds.

Theorem 1 is not yet directly applicable since the long-run variance σ2 is typically

unknown and it needs to be estimated. This problem has a long history. In Section

5 several estimates of σ are proposed satisfying σ̂ − σ = OP(n
−γ) for some γ > 0 (cf.

Theorem 3). By Slutsky’s theorem, Theorem 1 still holds if σ therein is replaced by σ̂.

For a given level α ∈ (0, 1), let cα = − log[− log(1 − α)] − 1
2
log π be the (1 − α)-th

quantile of V in (15). By Theorem 1, we reject the null hypothesis µ ∈ L[0, 1] if

Dn > k−1/2
n σn[cα(logm)−1/2 + γm]. (17)

Now we consider the power of the test. Consider the local alternative in which there

exists a jump at θ ∈ (0, 1) with jump size δn = µ(θ) − µ(θ−) 6= 0. If log n = o(knδ
2
n) and

(14) holds, since µ ∈ PL[0, 1], max1≤i≤m−1 |ωi − ωi−1| ≥ 1
2
|δn| + O(kn/n). By Theorem 1

it is easily seen that the power goes to 1. A simulation study is carried out in Section 6.1.

Remark 1. Let τ be a positive integer and assume that f ∈ Cτ [0, 1] and that f (τ) ∈
PL[0, 1] has discontinuous points 0 < t1 < . . . < tJ < 1. We say that t1, . . . , tJ are

structural breaks of order τ . Theorem 1 can be generalized to test the existence of higher

order structural breaks. Let µ ∈ Cτ [0, 1]. As (13), define ∆Ai = Ai − Ai−1 and D
(τ)
n =

maxτ+1≤i≤m−1 |∆τ+1Ai|. Assume kn � nβ, 1/2 < β < (2τ+2)/(2τ+3). Using the argument

in the proof of Theorem 1, we can show that under H0 : µ(τ) ∈ L[0, 1], properly normalized

D
(τ)
n has the same asymptotic distribution V as in (15) and (16). The details are omitted.
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3.1 The convergence issue

It is well-known that the convergence to the extreme value distributions in (15), (16) and

(22) below is extremely slow and very large values of n are needed for the approximation

to be reasonably accurate. To overcome this disadvantage, with the help of the strong

invariance principle (5), we resort to the following simulation method:

(i) generate n iid standard normal random variables Z1, . . . , Zn

(ii) use formula (12) and obtain D∗
n,Z (say).

By (9), we can approximate the distribution of D∗
n/σ by D∗

n,Z if the block length kn is

large enough. (This idea is also implemented in the proof of Theorem 1; see Section 8).

Clearly the distribution of D∗
n,Z can be obtained by repeating steps (i) and (ii) for many

times. The distribution of Dn/σ can be similarly dealt with.

4 Simultaneous confidence bands

There exists a huge literature on nonparametric estimation of the mean regression function

µ(t), t ∈ (0, 1). Consider the popular Priestley-Chao estimate

µbn
(t) =

n
∑

i=1

wn(t, i)Xi, where wn(t, i) =
K[(t− i/n)/bn]

nbn
. (18)

Here the bandwidth bn satisfies bn → 0 and nbn → ∞ and K is a kernel with
∫

K(s)ds =

1. Other methods include the Gasser-Müller estimate, local linear estimate, splines and

wavelets. Proposition 1 below can be used to construct pointwise confidence intervals. It

is a simple consequence of (6)-(10) and the details are omitted.

Proposition 1. Assume that K has bounded variation, bn → 0 and (log n)2 = o(
√
nbn).

Then for fixed 0 < t1 < . . . < tJ < 1,
√
nbn{µbn

(tj) − E[µbn
(tj)]}, 1 ≤ j ≤ J , are

asymptotically iid normals N(0, σ2
∫

R
K2(u)du).

In practical situations, however, it is often not very useful to provide only pointwise

confidence intervals and a SCB is more desirable. At a given level α ∈ (0, 1), to construct

a 100(1− α)% asymptotic SCB for µ, we need to find two functions l and u depending on

the data (Xk)
n
k=1 such that

lim
n→∞

P[l(t) ≤ µ(t) ≤ u(t) for all t ∈ (0, 1)] = 1 − α. (19)
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If the trend is of certain parametric forms, then methods such as least squares can be

applied to estimate µ and SCB can be constructed by Scheffé’s (1959) procedure in con-

junction with asymptotic normal theory. However, in many cases such parametric forms

are unknown and one needs to resort to nonparametric techniques since they make very

few structural assumptions. On the other hand, nonparametric estimates may suggest

appropriate parametric models. With the SCB (19), it is possible to test the validity of

parametric models. We now state some regularity conditions.

Definition 1. Let H(α), 1 ≤ α ≤ 2, be the set of bounded functions H with bounded

support satisfying (i)
∫

R
ΨH(u; δ)du = O(δ) as δ → 0, where ΨH(u; δ) = sup{|H(y) −

H(y′)| : y, y′ ∈ [u−δ, u+δ]}, and (ii) the limit DH,α = limδ→0 |δ|−α
∫

R
[H(x+δ)−H(x)]2dx

exists and DH,α 6= 0. Let κ2
H =

∫

R
H2(s)ds. For m ≥ 3 define

BH,α(m) =
√

2 logm+
1√

2 logm

{

2 − α

2α
log logm + log

C
1/α
H,αhα21/α

2
√
π

}

, (20)

where CH,α = DH,α/(2κ
2
H) and hα is the Pickands constant (see Theorem A1 in Bickel and

Rosenblatt (1973)). Two values of hα are known: h1 = 1 and h2 = π−1/2.

Theorem 2. Assume that K ∈ H(α) is a symmetric kernel with support [−ω, ω]. Let

β =
∫

K(u)u2du/2. Further assume that µ ∈ C3[0, 1] and

(logn)3

bn
√
n

+ nb7n log n→ 0. (21)

Let m = 1/bn and the interval T = [ωbn, 1 − ωbn]. Then for every u ∈ R, as n→ ∞,

P

[
√
nbn
σκK

sup
t∈T

|µbn
(t) − µ(t) − b2nβµ

′′(t)| − BK,α(m) ≤ u√
2 logm

]

→ e−2e−u

. (22)

Condition (ii) in Definition 1 is useful in the extremal value theory of Gaussian processes

(cf Theorem A1 in Bickel and Rosenblatt (1973)). Elementary calculations show that we

have K ∈ H(α) with α = 2 for the triangle, quartic, Epanechnikov, Parzen kernels and

α = 1 for the rectangle kernel. For a kernel with unbounded support, under suitable

conditions on its tail, Theorem 2 is still applicable with the range ωbn ≤ t ≤ 1 − ωbn in

(22) replaced by a narrower one. For example, for the Gaussian kernel, if bn log n → 0,

(22) holds with t ∈ [bn logn, 1 − bn log n]; see Remark 3.
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As in condition (14), the first part in condition (21) ensures the validity of the strong

approximation and the second part controls the bias (cf Lemmas 2 and 3). Condition (21) is

mild and it is satisfied if bn � n−γ, 1/7 < γ < 1/2. In particular, it holds if γ = 1/5, which

corresponds to the optimal bandwidth under the mean squares error (MSE) criterion.

Remark 2. In the literature strong invariance principles obtained for dependent random

variables typically have rates of the form oa.s.(n
1/2−δ) for some arbitrarily small δ > 0

[Philipp and Stout (1974), Eberlein (1986)]. As can be seen from (9) and the proof of

Lemma 2, in our problem such error bounds are too crude to be useful. It requires bn → 0

and n2δbn → ∞. The latter condition is prohibitively restrictive if δ is close to 0. Recall

that in the independence case Eubank and Speckman (1993) have applied the Kolmós et

al’s strong invariance principle, which has the optimal rate. In comparison with Kolmós et

al’s result, our bound in (5) is optimal up to a multiplicative logarithmic factor if 2 < p ≤ 4

and it is sharp enough for asymptotic inference of nonparametric estimates.

4.1 Implementation

Let σ̂ and µ̂′′ be estimates of σ and µ′′, respectively. Based on Theorem 2, an asymptotic

100(1 − α)% confidence band for µ can be constructed as

µbn
(t) − b2nβµ̂

′′(t) ± luα
, where lu =

σ̂κK√
nbn

{

BK,α(b−1
n ) +

u
√

2 log(b−1
n )

}

(23)

and uα = − log log[(1 − α)−1/2]. In the independent error case, Eubank and Speckman

(1993) proposed (23) with an estimated MSE optimal bandwidth b̂n. The estimation of µ′′

is not easy especially when data points are not abundant.

To circumvent the difficulty, we adopt a jackknife-type bias correction scheme. Assume

that the bias E[µbn
(t)]− µ(t) = b2nβµ

′′(t) +O(χn) (cf. Lemma 3), where χn = b3n +n−1b−1
n .

Consider the simple estimate of the form

µ̃b(t) = 2µb(t) − µb
√

2(t). (24)

Then E[µ̃bn
(t)] = µ(t) + O(χn). So one does not need to estimate the unpleasant term

µ′′. There certainly exists other forms, for example, a general form of (24) is (λ2µb −
µbλ)/(λ

2 − 1), λ > 0. See Härdle (1986) for other forms. Here for simplicity we use
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(24). As pointed out by a referee, using of (24) is equivalent to using the higher-order

kernel K∗(s) = 2K(s) − K(s/
√

2)/
√

2. For this K∗ Theorem 2 is still applicable if the

conditions therein are satisfied. We do not recommend using kernels with too high orders

when data points are not abundant since the goal of bias reduction is achieved at the cost

of a significant increase in variance. For related discussions see Fan and Gijbels (1996, Sec

3.3) and Fan and Zhang (2003). For our K∗, the increase in variance is not severe. For

example, for the Epanechnikov kernel we have κK∗/κK ≈ 1.53.

Due to the presence of dependence, the optimal MSE bandwidth bn is different from

the one in the independence case (Herrmann et al, 1992). By the variance estimates in the

latter paper and Ruppert et al (1995), a simple choice is b̃n = ρ1/5b∗n, where b∗n is the optimal

bandwidth calculated as if the data were independent, and ρ = σ2/‖e0‖2 is the variance

correction factor. The Priestley-Chao estimate (18) suffers the boundary problem. We shall

use the local linear estimate (Fan and Gijbels, 1996) with wn(t, i) = K[(t−i/n)/bn][S2(t)−
(t− i/n)S1(t)]/[S2(t)S0(t) − S2

1(t)], where Sj(t) =
∑n

i=1(t− i/n)jK[(t− i/n)/bn], and the

automatic bandwidth selector of Ruppert et al (1995). Then b̃n ∼ cn−1/5 for some constant

c. The bias correction (24) allows us to choose larger b′n such that (b′n)3 + (nb′n)−1 ∼
(nb′n)−1/2, or b′n ∼ cn−1/7. However it is non-trivial to find an optimal c that has good

practical performance. Based on b̃n, in our applications we let b′n = φρ1/5b∗n, 1 ≤ φ ≤ 4.

Theorem 3 shows that, to estimate σ2, the MSE optimal block length kn ∼ cn1/3. It is

unclear how to choose the optimal c. In practice we choose kn ∈ (n1/3, n1/2).

As mentioned in Section 3.1, the convergence in (22) is slow. We shall apply a similar

simulation based approach which avoids using (23). For ease of application, we combine

procedures in preceding paragraphs and list the details below. Simulation studies in Section

6.2 show that our approach has reasonably accurate coverage probabilities.

(i) Choose an appropriate kn ∈ (n1/3, n1/2) and obtain an estimate σ̂ of σ.

(ii) Let b = 2ρ̂1/5b∗, where b∗ is calculated from Ruppert et al (1995), and ρ̂ = σ̂2/ν̂,

ν̂ = n−1
∑n

i=1 ê
2
i , êi = Xi − [2µb∗(i/n) − µ√

2b∗(i/n)].

(iii) Generate iid standard normals Z1, . . . , Zn and calculate sup0≤t≤1 |µ̃�
b(t)|, where

µ̃�
b(t) = 2µ�

b(t) − µ�
b
√

2
(t) and µ�

b(t) =
∑n

i=1 wn(t, i)Zi.

(iv) repeat (iii) and obtain the estimated quantile q̂0.95 of sup0≤t≤1 |µ̃�
b(t)|.

(v) The 95% SCB is µ̃b ± σ̂q̂0.95, where µ̃b(t) = 2µb(t) − µb
√

2(t).
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5 Estimating σ

To apply Theorems 1-2, one should deal with the crucial issue of estimating the long-

run variance σ2. If µ is a constant, since σ2/(2π) is the spectral density function of the

process (ei) at 0, there is a variety of ways to estimate σ2, such as lag-window estimates,

smoothed periodogram estimates etc. See Bühlmann (2002) and Politis et al (1999) among

others. The situation is slightly more complicated due to the presence of a non-constant

mean trend, which could possibly be discontinuous. Assuming that (ei) are iid and µ is

continuous, Hall et al (1990) consider difference-based estimation of variance. See also

Herrmann et al (1992). The latter paper assumes very strong moment conditions.

Recall (13) for the definition of Ai. For a real sequence a1, . . . , ak, denote its median

by median(a1, . . . , an). Here we consider three asymptotically consistent estimates:

σ̂1 =

√
πkn

2(m− 1)

m−1
∑

i=1

|Ai − Ai−1|,

σ̂2 =

√
kn√

2u1/4

× median{|Ai − Ai−1|, 1 ≤ i ≤ m− 1},

σ̂3 =

√
kn

√

2(m− 1)

(

m−1
∑

i=1

|Ai − Ai−1|2
)1/2

. (25)

In σ̂2, u1/4 = 0.674... is the 3rd quartile of the standard normal distribution. Carlstein

(1986) considers strong mixing processes by using non-overlapping blocks. Our σ̂3 is closely

related to Carlstein’s subseries variance estimate.

Theorem 3. Assume µ ∈ L[0, 1]. (i) Let kn � n5/8. Then σ̂1, σ̂2 = σ + OP(n
−1/16 log n).

(ii) Let kn � n1/3. Then E(|σ̂2
3 − σ2|2) = O(n−2/3).

We conjecture that, as σ̂3, the other two estimates also satisfy σ̂1, σ̂2 = σ+OP(n
−1/3) if

kn � n1/3. Our simulation study (not reported here) shows that σ̂2 is more robust while σ̂1

and σ̂3 are vulnerable to large jumps in µ. For AR(1) models with iid normal innovations,

Carlstein (1986) argues that his subseries variance estimate has the optimal MSE O(n−2/3)

if the block length � n1/3. A result of similar vein based on block-wise bootstrap is given

in Künsch (1989). It is interesting to note that our underlying condition (4) plays two

important roles at the same time: one is to ensure the strong invariance principle (5) while

the other is to achieve the MSE-optimal variance estimate as in Theorem 3(ii).
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6 A simulation study

In this section we shall present a simulation study for the performance of our test for

structural breaks in Section 3 and the nominal levels (coverage probabilities) of our SCB

in Section 4. Let εi be iid standard normals and |θ| < 1. Consider the process

ei = θ|ei−1| +
√

1 − θ2εi. (26)

If θ = 0, then ei = εi are iid. Otherwise ei forms a nonlinear autoregressive process. Since

|θ| < 1, by Theorem 2 in Wu and Shao (2004), (26) has a stationary distribution and

‖en − e∗n‖4 = O(|θ|n). Hence (4) holds with p = 4. Interestingly, F (u) = P(ei ≤ u) has

a skew-normal density of the form f(u) = 2φ(u)Φ(δu), where φ (resp. Φ) is the standard

normal density (resp. distribution) function (Andel et al 1984). The extra parameter

δ = θ/
√

1 − θ2 regulates the skewness. Skew-normal time series have been widely used

to model processes with asymmetric and/or non-normal distributions. Simple calculations

show that E(ei) =
∫

R
uf(u)du = θ

√

2/π and Var(ei) = 1 − 2θ2/π. Let σ2(θ) be the long-

run variance of ei in (26). For each level of θ = 0.0, 0.1, . . . , 0.9, we apply σ̂3 of (25) with

length 105 and kn = 47. The 10 values of σ̂(θ) are reported in Table 1. The other two

estimates σ̂1 and σ̂2 yield very similar results.

Table 1. Estimated long-run standard deviations σ̂(θ).

θ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

σ̂(θ) 1.00 1.01 1.02 1.04 1.07 1.11 1.17 1.28 1.46 1.87

6.1 Power curves for the test of structural breaks

Insert Figure 1 about here.

We choose the mean function µδ(t) = δ cos(2πt)1t>0.5 with a jump of size δ at location

t = 0.5 and consider the model Xk = µδ(k/n)+e′k, where e′k = (ek−θ
√

2/π)/σ(θ) and ek is

defined by (26). Let the sample size n = 200 and kn = bn0.6c = 24. We use the simulation

procedure listed in Section 3.1 with 4× 105 repetitions to obtain the .95 quantile of D∗
n,Z.

Then we simulate 4 × 104 sets of samples and the power is calculated by the proportion

of samples for which the null hypothesis H0 : µδ ∈ L[0, 1] is rejected when µδ has a jump

of size δ. For θ = 0, 0.3, 0.6, the p-values at δ = 0 are 0.049, 0.047 and 0.048, respectively.
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They are close to the nominal level 0.05. However, for θ = 0.9, the test performs poorly.

It has less power and the p-value is 0.032. See Section 6.2 for more discussion on the

relationship between bandwidths and dependence in the context of SCB.

6.2 Coverage probabilities of SCB

Table 2. Coverage probabilities of SCB.

θ

b q0.95 bias 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

.01 2.020 .001 .951 .953 .953 .955 .966 .969 .976 .985 .995 1.00

.02 1.611 .004 .954 .954 .954 .954 .962 .969 .970 .975 .986 .999

.03 1.366 .009 .954 .954 .954 .952 .957 .959 .963 .967 .978 .993

.04 1.210 .015 .955 .951 .951 .955 .955 .959 .960 .964 .970 .989

.05 1.101 .022 .957 .956 .954 .952 .954 .955 .958 .962 .966 .980

.06 1.003 .030 .948 .951 .950 .952 .952 .955 .950 .954 .959 .973

.07 0.940 .039 .950 .952 .952 .953 .953 .957 .954 .957 .958 .971

.08 0.878 .046 .954 .949 .953 .950 .950 .956 .949 .952 .952 .963

.09 0.838 .053 .948 .951 .952 .951 .952 .949 .955 .955 .948 .958

.10 0.790 .059 .946 .948 .947 .944 .948 .945 .947 .948 .942 .949

.11 0.769 .071 .947 .950 .948 .945 .950 .944 .943 .943 .941 .950

.12 0.721 .095 .936 .935 .933 .934 .935 .937 .933 .935 .932 .940

.13 0.692 .123 .925 .922 .923 .921 .917 .917 .915 .920 .913 .910

.14 0.680 .154 .918 .911 .908 .907 .907 .907 .911 .914 .906 .904

.15 0.655 .187 .896 .886 .886 .886 .882 .892 .893 .895 .893 .893

Consider the model Xk = µ(k/n) + e′k, where e′i := (ei − θ
√

2/π)/σ(θ) and the mean

function µ(t) = cos(2πt), 0 ≤ t ≤ 1. Let n = 200. To study how bandwidths and

dependence affect the coverage probabilities, we choose 10 levels of θ: θ = 0.0, 0.1, . . . , 0.9,

and 15 levels of b: b = 0.01, 0.02, . . . , 0.15. For each level of b, following Steps (iii) and (iv)

in Section 4, we use local linear regression program locpoly in the R package KernSmooth

and estimate q0.95 = q0.95(b) with N = 104 repetitions. The estimated quantiles are shown

in the second column of Table 2. For each of the 10 × 15 = 150 combinations of θ and

b, we generate 104 realizations of µ̃b(t) = 2µb(t) − µ√
2b(t). The SCB is constructed as
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µ̃b ± σ̂q0.95. If µ lies within this band, namely sup0≤t≤1 |µ(t) − µ̃b(t)| ≤ σ̂q0.95, then we

say that the SCB covers µ. Columns 4-13 show the simulated coverage probabilities with

the error process e′i for θ = 0.0, 0.1, . . . , 0.9, respectively. The third column shows the bias

max0≤t≤1 |E[µ̃b(t)] − µ(t)|.
Table 2 shows that the coverage probabilities of our SCB are reasonably close to the

set nominal level 95%, especially when the bandwidth b ≤ 0.11 and θ is not very large.

For the model Xk = cos(2πk/n) + εk, 1 ≤ k ≤ n, where n = 200 and εk are iid standard

normals, Ruppert et al (1995)’s automatic bandwidth selection procedure shows that the

optimal bandwidth b for the local linear regression is around 0.07. In this case, for θ =

0.0, 0.1, . . . , 0.8, the coverage probabilities range from 0.950 to 0.958. They are quite close

to the nominal level 95%. However, if θ is close to 1, then the dependence is strong

and we need to choose relatively large bandwidth to ensure the validity of the strong

approximation. The last column of Table 2 supports this claim. On the other hand,

however, too large b increases the bias, hence the coverage probabilities decrease.

7 Applications

7.1 Nile river data

The data Xi, 1 ≤ i ≤ 100, consist of measurements of the annual flow of the river Nile at

Ashwan from 1871 to 1970. Since Cobb (1978), the Nile river data has been extensively

studied. It is believed that there is a jump (decrease) in year 1899 which may be due to

the construction of a new dam at Aswan. However, it seems that in the literature most

analysis of this data assumes that the observations are independent. Here we shall apply

Theorem 1 and test the existence of jumps without assuming independence.

Since the convergence in (16) is very slow, we shall use the simulation method in Section

3.1 to obtain cut-off values. Let n = 100, k = 15 and m = 1 + bn/kc = 7. We repeat

the following process for 104 times: generate n iid normals N(0,1) and calculate (12). The

95% and 99% simulated quantiles are 1.07 and 1.24, respectively. For the Nile river data,

with k = bn0.6c we get D∗
n = 254.06, which needs to be re-scaled by the long-run standard

deviation σ̂. Assuming that the observations are independent, Cobb (1978) suggested

σ̂ = 125. Here we shall calculate it by (25). Examining the plot of the 3 estimates, we
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choose lag 9 and obtain σ̂1 = 176, σ̂2 = 162 and σ̂3 = 194. As mentioned in Section 5,

σ̂2 = 162 is preferred for the sake of robustness. Therefore the value of the test statistic

D∗
n/σ̂2 = 254.06/162 = 1.57. Since the latter value is larger than the 99% quantile 1.24,

we conclude that the jump does exist at 1% level (it is significant even if σ̂3 is used:

D∗
n/σ̂3 = 254.06/194 = 1.31).

The evidence would be more substantial if Cobb’s estimate σ̂ = 125 were used, in

which case the test statistic D∗
n/σ̂ = 254.06/125 = 2.03. The variance correction factor

ρ = 1622/1252 = 1.68. A simple way to relax his independence assumption is to use the

ARMA modelling. The mean levels before and after year 1899 are 1097.75 and 849.97,

respectively. Then the estimated noises are êi = Xi−1097.75 if i ≤ 28 and êi = Xi−849.97

if i > 28. Using the Akaike information criterion, the estimate noises êi can be modelled

as an AR(1) process: êi = 0.16êi−1 + εi, where εi are iid with mean 0 and standard

deviation 158591/2 ≈ 126. The AR(1) model implies that long-run standard deviation for

ei is 126/(1 − 0.16) ≈ 150, which in a certain sense justifies our estimate σ̂2 = 162.

7.2 Global warming data

Global temperature series have been extensively studied in the statistics community; see

for example Bloomfield and Nychka (1992), Vogelsang (1998) and Wu et al (2001) among

others. Here we consider the series complied by Jones et al. See http://cdiac.esd.ornl.gov

/ftp/trends/temp/jonescru/. It contains global monthly temperature anomalies from 1856

to 2000. Assuming that the trend is non-decreasing, Wu et al (2001) fitted an isotonic

regression for the annual temperature sequence. However, the latter paper did not address

the key issue of how to test the monotonicity assumption.

We first test whether jumps exist. There are 145 years and the length of the series is

n = 12 × 145 = 1740. In the three estimates in (25), we choose k = 36. Then σ̂1 = 0.45,

σ̂2 = 0.45 and σ̂3 = 0.44. They are consistent and we choose σ̂ = 0.44. To calculate

D∗
n of (12), as in Section 7.1, let k = bn0.6c such that (14) holds. Then D∗

n = 0.218 and

D∗
n/σ̂ = 0.495. Based on the simulation method outlined in Section 3.1, we obtain the

simulated p-value 22%. Therefore we are pleased to conclude that there is no evidence for

jumps in the mean trend. In an interesting paper, Müller and Stadtmüller (1999) analyzed

the infant growth data and argued that the growth of children occurs in jumps in the sense
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that there is a short period of fast growth, since it is unlikely that a mathematical jump

discontinuity exists in reality. There is no jump in the derivative since the p-value is 0.414.

The automatic bandwidth selection of Ruppert et al gives b∗n = 0.0124. The variance

correction factor ρ̂ = σ̃2/ν̂ = 0.229/0.0208 ≈ 11. For the 95% SCB, we choose the

bandwidth bn = 2× 0.0124× 11.2 ≈ 0.04. We are testing three null hypotheses separately:

non-decreasing trend Hisotonic, linear trend Hlinear and quadratic trend Hquadratic. The

approximate p-values of them are 0.55, 0.008 and 0.15, respectively. Therefore we reject

Hlinear at 1% level. Woodward and Gray (1993) fitted a linear trend model. The 95% SCB

suggests that we accept Hisotonic, and surprisingly, Hquadratic. The regression equation is

yi = −0.316 − 0.255(i/n) + 0.879(i/n)2. Rust (2003) fitted a quadratic trend and argued

that a linear trend is inadequate.

Insert Figure 2 about here.

8 Proofs

In the proofs below the symbol C denotes a generic constant which may vary from place

to place. Let Φ and φ = Φ′ be the standard normal distribution and density functions. To

prove Theorem 1, the following lemma is needed. Recall (15) for V .

Lemma 1. Let Zi, i ∈ Z, be iid standard normals, Yi = |Zi+1 − Zi| and γn = (4 logn −
2 log log n)1/2. Then as n→ ∞,

√
logn{max1≤i≤n−1 Yi − γn} ⇒ V .

Proof. For t ≥ 0 let Ψ(t) = P(|Z1| ≥ t) = 2Φ(−t). Then Ψ(t) = (2+o(1))φ(t)/t as t→
∞. Since Yi/

√
2

D
= |Z1|, for fixed x, nP(Yi ≥ γn +(logn)−1/2x) → exp(−x)/√π as n→ ∞.

Let 0 < λ < 1 − 2−1/2. Then P(Y1 ≥ t, |Z1| < λt) ≤ P(|Z2| ≥ (1 − λ)t) = o(Ψ(t/
√

2)).

Since Y2 and Z1 are independent, as t→ ∞, we have

P(Y1 ≥ t, Y2 ≥ t) ≤ P(Y2 ≥ t, |Z1| ≥ λt) + P(Y1 ≥ t, |Z1| < λt) = o[P(Y1 ≥ t)]

By Theorem 3.7.1 in Galambos (1987), the lemma follows. ♦

Lemma 2. Assume that H ∈ H(α), α ∈ [1, 2],
∫

R
H2(u)du = 1 and H has finite support

[−ω, ω]. Let bn → 0 satisfy
√
nbn/(logn)3 → ∞. For 0 ≤ t ≤ 1 define

Un(t) =
1√
nbn

n
∑

j=1

H(m(t− j/n))
ej

σ
,
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where m = 1/bn. Let BH(m) = BH,α(m) be defined as in (20). Then for u ∈ R,

lim
n→∞

P

{

max
t∈[ωbn,1−ωbn]

|Un(t)| −BH(m) ≤ u√
2 logm

}

= exp[−2 exp(−u)]. (27)

Proof. Let IB be the Brownian motion in (5), Y (s) =
∫

R
H(s − u)dIB(u), Ỹ (s) =

∫ m

0
H (s− b1 + knvc/kn) dIB(v), where kn = nbn, and Zj = IB(j) − IB(j − 1). Then Y

is a stationary Gaussian process. Since H ∈ H(α), α ∈ [1, 2], and
∫

R
H2(u)du = 1, then

γ(δ) :=
∫

R
H(u)H(u+ δ)du = 1− |δ|αDH,α/2 + o(|δ|α). Note that E[Y (s)Y (s+ δ)] = γ(δ).

By Corollary A1 of Bickel and Rosenblatt (1973), for u ∈ R,

lim
m→∞

P

{

max
s∈I

|Y (s)| − BH(m′) ≤ (2 logm′)−1/2u
}

= exp[−2 exp(−u)], (28)

where I = [ω,m−ω] andm′ = m−2ω. Since BH(m′) = BH(m)+o(m−1) and (logm′)−1/2 =

(logm)−1/2 + o(m−1), by Slutsky’s theorem, (28) also holds with m′ therein replaced by

m. Let Rn = max1≤j≤n |Sj − σIB(j)|/(σ
√
nbn) and

Wn(t) =
n
∑

j=1

H(m(t− j/n))√
nbn

Zj =

∫ n

0

H(mt−mb1 + uc/n)√
nbn

dIB(u).

By (5) with p = 4, since
√
nbn/(logn)3 → ∞, we have Rn = oa.s.[(log n)−1/2]. Using the

summation by parts formula, since
∫

R
ΨH(u; δ)du = O(δ), we have

|Un(t) −Wn(t)| = O(Rn)

[

1 +

∫ n

0

|H(m(t− b1 + uc
n

)) −H(m(t− buc
n

))|du
]

= O(Rn)

[

1 +

∫

R

ΨH(m(t− u

n
);
m

n
)du

]

= oa.s.[(logn)−1/2] (29)

uniformly over t ∈ [0, 1]. By the scaling property of Brownian motion, (Wn(s/m), s ∈ I)
D
=

(Ỹ (s), s ∈ I). So (27) follows from (28) and (29) if Θ = OP(rn), where Θ = maxs∈I |∆(s)|,
∆(s) = Y (s) − Ỹ (s) and rn =

√
logn/

√
kn = o[(log n)−1/2].

We now show Θ = OP(rn). Note that ‖∆(s)‖2 ≤
∫

R
Ψ2

H(s − v; k−1
n )dv ≤ Ck−1

n holds

for some constant C. Similarly, if |s− s′| ≤ 1/2, we have ‖Y (s) − Y (s′)‖2 ≤ C|s− s′| and

‖Ỹ (s)− Ỹ (s′)‖2 ≤ C|s− s′|. So ‖∆(s)−∆(s′)‖2 ≤ 4C|s− s′|. Let ε = 2−1, εj = (j + 3)−2,

δj = (n22j)−1 and Xj = {kδj, k ∈ Z} ∩ I, j ≥ 0. Then the cardinality |Xj| ≤ m/δj and

ε +
∑∞

j=0 εj < 1. Let λ = 8
√
C. By the Chaining Lemma (cf. Lemma 4.1 in Cranston et

al (2000)), we have

P(Θ > λrn) ≤ P[|∆(w)| > λrnε] +
∞
∑

j=0

|Xj| sup
|s−s′|≤δj

P[|∆(s) − ∆(s′)| > λrnεj]
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≤ 2[1 − Φ(
λrnε
√

Ck−1
n

)] +
∞
∑

j=0

m

δj
2[1 − Φ(

λrnεj
√

Cδj
)]. (30)

Since 1 − Φ(t) = (1 + o(1))φ(t)/t as t → ∞, elementary calculations show that P(Θ >

λrn) = O(n−2). Then Θ = Oa.s.(rn) and the lemma follows. ♦

Lemma 3. Let K ∈ H(α) be a symmetric kernel with support [−ω, ω] and µ ∈ C3[0, 1].

Then E[µbn
(t)]− µ(t) = b2nµ

′′(t)β +O(b3n + n−1b−1
n ) uniformly over t ∈ T = [ωbn, 1− ωbn].

Proof. Let kn = nbn and Kj(v) = K(v)vj. Since K ∈ H(α), by property (i) in

Definition 1, elementary calculations show that, for j = 0, 1, 2, we have

sup
t∈T

∫ n

0

∣

∣

∣

∣

Kj(
b1 + vc − nt

kn

) −Kj(
v − nt

kn

)

∣

∣

∣

∣

dv = O(1)

Since k−1
n

∫ n

0
Kj((v − nt)/kn)dv =

∫

R
Kj(u)du when t ∈ T , by Taylor’s expansion µ(t+δ) =

µ(t) + δµ′(t) + δ2µ′′(t)/2 +O(δ3) as δ → 0, the lemma follows. ♦

Remark 3. In Lemmas 2 and 3, the kernel K is assumed to have bounded support.

Assume bn log n → 0. Similar but lengthy calculations show that, if K is the normal

density φ, then these two lemmas are still valid with the interval T = [ωbn, 1−ωbn] therein

replaced by [bn log n, 1 − bn logn]. The details of the derivation are omitted. ♦

Proof of Theorem 1. We shall first prove (15). Let IB be the Brownian motion in the

strong invariance principle (5). Then Zi,n = k
−1/2
n (IB((i+1)kn)−IB(ikn)), i = 0, . . . , m−1,

are iid standard normals. Let Ri,n = S(i+1)kn
− σIB((i+ 1)kn)− Sikn

+ σIB(ikn) and write

Ai = σk−1/2
n Zi,n + k−1

n

kn
∑

j=1

µ(
j + ikn

n
) + k−1

n Ri,n, (31)

By (5), maxi<m |Ri,n| = oa.s.(n
1/4 log n). Since µ ∈ L[0, 1], µ(j/n + ikn/n) − µ(j/n + (i −

1)kn/n) = O(kn/n) uniformly over i and j. Recall m = bn/knc. By (14),

k1/2
n σ−1(Ai − Ai−1) = Zi,n − Zi−1,n +Oa.s.(k

3/2
n /n + k−1/2

n n1/4 log n)

= Zi,n − Zi−1,n + oa.s.[(logm)−1/2]. (32)

So (15) follows from (32) and Lemma 1.

19



The relation (16) can be similarly proved. The function H(u) = (10≤u<1−1−1<u<0)/
√

2

satisfies the conditions in Lemma 2 with α = 1 and DH,1 = 3. As (32),

k
1/2
n D∗

n

σ
√

2
=

1√
2kn

max
kn≤i≤n−kn

|IB(i + kn) − 2IB(i) + IB(i− kn)| + oa.s.(1)√
logm

=
1√
kn

sup
s∈[kn,n−kn]

∣

∣

∣

∣

∫

R

H((s− u)/kn)dIB(u)

∣

∣

∣

∣

+
O(Ωn)√

kn

+
oa.s.(1)√

logm
,

where Ωn = sup{|IB(u) − IB(u′)| : u, u′ ∈ [0, n], |u− u′| ≤ 1} = OP(
√

log n). By (14) and

Lemma 2, (16) follows. ♦

Proof of Theorem 2. Let χn = b3n + n−1b−1
n . By (21), χn

√
nbn = o((logn)−1/2). So (22)

follows from Lemmas 2 and 3, which concern the stochastic part µbn
(t)−E[µbn

(t)] and the

bias E[µbn
(t)] − µ(t) = b2nβµ

′′(t) +O(χn), respectively. ♦

Proof of Theorem 3. Recall the proof of Theorem 1 for the definition of Zi. Let

Yi = |Zi − Zi−1| and Mn = median(Yi, 1 ≤ i ≤ m − 1). Then Yi is stationary and m-

dependent with m = 2 and the median of Yi is ξ0 =
√

2u1/4 = 0.954.... Let F (x) and

f(x) be the distribution and density functions of Yi, Fm(x) = (m − 1)−1
∑m−1

i=1 1Yi≤x. By

considering odd and even indices i respectively, we have by the law of iterated logarithm

that Fm(ξ0) − 1/2 = Oa.s.(m
−1/2(log logm)1/2). By Sen (1968), (Mn − ξ0)f(ξ0) = 1/2 −

Fm(ξ0) +Oa.s.(m
−3/4 logm). By (32),

median1≤i≤m−1|Ai − Ai−1| =
σ√
kn

Mn +Oa.s.(k
−1
n n1/4 log n+ n−1kn). (33)

So σ̂2 = σ +Oa.s.(n
−1/16 logn). The other case σ̂1 can be similarly proved.

The proof of (iii) is much more complicated. Let Wl =
∑l

i=l−k+1 ei −
∑l−k

i=l−2k+1 ei and

rl =
∑l

i=l−k+1 µi −
∑l−k

i=l−2k+1 µi. Since µ ∈ L[0, 1], we have rl = O(k2/n) uniformly over

l = 2k, . . . , n. Observe that
∥

∥

∥

∥

∥

m
∑

i=2

[(Wik + rik)
2 −W 2

ik]

∥

∥

∥

∥

∥

≤
m
∑

i=2

r2
ik + 2

m
∑

i=2

|rik|‖Wik‖

= O(mk4/n2) +O(mk/n)O(
√
k) = O(n1/6).

Simple calculations show that (iii) follows from Lemmas 4 and 5 below. ♦

Lemma 4. Assume (4) holds with p = 2. Then ‖S2n − 2Sn‖2 = 2nσ2 +O(1).
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Proof. Recall the coupled process e∗i = G(. . . , ε−1, ε
′
0, ε1, . . . , εi−1, εi) and γ(k) =

E(e0ek). Let δp(i) = ‖ei − e∗i ‖p and Fk = (. . . , εk−1, εk). For ξ ∈ L1 define the projection

operator Pkξ = E(ξ|Fk)−E(ξ|Fk−1). By Theorem 1 in Wu (2005b), ‖P0el‖ ≤ δ2(l), l ≥ 0.

By the orthogonal expansion ek =
∑

j∈Z
Pjek, we have

|γ(l)| =
∣

∣

∣
E[(
∑

j∈Z

Pje0)(
∑

j′∈Z

Pj′el)]
∣

∣

∣
=
∣

∣

∣

∑

j∈Z

E[(Pje0)(Pjel)]
∣

∣

∣

≤
0
∑

j=−∞
‖Pje0‖‖Pjel‖ ≤

0
∑

j=−∞
δ2(−j)δ2(l − j).

By exchanging the order of summations, we have
∑∞

l=1 l|γ(l)| < ∞ since (4) implies
∑∞

l=1 lδ2(l) <∞. Since σ2 =
∑

i∈Z
γ(i), ‖Sn‖2 =

∑n−1
k=1−n(n− |k|)γ(k) and

|E((S2n − Sn)Sn)| ≤
2n
∑

i=n+1

n
∑

j=1

|γ(i− j)| ≤
∞
∑

l=1

l|γ(l)| <∞,

we have ‖Sn‖2 = nσ2 +O(1) and the lemma follows. ♦

Lemma 5. Let Wl =
∑l

i=l−k+1 ei −
∑l−k

i=l−2k+1 ei and Tm =
∑m

j=1W
2
jk. Assume that

∑∞
i=1 ‖ei − e∗i ‖4 <∞. Then as m, k → ∞, ‖Tm −mE(W 2

2k)‖ = O(k
√
m).

Proof. By Theorem 1 in Wu (2005b), under
∑∞

i=1 ‖ei − e∗i ‖4 < ∞, we have ‖Sn‖4 =

O(
√
n). Hence ‖Wl‖4 = O(

√
k). Let l ≥ 2k and W ′

l =
∑l

i=l−k+1 e
∗
i −

∑l−k
i=l−2k+1 e

∗
i . By

the Jensen inequality, ‖P0W
2
l ‖ = ‖E(W 2

l − W ′
l
2|F0)‖ ≤ ‖W 2

l − W ′
l
2‖. By the Schwarz

inequality, ‖W 2
l − W ′

l
2‖ ≤ ‖Wl − W ′

l ‖4‖Wl + W ′
l ‖4 = O(

√
k)
∑l

i=l−2k+1 δ4(i). Thus, for

j ≥ 2, by the orthogonality of projection operators,

‖E(W 2
jk|F0) − E(W 2

jk|F−k)‖2 =
0
∑

t=1−k

‖PtW
2
jk‖2 =

0
∑

t=1−k

‖P0W
2
jk−t‖2

= O(k)
0
∑

t=1−k

[

jk−t
∑

i=jk−t−2k+1

δ4(i)

]2

= O(k2)

[

jk−1+k
∑

i=jk−2k+1

δ4(i)

]2

.

By Theorem 1 in Wu (2005a),

‖Tm −mE(W 2
2k)‖ ≤

√
m

∞
∑

j=0

‖E(W 2
jk|F0) − E(W 2

jk|F−k)‖
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= O(k
√
m) +O(k

√
m)

∞
∑

j=2

jk−1+k
∑

i=jk−2k+1

δ4(i) = O(k
√
m),

which completes the proof of the lemma. ♦
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Figure 1: Left panel: mean curve µ(t) = cos(2πt)1t>0.5. Right panel: power curves for

the test statistic D∗
n proposed in Section 3 under µδ(t) = δ × µ(t), 0 ≤ δ ≤ 2. The solid,

dotted, dashed and long-dash lines correspond to θ = 0, 0.3, 0.6, 0.9, respectively.
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Figure 2: Simultaneous confidence bands for the global temperature data. Left panel:

global monthly temperature anomalies from 1856 to 2000, local linear estimate of the

trend curve and its .95 and .99 SCBs. Right panel: fitted linear, quadratic and isotonic

trends, local linear estimate of the trend and its .95 SCB.

27


