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Abstract

We obtain a noninformative prior measure for the p parameter of the negative bi-

nomial distribution by use of a group theoretic method. Heretofore, group theoretic

inference methods have not been applicable in the case of discrete distributions. A

linear representation of a group leads to quantities whose squared moduli constitute the

probability distribution. The group invariant measure yields prior measure dp/p2.
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1 Introduction

The object of this paper is to construct a posterior distribution for the parameter p of the

negative binomial distribution by the use of a non-informative prior obtained from group

theoretic methods. To quote Efron (1998): “.... By ‘objective’ Bayes I mean a Bayesian

theory in which the subjective element is removed form the choice of prior distributions, in

practical terms a universal recipe for applying Bayes theory in the absence of prior infor-

mation. A widely accepted objective Bayes theory, which fiducial inference was intended to

be, would be of immense theoretical and practical importance.”

Here we demonstrate a group invariant method of obtaining such a prior. We illustrate

the method by an example which is associated with a particular matrix group; namely

SU(1, 1) (defined in Section 2.1). The choice of this group is determined by the fact that

the negative binomial family is obtained by the action of this group when it is represented

by certain linear operators acting in a certain Hilbert space. Quantities which may be

characterized as complex valued “square roots” of the negative binomial family are obtained

by expanding a family of vectors of the Hilbert space with respect to a discrete basis.

The squared moduli of those square root quantities are then the probabilities constituting

the negative binomial family. Similar results for the binomial and Poisson families were

described in Heller and Wang (2006).

Group theoretic methods for inferential and other purposes abound in the statistical

literature, for example, Fraser (1961), Eaton (1989), Helland (2004), Kass and Wasserman

(1996), and many others. In all of these accounts, the group acts on the sample space

of the statistic of interest as well as on the parameter space of the postulated statistical

model. That requirement does not apply to discrete families with continuous parameter

spaces, many of which are useful in statistical inference. Here we show an example of a

group theoretic method which does indeed apply in the case of discrete distributions.

In Section 2.1 we briefly describe the matrix group SU(1, 1). Section 2.2 describes a

representation of the group by certain linear operators in a Hilbert space and identifies an
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orthonormal basis for that space. Section 2.3 depicts a family of vectors in the Hilbert space

which act as generating functions for the quantities whose squared moduli constitute the

negative binomial family. In Section 2.4, the relation of the negative binomial parameter

space to the space of group parameters is established. In Section 2.5, a measure on this

space is described which is invariant to the action of the group and this measure is used to

obtain a posterior distribution for the negative binomial parameter p. An appendix provides

some relevant group theoretic definitions.

2 The method and results

2.1 The group related to the negative binomial distribution

The negative binomial distribution derives from the matrix group G = SU(1, 1). Matrices

g of SU(1, 1) may be written in the form

g =

(
α β

β̄ ᾱ

)
, α, β ∈ C, |α|2 − |β|2 = 1, g−1 =

(
ᾱ −β

−β̄ α

)
.

The group may be viewed as a transformation group on the complex unit disc D = {w ∈
C, |w| < 1}. An element g of G acts on D as a linear fractional transformation defined by

w → gw =
αw + β

β̄w + ᾱ
. (1)

Note that |gw| < 1 whenever |w| < 1 since |α|2 − |β|2 = 1, and these transformations do

satisfy the conditions for a transformation group as given in the appendix. The group acts

transitively on D.

2.2 A concrete representation of the group

We consider a linear space (a representation space of the group) wherein we can construct

a family of vectors which act as generating functions leading to the negative binomial
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distribution.

For each integer or semi-integer k ≥ 1, the linear space considered is a complex Hilbert

space Hk of functions f(z), z ∈ D which satisfy the following conditions:

1. The functions are analytic on D.

2. The functions are square-integrable with respect to the measure

dµk(z) =
2k − 1

π
(1− |z|2)2k−2d2z, z = x + iy, d2z = dxdy.

The inner product in Hk is given by (f1, f2) =
∫

D
f1(z)f2(z)dµk(z). Notice that it is linear

in the second argument and complex conjugate linear in the first argument. An orthonormal

basis for Hk is {Φk
m(z)}, m = 0, 1, 2, · · · where

Φk
m(z) = cmzm, cm =

(
Γ(m + 2k)
m! Γ(2k)

)1/2

. (2)

On this space we now describe linear representation operators that will be used to construct

the aforementioned generating functions. To each g ∈ G, associate the linear operator

(Uk(g)f)(z) = (−β̄z +α)−2kf(g−1z) = (−β̄z +α)−2kf

(
ᾱz − β

−β̄z + α

)
, f ∈ Hk, g ∈ G. (3)

This representation is called a “multiplier representation”. The factor (−β̄z + α)−2k has

the properties of an automorphic factor (see Appendix) in order that the representation be

a homomorphism. It is a standard result that {Φk
m(z)} is a complete orthonormal system

in Hk and the representation given above is unitary and irreducible for each k; see, for

example, Sugiura (1990).
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2.3 A generating function for quantities whose squared moduli constitute

the negative binomial distribution

For basis function Φk
0(z) ≡ 1, from (3) we have

Uk(g)Φk
0(z) = (−β̄z + α)−2k = α−2k(1− (β̄/α)z)−2k. (4)

Reparameterize

(α, β) → (ζ, t), by α = |α|e−it/2, t ∈ [0, 4π), ζ = β/ᾱ. (5)

Note that |ζ| < 1 as well as |z| < 1. Using (4) and (5), and |α|−2 = 1− |ζ|2, put

fk
ζ,t(z) = (Uk(ζ, t)Φk

0)(z) = eikt(1− |ζ|2)k(1− ζ̄z)−2k. (6)

In the expanded form, this is the family of generating functions we seek. Expand the factor

(1−ζ̄z)−2k in the power series of the form (1−w)−a =
∞∑

m=0

Γ(m + a)
Γ(a)m!

wm which is convergent

for complex w, |w| < 1. From (2), the family of generating functions fk
ζ,t has the form

fk
ζ,t(z) =

∞∑

m=0

{(
Γ(m + 2k)
m! Γ(2k)

)1/2

eikt(1− |ζ|2)kζ̄m

}
Φk

m(z) =
∞∑

m=0

vk
m(ζ, t)Φk

m(z). (7)

The squared moduli {|vk
m(ζ, t)|2} of the coefficients of the basis functions {Φk

m(z)} constitute

the negative binomial distribution. To see this, consider a common representation of the

negative binomial distribution as given by a random variable Y , the number of independent

trials it takes to obtain N occurrences of an event which occurs with probability p.

P (Y = N + m) =
Γ(N + m)
m! Γ(N)

pN (1− p)m, m = 0, 1, 2, · · · .

Put 2k = N and |ζ|2 = 1 − p. Then |vm(ζ, t)|2 = P (Y = N + m), the negative binomial

distribution.
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2.4 The parameter space

We have the family of generating functions fk
ζ,t(z) = (Uk(ζ, t)Φk

0)(z) yielding the coefficients

vk
m(ζ, t), functions of the parameters ζ and t. For the purpose of constructing a probability

distribution, the parameter t is irrelevant since it appears only as a factor of modulus one

in the expression for vk
m(ζ, t) and therefore |vk

m(ζ, t)|2 is the same as |vk
m(ζ)|2. We only need

a family of generating functions indexed by ζ ∈ D for a fixed t, say, t = 0. More formally,

we consider representation operators Uk which, from the beginning, are indexed, not by the

group elements g as in (3), but by elements g̃ of the coset space G/H, where the subgroup

H is comprised of diagonal matrices of the form h = diag{e−it/2, eit/2}. A coset matrix

g̃ has the form
(

a β

β̄ a

)
, where a is a real number, a > 0 and a2 − |β|2 = 1. We have

the decomposition of elements g ∈ SU(1, 1), g = g̃h for g̃ ∈ G/H and h ∈ H, which, by

virtue of the representation homomorphic property implies Uk(g) = Uk(g̃)(Uk(h)). From

(4), we have (Uk(h)Φk
0)(z) = eikt. Thus, taking t = 0, we consider generating functions

fk
ζ (z) = (Uk(g̃)Φk

0)(z) for g̃ ∈ G/H.

To reparameterize, put ζ = β/a, obtaining, from (6), (7) and (2),

fk
ζ (z) = (Uk(g̃)Φk

0)(z) = (1− |ζ|2)k(1− ζ̄z)−2k, vk
m(ζ) = cm(1− |ζ|2)kζ̄m. (8)

It can be shown that the elements of the coset space G/H are indexed precisely by the

parameter ζ, |ζ| < 1. Thus the family of generating functions {fk
ζ (z)} is indexed by ζ as is

the family of coefficient quantities vk
m(ζ) for each m = 0, 1, 2, · · · . It can also be shown that

the coset space G/H is homeomorphic to the complex unit disc D. (Perelomov (1986)).

Thus the space D serves three purposes. It is the space upon which the group SU(1, 1)

acts as a transformation group according to (1). It is the argument space for the generating

functions fk
ζ (z). In addition, it is the parameter space for those generating functions and

for the coefficient quantities vk
m(ζ) whose squared moduli constitute the negative binomial

distribution. This triple function of the space D is the key for the inferential method
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described in this paper. We will make use of the fact that SU(1, 1) acts on the parameter

space D of those vk
m(ζ) quantities to derive an invariant prior measure.

2.5 An inferred distribution on the parameter space

Previously we had, for a given value of |ζ|2, a probability distribution in the form of the

squared moduli of the quantities {vk
m(ζ), m = 0, 1, 2, · · · }. This probability family was

generated by applying a unitary representation operator of the group SU(1, 1), to the basis

vector Φ0. Now we consider the inverted situation where we have an observed negative

binomial value, say m, and will use it to infer a probability distribution on the parameter

space D.

We focus upon the generating function fk
ζ (z), a vector in Hk. Suppose fk

ζ (z) is acted upon

by an arbitrary Uk operator, say Uk(g0), g0 ∈ G. We will see that the result is a generating

function of the same form but with parameter value, say ζ1, where ζ1 is related to ζ by the

linear fractional transformation (1) corresponding to group element g0.

Proposition 1. Uk(g0)fk
ζ (z) = fk

ζ1
(z) where ζ1 =

α0ζ + β0

β̄0ζ + ᾱ0
= g0ζ.

Proof. From (8), Uk(g0)fk
ζ (z) = (Uk(g0)Uk(g̃)Φk

0)(z) = (Uk(g0g̃)Φk
0(z). The matrix g̃ =

(
a β

β̄ a

)
∈ G/H is obtained, as in (5), from parameter ζ by the map D → G/H, a =

(1− |ζ|2)−1/2, β = aζ. The final equality is due to the homomorphic property of the group

representations (see Appendix). The product g0g̃ =
(

α0 β0

β̄0 ᾱ0

)(
a β

β̄ a

)
=

(
α1 β1

β̄1 ᾱ1

)
.

From (5) and ζ =
β

a
we have ζ1 =

β1

ᾱ1
=

α0β + β0a

β̄0β + ᾱ0a
=

α0ζ + β0

β̄0ζ + ᾱ0
= g0ζ.

Remark. In the construction given in Section 2.4, D acts as the parameter space for gen-

erating functions fk
ζ (z) and thus for the coefficients {vk

m(ζ),m = 0, 1.2, ...}. For inference

on the parameter space D, we now consider fk
ζ (z) for fixed z, as a function of ζ noting the

result of Proposition 1. Consequently, for any two elements ζ1 and ζ2 in D, vk
m(ζ1) is carried

to vk
m(ζ2) by the action of SU(1, 1). The space D is the parameter space for the quantities
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vk
m(ζ) where, for fixed m, |vk

m(ζ)|2 is the likelihood function for the negative binomial dis-

tribution. Therefore, for integrating likelihood functions over D, we seek a measure on D

which is invariant to the action of SU(1, 1).

Proposition 2. The measure dν(ζ) =
2k − 1

π
(1 − |ζ|2)−2d2ζ is invariant on D with

respect to the action of the group SU(1, 1).

Proof. (From Sugiura (1990).) Put ζ = x + iy and ζ ′ = gζ = u + iv. The Jacobian

of the transformation is J(x, y) =
∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
=

(
∂u

∂x

)2

+
(

∂v

∂x

)2

, using the Cauchy-

Riemann conditions. Since ζ ′ =
αζ + β

β̄ζ + ᾱ
where g =

(
α β

β̄ ᾱ

)
, we have

dζ ′

dζ
= (β̄ζ + ᾱ)−2.

But we can write
dζ ′

dζ
=

∂u

∂x
+ i

∂v

∂x
, which implies that J(x, y) =

∣∣∣∣
dζ ′

dζ

∣∣∣∣
2

=
∣∣β̄ζ + ᾱ

∣∣−4. Put

d2ζ = dxdy, then d2ζ ′ = |β̄ζ + ᾱ|−4d2ζ,

dν(gζ) = C(1− |gζ|2)−2 d2ζ ′ = C(1− |gζ|2)−2|β̄ζ + ᾱ|−4 d2ζ, C = (2k − 1)/π.

But (1− |gζ|2) = (1− |ζ|2) |β̄ζ + ᾱ|−2, using |α|2 − |β|2 = 1. So we have

dν(gζ) = C(1− |ζ|2)−2 |β̄ζ + ᾱ|4 |β̄ζ + ᾱ|−4 d2ζ = dν(ζ).

Proposition 3. The functions vk
m(ζ) are square integrable with respect to the invariant

measure dν, and their squared moduli integrate to unity. That is,

2k − 1
π

∫

D
|vk

m(ζ)|2dν(ζ) =
2k − 1

π

∫

D
c2
m(1− |ζ|2)2k−2(|ζ|2)md2ζ = 1.

Writing |ζ|2 = 1− p and N = 2k, we have (N − 1)
∫ 1
0 c2

mpN (1− p)mp−2dp = 1.

Proof. Write ζ = reiθ for 0 ≤ r < 2π. Then d2ζ = rdrdθ. From (8), we have

2k − 1
π

∫

D
|vk

m(ζ)|2dν(ζ) =
(

(2k − 1)
∫ 1

0
c2
m(1− r2)2k−2(r2)m2rdr

)(
1
2π

∫ 2π

0
dθ

)
.

Write the change of variable p = 1 − r2, dp = −2rdr. Since the second integral is unity,
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putting N = 2k, we have

(N − 1)
∫ 1

0
pN−2(1− p)mdp =

(N − 1)Γ(N − 1)Γ(m + 1)
Γ(N + m)

=
Γ(N)m!

Γ(N + m)
=

1
c2
m

.

Remark. Integrated as a Bayesian posterior distribution for p with likelihood function

c2
mpN (1− p)m, we have

Pr(p ∈ ∆) = (N − 1)
∫

∆
c2
m(1− p)Npm 1

p2
dp.

We see that the SU(1, 1) invariant measure dν on complex parameter space D led to the

Bayesian prior measure dp/p2 for real parameter p.

3 Conclusion

We have obtained a noninformative prior by establishing a connection between the matrix

group SU(1, 1) and the negative binomial distribution. The parameter space of the complex

index ζ ∈ D was seen to be in one-to-one correspondence with a space upon which the group

acts transitively. The negative binomial parameter p = 1 − |ζ|2. By using an invariant

measure on the parameter space D, we have been able to construct a posterior distribution

for the parameter p in a group theoretic context. This led to a Bayesian prior measure for

p which in this case was dp/p2. Perhaps this indicates an interesting method alternative to

other known noninformative priors such as Jeffrey’s and others mentioned in Box and Tiao

(1973) and Bernardo and Smith (1994).

Previously we have found similar constructions for two other discrete distributions. We

found a relationship between the Poisson distribution and the Weyl-Heisenberg group which

resulted in a uniform prior measure for the Poisson mean parameter λ, and for the binomial

distribution, the matrix group SU(2) (related to the rotation group), resulting in a uniform

prior measure for the binomial parameter p. (Heller and Wang (2006).) We have also found

a similar relationship between the normal family, indexed by the mean parameter µ and the
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Weyl-Heisenberg group which resulted in a uniform prior measure for µ. (Heller and Wang

(2004).) The group related to the negative binomial distribution presented in this paper is

comparatively more complicated, and the harmonic analysis construction differs from the

previous approach.

In the present construction, we have used a representation of SU(1, 1) in the form of a

set of linear operators in a Hilbert space. That resulted in the construction of generating

functions for a set of complex valued “square root” quantities in the form of inner products in

the Hilbert space, whose square moduli constitute the negative binomial distribution. This

method for the construction of probabilities is found in the quantum mechanics literature.

Vectors of the form U(g)Φ0, which we referred to as generating functions, are known as

coherent states in quantum mechanics. (See Perelomov (1986).) A use of coherent states

for the purpose of constructing probability distributions for applications in physics is given

in Ali, Antoine, and Gazeau (2000). The idea of using a kind of “square root” probability

for expansion purposes and then taking the square afterwards was proposed in Good and

Gaskins (1971), where the connection to quantum mechanics was noted. In Barndorff-

Nielsen, Gill, and Jupp (2003), this linear space context for the construction of probability

distributions is described and used for the purpose of statistical inference for quantum

measurements (also see Malley and Hornstein (1993)). The gap between the linear, group

theoretic methods of quantum probability and the general form of statistical inference is

being bridged (see Helland (2006)).

As mentioned above and in the introduction, group theoretic methods for statistical

inference have been in use for many years. However, none of those methods are applicable

to discrete distributions with continuous parameter spaces. By putting the coherent states

of quantum mechanics into a context suitable for statistical inference, we have found it

possible to obtain a group theoretic prior measure for the negative binomial distribution as

well as the other discrete distributions mentioned above.
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Appendix

Definitions for Section 2.1

A transformation of a set S is a one-to-one mapping of S onto itself. A group G is realized

as a transformation group of a set S if to each g ∈ G, there is associated a transformation

s → gs of S where for any two elements g1 and g2 of G and s ∈ S, we have (g1g2)s = g1(g2s).

The set S is then called a G-space. A transformation group is transitive on S if, for each

s1 and s2 in S, there is a g ∈ G such that s2 = gs1. In that case, the set S is called a

homogeneous G-space.

Definitions for Section 2.2

A (linear) representation of a group G is a continuous function g → T (g) which takes values

in the group of nonsingular continuous linear transformations of a linear space H, and

which satisfies the functional equation T (g1g2) = T (g1)T (g2) and T (e) = I, the identity

operator in H, where e is the identity element of G. It follows that T (g−1) = T (g)−1. That

is, T (g) is a homomorphic mapping of G into the group of nonsingular continuous linear

transformations of H. A representation is unitary if the linear operators T (g) are unitary

with respect to the inner product on H. That is, (T (g)v1, T (g)v2) = (v1, v2) for all vectors

v1, v2 ∈ H. A representation is irreducible if there is no non-trivial subspace Ho ⊂ H such

that for all vectors vo ∈ Ho, T (g)vo is in Ho for all g ∈ G. That is, there is no non trivial

subspace of H which is invariant under the operators T (g). Let G be a transformation group

of a set S. Let H be a linear space of functions f(s) for s ∈ S. For each invariant subspace

Ho ⊂ H we have a representation of the group G by shift operators: (T (g)f)(s) = f(g−1s).

A multiplier representation is of the form (T (g)f)(s) = A(g−1, s)f(g−1s) where A(g, s) is

an automorphic factor satisfying A(g1g2, s) = A(g1, g2s)A(g2, s) and A(e, s) = 1.
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