
The University of Chicago
Department of Statistics

TECHNICAL REPORT SERIES

Jumps in Real-time Financial Markets:
A New Nonparametric Test and Jump Dynamics ∗

Suzanne S. Lee and Per A. Mykland

TECHNICAL REPORT NO. 566

Departments of Statistics
The University of Chicago

Chicago, Illinois 60637

April 2006

∗ Financial support for this research from the National Science Foundation (DMS-02-04-639), Oscar
Mayer Dissertation Fellowships, and the Financial Mathematics Program at the University of Chicago
is gratefully acknowledged.



Jumps in Real-time Financial Markets:

A New Nonparametric Test and Jump Dynamics

Suzanne S. Lee and Per A. Mykland∗

Abstract

This paper introduces a new nonparametric jump test for continuous-time asset

pricing models. It distinguishes jump arrival times and realized jump sizes in asset

prices up to at intra-day levels. We demonstrate the likelihood of misclassification

of jumps in discrete data becomes negligible when we use high-frequency returns.

We explore real-time jump dynamics using intra-day U.S. individual equity prices

through the test and find empirical evidence that jump arrivals are associated with

both prescheduled earnings announcements and unscheduled real-time news releases.
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Financial market evolution is often interrupted by various events such as market crashes, corpo-

rate defaults or announcements, central bank announcements, and news releases. These market

uncertainties generate significant discontinuities in financial variables. Empirical evidence of such

discontinuities, so-called “Jumps” in financial markets, has been well documented in recent litera-

ture. A number of studies have proved the substantial impact of jumps on financial management,

from portfolio and risk management to option or bond pricing and hedging [see Merton (1976),

Bakshi, Cao, and Chen (1997, 2000), Bates (1996, 2000), Liu et al. (2003), Eraker et al. (2003),

Naik and Lee (1990), Duffie et al. (2000), and Piazzesi (2003)]. It turns out to be important

to incorporate jumps into continuous-time asset pricing models because they provide reasonable

explanations for financial market phenomena such as the excess kurtosis and skewness of return

distributions and the implied volatility smile in option markets. Furthermore, they allow for the

management of risk associated with their particular hedging demand, in addition to the diffusive

risk to which market participants are usually exposed. In order for investors to manage these two

types of risk, it is critical that they be able to distinguish jumps from diffusion.

However, disentangling jumps in continuous-time models is difficult, since we can only observe

realized data at discrete times. It becomes a challenge to make an econometric inference for

continuous-time jump diffusion models because some discrete data may be from the diffusion

part, yet yield exactly the same discreteness as that from the jump part. Incorrectly identified

jumps will affect estimation of jump intensity and distribution, misleading investors. In addition,

classifying the arrival times and sizes of realized jumps in terms of their relevance to the application

may be necessary. A thorough investigation of jump arrival dynamics can help us characterize

and forecast future return distributions. It can also deepen our understanding of various stylized

facts in individual equity option markets, such as flatter implied volatilities of equity options than
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index options [see Bakshi, Kapadia, and Madan (2003) and Maheu and McCurdy (2004)].

The purpose of this paper is to propose a new testing device that can identify arrival dates

and times of realized jumps and their sizes, providing a model-free tool for investigating the

dynamic behavior of jumps up to at intra-day levels. We prove that the new test can precisely

distinguish actual jumps from high-frequency data and spurious detection of jumps becomes

negligible. Therefore, we show that stochastic jump estimates based on our test are accurate.

We specifically illustrate that the probabilities of misclassification becomes zero and provide the

convergence rate as well.

Overall characteristics of return distributions can be found as a by-product, since both the

signs and sizes of jumps can be obtained whenever jumps are detected. Detecting the sizes and

arrival times of jumps is important for dynamic hedging, as well as many other applications [see

Naik and Lee (1990), and Bertsimas et al. (2001)]. The impact of jumps becomes more crucial

as their variance increases, and especially as they increase in size, because hedging error is more

likely to exceed one’s tolerance level. In other words, the size of jumps determines the degree of

market incompleteness. Arrival time detection becomes important for dynamic re-balancing of a

derivative hedging portfolio, as explained by Collin-Dufresne and Hugonnier (2001).

Our test is nonparametric, which makes the results robust to model misspecification. There

are a few other nonparametric approaches to jumps described in the literature. Aı̈t-Sahalia (2002)

suggests a diffusion criterion based on transition density to test the presence of jumps. Bandi

and Nguyen (2003) and Johannes (2004) provide consistent nonparametric estimators for jump

diffusion models based on the kernel estimation method. Barndorff-Nielsen and Shephard (2006)

suggest tests to indicate the presence of jumps over a certain time interval by comparing realized

power and bipower variation. Although their methods can identify a jump’s presence, because
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they use two integrated quantities and the integrations contain all possible jumps in the interval,

they cannot distinguish how many jumps were present within the interval, when in the interval

a jump occurs, or how large the realized jump sizes are. By simulation, we show that our test

performs better than or equal to tests by Barndorff-Nielsen and Shephard (2006). Tauchen and

Zhou (2005) used Barndorff-Nielsen and Shephard’s (2006) test to find realized jump sizes by

strictly assuming there is, at most, one jump in a day. However, according to the empirical

evidence from our test, it is possible that there can be more than one jump a day in U.S. equity

markets. Recently, there is increased interest in this problem by other research groups. A wavelet

approach by Fan and Wang (2005) and a test based on a variance swap-replicating strategy by

Jiang and Oomen (2005) are also under development.

A number of different parametric inference methodologies have been developed and applied

in empirical studies of jumps in continuous-time asset pricing models using time series and cross-

sectional data. They include the Implied State Generalized Method of Moments (IS-GMM) [see

Pan (2002)], Maximum Likelihood Estimation [see Schaumburg (2001)], the simulation-based

Efficient Method of Moment (EMM) [see Andersen et al (2002) and Chernov et al. (2003)], the

Bayesian approach [see Eraker et al. (2003)], volatility estimation and different types of jumps

under Levy processes [see Aı̈t-Sahalia (2003) and Aı̈t-Sahalia and Jacod (2005)]. All, however,

run the risk of incorrect specification for functionals in their chosen models, which is not the case

with our nonparametric test.

Another merit of our new test is that it is robust to nonstationarity of the processes, which is

a common feature of financial variables.

We conducted an empirical study on real-time jump dynamics in the U.S. individual equity

market. It is based on high-frequency returns from four different individual stock prices transacted
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on the New York Stock Exchange (NYSE) over the period of September 1 to November 30, 2005.

Our empirical observations through our new test indicate that most jumps in equity prices arrive

with news events. Specifically, we connect jump arrival times we detected with real-time news

releases from Factiva, a Dow Jones & Reuters Company. We find that accumulated real-time

news about a company from the early morning before the market starts tends to create a jump

in the company’s stock price around market opening time. Prescheduled news announcements

of corporate earnings turn out to be always associated with jumps around the opening time. In

addition to prescheduled news events, the majority of jumps were connected with unscheduled

news and the magnitudes of jump sizes with unscheduled news were comparable to those with

prescheduled ones. This outcome on underlying stocks suggests a foundation for individual equity

option pricing models associated with sound fundamentals. Market price of jump risks can be

better examined with cross-sectional option data after setting up models with more precise jump

dynamics though our test.

The rest of the paper is organized as follows. Section 1 sets up a theoretical model framework

for financial variables to test jumps. It defines the test statistics and describe the intuition

behind our new test, and derives its asymptotic distribution to provide a benchmark for tests.

In Section 2 we discuss both how the rejection region for the test can be determined and the

likelihood of misclassifications. Section 3 investigates finite sample performance of the test by

simulation. Section 4 presents empirical evidence of real-time jump dynamics in equity prices

and the association with real-time news. Finally, we conclude in Section 5. All the proofs are in

Section 6.
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1 A Theoretical Model for the Test and Its Asymptotic Theory

We employ a one-dimensional asset return process with a fixed complete probability space (Ω,Ft,P),

where {Ft : t ∈ [0, T ]} is a right-continuous information filtration for market participants, and P

is a data-generating measure. Let the continuously compounded return be written as d log S(t)

for t ≥ 0, where S(t) is the asset price at t under P. We are interested in testing jumps in the

asset returns as follows. The null hypothesis of no jumps in the market is represented as

d log S(t) = µ(t)dt + σ(t)dW (t) (1)

where W (t) is a Ft-adapted standard Brownian motion. The drift µ(t) and spot volatility σ(t)

are Ft-measurable functions, such that the underlying process is a diffusion that has continuous

sample paths. Its alternative hypothesis is given by

d log S(t) = µ(t)dt + σ(t)dW (t) + Y (t)dJ(t) (2)

where dJ(t) is a jump-counting process with intensity λ(t) and Y (t) is the jump size whose mean

is µy(t) and standard deviation is σy(t), which are also Ft-measurable functions. We assume W (t)

and J(t) are independent. Observation of S(t), equivalently log S(t), only occurs at discrete times

0 = t0 < t1 < ... < tn = T . For simplicity, this paper assumes observation times are equally

spaced: ∆t = ti − ti−1. This simplified assumption can easily be generalized to non-equidistant

cases by letting maxi(ti− ti−1) → 0. We also impose the following necessary assumption on price

processes throughout this paper:

Assumption 1

A1.1 supi supti≤u≤ti+1
|µ(u)− µ(ti)| = Op(

√
∆t)

A1.2 supi supti≤u≤ti+1
|σ(u)− σ(ti)| = Op(

√
∆t)
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Following Pollard (2002), we use Op notation throughout this paper to mean that, for random

vectors {Xn} and non-negative random variable {dn}, Xn = Op(dn), if for each ε > 0, there exists

a finite constant Mε such that P (|Xn| > Mεdn) < ε eventually. One can interpret Assumption

1 as that the drift and diffusion coefficients do not change dramatically over a short time interval.

Furthermore, it allows the drift and diffusion to depend on the process itself. Therefore, this

assumption is general enough to cover most of the models that incorporate jumps in continuous-

time asset price processes in the literature. It also satisfies the stochastic volatility plus finite

activity jump semi-martingale class in Barndorff-Nielsen and Shephard (2004) and the reference

therein.

1.1 Definition and Intuition of the Nonparametric Jump Test

In this subsection, we define the jump test statistic T , and address the basic intuition behind

our new testing technique. Our discussion in this subsection is on a single test at time ti. We

do not assume there was or was not a jump before or after ti. Generalization to a global test to

determine whether a diffusion model (1) is rejected is straightforward by multiple tests (single

tests over available times). The global test is interesting in itself and is also part of our goal.

However, our main purpose of this paper is to detect jumps in order to advance our knowledge

on underlying mechanism of how these jumps evolve over time. Multiple tests can allow us to

extract such information on jump arrival dynamics.

Here, we describe the formulation of the statistic and provide its mathematical definition.

Suppose we have a fixed time horizon T , and n is the number of observation in [0, T ]. ∆t = T
n .

Consider a local movement of the process within a window size K. With realized returns in the

window consisting of the previous K observations just before a testing time ti, the time-varying
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local volatility is estimated based on the realized bipower variation. We then take the ratio of

this estimated local volatility to the next realized return to determine whether there was a jump

and how large the jump size was. For example, if ∆t = 5 minutes, ti = 10 : 05 AM and K = 10,

then we test for a jump by examining the relative magnitude of realized return from 10 : 00 AM

to 10 : 05 AM compared to local volatility estimated with 5-minute returns from 9 : 10 AM to

10 : 00 AM. Figure 1 also illustrates the construction of the test. Mathematical notation of the

test statistics is as follows:

Definition 1 The statistic T (i), which tests at time ti whether there was a jump from ti−1 to ti,

is defined as

T (i) =
log S(ti)− log S(ti−1)

σ̂(ti)
,

where

σ̂(ti) =

√√√√ 1
K − 2

i−1∑

j=i−K+2

| log S(tj)− log S(tj−1)|| log S(tj−1)− log S(tj−2)|.

The intuition is as follows. Imagine that asset prices evolve over time continuously. A jump

arrives in a market at some time, say ti. If the horizon is short, we would expect the realized asset

return to be much higher than usual returns due to purely continuous random innovations. How

about the situation when the volatility at that time was also high? Even if there was no jump,

if the volatility is high and if we can only observe prices in discrete times, the realized return we

observe may also be as high as the return due to a jump. To distinguish those two cases, it is

natural to standardize the return by a measure that explains the local variation from only the

continuous part of the process. We call this measure local volatility1 in this paper and denote it
1Note that in the literature on implied binomial trees for option pricing, the term “local volatility” is used in a
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as σ(ti). This idea is incorporated into our test. It compares a realized return at any given time

to a consistently estimated local volatility using corresponding local movements of returns. More

specifically, the ratio of realized return to estimated local volatility creates the test statistic for

jumps.

Now, how do we estimate local volatility? A commonly used nonparametric estimator for

variance in the literature is the realized power (quadratic) variation, defined as the sum of squared

returns

plimn→∞
n∑

i=2

(log S(ti)− log S(ti−1))2.

Using high-frequency returns within some period just before our testing time, it suggests a vari-

ance estimate over that period. However, this well-known variance estimator is unfortunately

inconsistent under the presence of jumps in a return process. Alternatively, a slightly modified

version called the realized bipower variation, defined as the sum of products of consecutive absolute

returns

plimn→∞
n∑

i=3

| log S(ti)− log S(ti−1)|| log S(ti−1)− log S(ti−2)|

has been suggested and has been shown to be a consistent estimator for the integrated volatility,

even when there are jumps in return processes [see Barndorff-Nielsen and Shephard (2003) and

Aı̈t-Sahalia (2004)]. Despite the intuition that jumps in a process may impact the volatility

estimation, it remains consistent no matter how large or small the jump sizes are mixed with the

diffusive part of pricing models. Our test is based on this interesting insight. Even if a highly

volatile market environment makes the distinguishing of jumps harder, infrequent Poisson jumps

will be detected by our procedure pretty accurately, as long as we use high-frequency observations.

Notice that the realized bipower variation is used in the local volatility estimation for the denom-

different manner
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Figure 1: Formation of our new test with a window size K = 10

inator of the statistic. This makes our technique immune to the presence of jumps in previous

times, especially those that are considered for local volatility estimation. We choose the window

size K in such a way that the effect of jumps on the volatility estimation disappears. In the

following subsections, we show that T asymptotically follows a normal distribution if there is

no jump at testing times, and suggest a criterion to distinguish arrival of jumps based on this

asymptotic distribution.

We state our results ignoring the drift. For our analysis using high-frequency data, the drift

(of order dt) is mathematically negligible compared to the diffusion (of order
√

dt) and the jump

component (of order 1). In fact, the drift estimates have higher standard errors, so that they

make the precision of variance estimates decrease if included in variance estimation. We study a

simplified version of the model without the drift term, i.e., µ = 0. We also show that the main

result we present continues to hold with the non-zero drift term in Appendix 6.1. A modified

statistic Tµ for the non-zero drift case is defined, and a corresponding theorem is presented therein

as well.
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1.2 Under the Absence of Jumps at Testing Time ti

Suppose our realized return from time ti−1 to ti is from a scalar diffusion process without a drift,

as

d log S(t) = σ(t)dW (t).

The asymptotic null distribution of the jump test statistic T is provided in the following Theorem

1.

Theorem 1 Let T (i) be as in Definition 1 under the null at time ti and K = Op(∆tα), where

−1 < α < −0.5. Suppose Assumption 1 is satisfied. Then as ∆t → 0,

supi|T (i)− T̂ (i)| = Op(∆t
3
2
−δ+α),

where δ satisfies 0 < δ < 3
2 + α and

T̂ (i) =
Ui

c
.

Here Ui = 1√
∆t

(Wti −Wti−1) and c = E|Ui| =
√

2/
√

π ≈ 0.7979.

Proof of Theorem 1: See Appendix 6.2.

Theorem 1 states our test statistic T (i) approximately follows the same distribution as T̂ (i). And,

we find T̂ (i) follows a normal distribution with mean 0 and variance 1
c2

because Ui is a standard

normal random variable. In case we absolutely know a priori the absence of jumps in the whole

price process, the usage of realized quadratic variation for estimating local volatility would yield

the same asymptotic distribution. As discussed in our intuition, however, we do not require the

absence of jumps in earlier or later times. Therefore, using quadratic variation does not suffice in

this case. As also can be noticed, T (i) is asymptotically independent and normally distributed
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over time; hence, one can easily find a joint asymptotic null distribution of the test statistics for

various periods.

1.3 Under the Presence of Jumps at Testing Time ti

We show in this subsection how the jump test reacts to the arrival of jumps and discuss the choice

of window size. The realized return from time ti−1 to ti is now from a scalar jump diffusion, which

describes the arrival of jumps in addition to the diffusive market innovation as

d log S(t) = σ(t)dW (t) + Y (t)dJ(t).

Theorem 2 demonstrates how our test behaves differently when a jump arrives. It specifically

shows that as the sampling interval ∆t goes to 0, the test statistic becomes so large that we can

reject the hypothesis that no jump arrived.

Theorem 2 Let T (i) be as in Definition 1 under the alternative at time ti. If K = Op(∆tα),

where −1 < α < −0.5, then

T (i) ≈ Ui

c
+

Y (τ)
cσ
√

∆t
Iτ∈(ti−1,ti]

and T (i) →∞ as ∆t goes to 0.

Proof of Theorem 2: See Appendix 6.3.

The benefit of the bipower variation as a local volatility estimator in the denominator of the

statistic is that the presence of jumps in earlier times doesn’t affect the consistency of volatility

estimation. Therefore, our test is robust to earlier jumps in detecting current jumps. This does

not imply that we make no use of earlier jumps. One can learn about an earlier jump arrival by

doing the same single test at that earlier time. Several single tests over time become a multiple
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test, which can provide us more information on jump dynamics.

In order to retain the benefit of bipower variation, the window size K has to be large enough,

so that the effect of jumps in return on estimating local volatility disappears, but obviously

smaller than the number of observations n. The condition K = Op(∆tα) with −1 < α < −0.5

satisfies this requirement. Therefore, the choice of sampling frequency ∆t will determine the

window size. For example, if daily data are used in the analysis, ∆t = 1
252 , and K = β∆tα

with β = 1, integers between 15.87 and 252 are within the required range. The simulation

study in Subsection 3.5 finds that if K is within the required range, increasing K only elevates

the computational burden without a marginal contribution. Hence, the smallest integer K that

satisfies the necessary condition would be an optimal choice of K. In this example, Kopt = 16,

i.e., the local volatility estimation is based on observations of about three weeks just prior to the

test using daily data.

1.4 Selection of Rejection Region

In this subsection, we address the rejection region for our proposed test. In effect, we demon-

strate that the suggested rejection region allows us to distinguish jumps more precisely at higher

frequencies of observation.

As studied in Theorem 1 and 2, our test statistics present completely different limiting behavior

depending on the existence of jumps at testing times. If there is no jump at the testing time, our

test statistic follows approximately a normal distribution. But if there is a jump, the test statistic

becomes very large. To determine a reasonable rejection region, we raise a question of how large

our test statistic can be when there is no jump. Hence, we first study the asymptotic distribution

of maximums of our test statistics under the null hypothesis. Such a distribution then guides us
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to choose the relevant threshold for the test to distinguish the presence of jumps at a testing time.

Lemma 1 states the limiting distribution of the maximums as follows:

Lemma 1 If the conditions for T (i), K, and c are as in Theorem 1 under the null at time ti,

then as ∆t → 0

max|T (i)| − Cn

Sn
→ ξ,

where ξ has a cumulative distribution function P (ξ ≤ x) = exp(−e−x),

Cn =
(2 log n)1/2

c
− log π + log(log n)

2c(2 log n)1/2
and Sn =

1
c(2 log n)1/2

,

where n is the number of observations.

Proof of Lemma 1: See Appendix 6.4.

In short, the main idea in selecting a rejection region is that if our observed test statistics are not

even within the usual region of maximums, it is unlikely that the realized return is from a diffusion

process. To apply this result to selecting a rejection region, for instance, we can set a significance

level of 1%. Then, the threshold for |T (i)|−Cn

Sn
is β∗, such that P (ξ ≤ β∗) = exp(−e−β∗) = 0.99.

Equivalently, β∗ = − log(− log(0.99)) = 4.6001. Therefore, if |T (i)|−Cn

Sn
> 4.6001, then we reject

the hypothesis of no jump at ti.

2 Misclassifications

In what follows, we define four different types of misclassifications that can occur in our study.

We then demonstrate that the probability of such misclassifications becomes negligible at higher
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frequencies of observation. For a single testing time, say ti, there can be two kinds of misclassi-

fications. The first kind is when there is a jump in interval (ti−1, ti], but the test fails to declare

its existence. We call this a failure to detect actual jump (FTDi) at ti. The second kind of

misclassification is when there is no jump in (ti−1, ti], but the test wrongly declares there is one.

We call this a spurious detection of jump (SDi) at ti. It is usually the case that we do this test

n times with n observations. Global extension of these concepts is straightforward. If there are

some jumps over the whole time horizon, [0, T ], but the test fails to detect any one of them, we

call it a global failure to detect jump (GFTD). If there are some returns that are not due to jumps,

but the procedure wrongly declares any one of them as due to a jump, we call it a global spurious

detection of jump (GSD). We will use the following mathematical notations to explain the above

situations. We let An be jump times among n observations and Bn be times at which the test

declares the presence of a jump. We use Ji (J is for jumps) to denote the event that there is a

jump in (ti−1, ti]. Note that Ji = {i ∈ An}. Di (D is for declaring jumps) denotes the event that

our test declares a jump in (ti−1, ti]. In this case, Di = {i ∈ Bn}. Then following statements

holds.

failure to detect actual jump at ti (local property) (FTDi) = Ji

⋂
DC

i

spurious detection of jump at ti (local property) (SDi) = JC
i

⋂
Di

failure to detect actual jumps (global property) (GFTD) =
n⋃

i=1

(
Ji

⋂
DC

i

)

spurious detection of jumps (global property) (GSD) =
n⋃

i=1

(
JC

i

⋂
Di

)

With these new notations, we now generalize the above example using a fixed significance level

to any significance level αn that approaches 0. Alternatively, βn approaches ∞. In Theorem 3

and Corollary 1, we explicitly show that both the conditional and unconditional probabilities of
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GFTD approach 0. They state specifically the convergence rate to show how fast these probabil-

ities converge to 0.

Theorem 3 Let βn be the (1 − αn)th percentile of the limiting distribution of ξ in Lemma 1,

where αn is the significance level of the test. Suppose there are N jumps in [0, T ]. Then, the

probability of GFTD is

P (GFTD|N jumps) =
2√
2π

ynN + o(ynN),

where yn = (βnSn + Cn)cσ
√

∆t. Therefore, as long as βn →∞ slower than
√

n log n,

P (GFTD|N jumps) −→ 0

Proof of Theorem 3: See Appendix 6.5.

The result above does not depend on model (2), so long as jumps are independent of diffusion part

of the model. In particular, prescheduled (deterministic) events, such as earnings announcements,

are accommodated. If jumps arrive randomly, as in (2), with constant intensity λ, one can expect

the probability to be as in Corollary 1.

Corollary 1 If the jump intensity is λ and time horizon is from 0 to T, then

E[P (GFTD)] =
2√
2π

ynλT + o(ynλT ).

Theorem 4 also presents a generalized likelihood that GSD approaches 0 quickly. The correspond-

ing convergence rate is provided as the significance level αn become close to 0 or, equivalently,

the rejection threshold β goes to ∞.
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Theorem 4 Let βn be as in Theorem 3. Again, suppose there are N jumps in [0, T ]. Then, as

∆t → 0, the probability of GSD

P (GSD|Njumps) = exp(−βn) + o(exp(−βn)).

Therefore, as βn →∞,

P (GSD|N Jumps) −→ 0

Proof of Theorem 4: See Appendix 6.6.

The immediate consequence of our findings in the previous two theorems is that we can clas-

sify actual and spurious jumps precisely so that we obtain an accurate stochastic jump intensity

estimator based on our nonparametric test. If the probabilities in Theorems 3 and 4 become

negligible, then the likelihood of global misclassification is also negligible, as stated in Theorem

5, below.

Theorem 5 If Λ̂(T ) is the estimator of the number of jumps in [0, T ] using our test, (which is

formally a cumulative jump intensity estimator) and Λactual(T ) is the number of actually realized

jumps in [0, T ], then the probability of global misclassification is

P (Λ̂ 6= Λactual|N Jumps) = P (GFTD or GSD|N jumps) =
2√
2π

ynN + exp(−βn) + o(exp(−βn)).

It can be minimized at β∗n = − log
(

σ
√

TN√
2n log n

)
. Moreover, the overall optimal convergence rate is

σ
√

TN√
2n log n

.

Proof of Theorem 5: See Appendix 6.7
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3 Monte Carlo Simulation

In this subsection, we study the effectiveness of the test through Monte Carlo simulation. Our

asymptotic argument in previous sections requires that the sampling interval ∆t converge to

0. This idealistic requirement cannot be perfectly met in real applications. This subsection

investigates the finite sample performance of this test. The main result from this simulation shows

that, as we increase the frequency of observation, the precision of our test increases. For the series

generation, we used the Euler-Maruyama Stochastic Differential Equation (SDE) discretization

scheme (Kloeden and Platen (1992)), an explicit order 0.5 strong and order 1.0 weak scheme. We

discard the burn-in period - the first part of the whole series - to avoid the starting value effect.

Throughout, we use the notation ∆t = 1
252×nobs , with nobs as the number of observations per day.

3.1 Constant Volatility

We first consider the simplest model in the class with a fixed volatility. Table I presents the prob-

ability of SDi. We simulate two constant volatility diffusion processes with fixed spot volatilities

at realistic annualized values of 30% and 60%, respectively. A thousand series of returns over

one year are simulated at several different frequencies from 1 to 288 observations per day - up to

5-minute returns. The significance level for this study is 5%. Table I shows that increasing the

frequency of observation reduces the probability of SDi.

Table II lists the probability of success to detect actual jumps, that is, one minus the proba-

bility of FTDi. A thousand simulated tests at different frequencies, from one to 96 observations

per day, are performed. Arrivals of six different jump sizes are assumed at 300% to 10% of the

given volatility level of 30%. We chose different jump sizes to show that it is harder to detect

smaller-sized jumps at low frequency. However, we show that as we increase the frequency, we
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nobs σ = 0.3 (SE) σ = 0.6 (SE) SV (SE)

1 1.3305e-03 (7.4050e-05) 1.3305e-03 (7.6239e-05) 3.9110e-03 (1.3319e-04)

2 5.7380e-04 (3.4901e-05) 5.3222e-04 (3.3570e-05) 2.3306e-03 (7.7336e-05)

4 2.0696e-04 (1.4460e-05) 2.1209e-04 (1.4790e-05) 1.3289e-03 (4.3670e-05)

12 5.2879e-05 (4.3701e-06) 5.5911e-05 (4.2684e-06) 4.8131e-04 (1.6731e-05)

24 2.1775e-05 (1.9032e-06) 2.5126e-05 (2.0353e-06) 2.7688e-04 (1.0062e-05)

48 8.8436e-06 (8.3749e-07) 8.6768e-06 (8.3965e-07) 1.4467e-04 (7.2952e-06)

96 3.4947e-06 (3.7430e-07) 4.1876e-06 (4.2736e-07) 8.9449e-05 (4.2818e-06)

288 9.6810e-07 (1.1824e-07) 9.8630e-07 (2.2875e-07) 1.2986e-05 (1.2463e-06)

Table I: The mean and standard error (SE) of P (SDi), the probability of rejecting a spurious jump. The

significance level α is 5%. The null model is a diffusion process with fixed volatilities, σ at 30% and 60% or

with stochastic volatility (SV). nobs denotes the number of observations per day.

obtain very high detecting power (above 98%), even for very small sized jumps. For instance,

from Table II, we can see that when the relative magnitude of jumps are 10% of volatility, econo-

metricians are less likely to tell the difference between price changes due to the volatility part

and those due to the jump part with lower frequency, such as daily. According to our study, they

can detect the presence of jumps only 2% of the times using daily return. On the other hand, at

frequencies as high as 30 minutes, we can distinguish the difference more than 95% of the times.

3.2 Stochastic Volatility

We examine how the test performs differently for stochastic volatility. Following the empirical

study on realized variance of foreign currency exchange rates in Barndorff-Nielsen and Shephard

(2004), we assume the spot volatility to be a sum of two uncorrelated square root processes [Cox,

Ingersoll and Ross (1985)]. Specifically, the spot volatility process is modeled as a sum of separate

19



Constant Volatility σ at 30%

Jump Size 3σ 2σ 1σ 0.5σ 0.25σ 0.1σ

nobs = 1 0.9920 0.9880 0.9810 0.9270 0.4690 0.0260

(0.0028) (0.0034) (0.0043) (0.0082) (0.0158) (0.0050)

nobs = 4 0.9860 0.9780 0.9820 0.9700 0.9050 0.1520

(0.0037) (0.0046) (0.0042) (0.0054) (0.0093) (0.0114)

nobs = 24 0.9950 0.9860 0.9890 0.9890 0.9770 0.8880

(0.0022) (0.0037) (0.0033) (0.0033) (0.0047) (0.0100)

nobs = 96 0.9980 0.9970 0.9960 0.9920 0.9970 0.9820

(0.0014) (0.0017) (0.0020) (0.0028) (0.0017) (0.0042)

Stochastic Volatility

Jump Size 3σ̃(t) 2σ̃(t) 1σ̃(t) 0.5σ̃(t) 0.25σ̃(t) 0.1σ̃(t)

nobs = 1 0.9470 0.9330 0.8540 0.5720 0.2500 0.0320

(0.0071) (0.0079) (0.0112) (0.0157) (0.0137) (0.0056)

nobs = 4 0.9770 0.9690 0.9410 0.8480 0.5320 0.1400

(0.0047) (0.0055) (0.0075) (0.0114) (0.0158) (0.0110)

nobs = 24 0.9870 0.9860 0.9830 0.9610 0.8770 0.5260

(0.0036) (0.0037) (0.0041) (0.0061) (0.0104) (0.0158)

nobs = 96 0.9970 0.9990 0.9980 0.9920 0.9610 0.8100

(0.0017) (0.0010) (0.0014) (0.0028) (0.0061) (0.0130)

Table II: The mean and standard error (in parentheses) of [1− P (FTDi)]. The significance level α is 5%. The null

model is a diffusion process with a fixed volatility σ at 30% and stochastic volatility. The jump sizes are determined

compared to volatility. For stochastic volatility, the jump size depends on the mean of volatility σ̃(t) = E[σ(t)].

nobs denotes the number of observations per day.
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solutions of two different stochastic differential equations,

dσ2
s(t) = −θs{σ2

s(t)− κs}dt + ωsσs(t)dB(θst),

where B denotes a Brownian Motion, θs > 0, and κs ≥ ω2
s/2 for s = 1, 2. For this simulation,

we use estimates calibrated by Barndorff-Nielsen and Shephard (2002) with exchange rate data

in order for our study to mimic the real markets. The values are from

E(σ2
s) = ps0.509, V ar(σ2

s) = ps0.461, for s = 1and2,

with p1 = 0.218, p2 = 0.782, θ1 = 0.0429, and θ2 = 3.74. We assume no correlation between two

Brownian motions in volatility and the random terms in return process, which leaves us with no

leverage effect in this simulation study. The jump size and the Poisson jump counting process

are set to be the same as in the case of constant volatility. We include the result when the

volatility is stochastic in Table I in order to allow direct comparison with the constant volatility

case. It confirms our intuition that if the volatility moves over time, it would be more difficult

to disentangle jumps. At every frequency, the corresponding success probability for stochastic

volatility is greater than that with fixed volatility. We find the same result from the comparison

in Table II: the probability of success in detecting a jump at some given time decreases under

stochastic volatility. This shows that stochastic volatility reduces the precision of jump detection.

However, this study does not alter our conclusion in the previous subsection; namely, if we increase

the frequency of observation, we can still improve our ability to detect jumps. Indeed, for the

case of nobs = 96, the success rate for stochastic volatility is as high as for constant volatility.

3.3 Global Misclassification

In this subsection, we examine the global likelihood of misclassification by either GSD or GFTD,

as studied in Theorem 5. This tells us how accurately we can locate actual jump arrival times.
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We simulate five-hundred different series of one year observations at different frequencies from

one to 96 observations per day - from daily to 15-minute returns. We consider five different jump

sizes from 3 times to 25% of volatility level. As discussed in Theorem 5, we find the likelihood

becomes negligible at higher frequencies. Table III presents the probability that the number of

jumps counted by our test is not equal to the actual number of jumps.

3.4 Comparison with Other Jump Tests

The comparable tests to ours are those introduced by Barndorff-Nielsen and Shephard (2006)

(BNS) and Jiang and Oomen (2005) (JO), both of which are also nonparametric, making test

results robust to model specification. This subsection explains the difference between these tests

and ours. BNS takes the difference (or ratio) between the realized quadratic variation and bipower

variation during a certain time interval to distinguish the presence of jumps in that interval. JO’s

swap variance test takes a similar approach to BNS’s. Instead of using bipower variation, JO

uses cumulative delta-hedged gain or loss of a variance swap replicating strategy. They both

also provide asymptotic null distributions for their jump test statistics. As stated in BNS, after

simulation study under alternative hypotheses, one of the features of their test is that it cannot

distinguish two jumps a day with low variance and one jump with high variance in terms of

rejection rates. The reason for this problem is that their test depends on integrated quantities.

JO’s swap variance test shares this feature because it also depends on an integrated quantity.

The following example illustrates the difference more clearly. Suppose there are two jumps in a

day and an analyst chooses one day as the interval for their test. The presence of a jump in that

day can be recognized, but not how many jumps occurred, whether the jump(s) was negative

or positive, and at what time of the day the jump(s) occurred. These issues can, however, be

resolved by our test.
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Probability of Global Misclassification

Jump Size 3σ 2σ 1σ 0.5σ 0.25σ

nobs = 1 0.2140 0.2120 0.1640 0.3540 0.9860

(0.0184) (0.0183) (0.0166) (0.0214) (0.0053)

nobs = 2 0.1252 0.1312 0.1531 0.1173 0.7714

(0.0148) (0.0151) (0.0161) (0.0144) (0.0188)

nobs = 4 0.0477 0.0407 0.0407 0.0506 0.0755

(0.0095) (0.0088) (0.0088) (0.0098) (0.0118)

nobs = 12 0.0036 0.0046 0.0023 0.0063 0.0050

(0.0027) (0.0030) (0.0021) (0.0035) (0.0031)

nobs = 24 0.0012 0.0012 0.0005 0.0007 0.0008

(0.0015) (0.0015) (0.0010) (0.0011) (0.0013)

nobs = 48 0.0001 0.0001 0.0006 0.0004 0.0002

(0.0003) (0.0004) (0.0011) (0.0009) (0.0006)

nobs = 96 0.0001 0.0001 0.0001 0.0002 0.0000

(0.0001) (0.0002) (0.0005) (0.0006) (0.0001)

Table III: The mean and standard error (in parentheses) of probability of global misclassification,

P
(
Λ(T ) 6= Λactual(T )

)
. The significance level α is 5%. The null model is a diffusion process with stochastic

volatility.
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Not only can our test do more analysis, as explained above, but it also outperforms the BNS

test on the same analysis. We only do a comparative study with BNS, since, except for the

convergence rate to the asymptotic distribution, the same results are expected from JO. In the

rest of this subsection, we report a simulation study comparing the power of our new test to BNS’s

linear test. We choose their linear test because it performs better than their adjusted ratio test

in their simulation study, despite the little difference. We therefore presume that demonstrating

our test outperforms their linear test is sufficient.

We design this simulation by introducing one or two jumps a day to a diffusion process with

a constant volatility. We consider 3000 simulated series of a process in a day, with each jump

arriving randomly as a Poisson process. The number of jumps was set to be either one or two. If

there is a given number of jumps for some time, (one day in this study), then the Poisson jump

arrival time is uniformly distributed [see Ross (1995)]. Hence, we randomly select the arrival times

from a uniform distribution. σ is set at 30%, as in the previous simulation. The variance of jump

size distribution is chosen at 10%, 5%, 1% and 0.5% of σ2. At higher variances of jump sizes,

the difference between the two tests is not large. Table IV shows the cases with lower variances,

which demonstrate better performance of our test. In conclusion, our test performs equally or

better for all jump sizes, numbers of jumps, and frequencies.

3.5 Optimal Window Size K

The optimal choice for window size is studied by simulation in this subsection. In the plots, we

show the relationship between mean squared error and the choice of window size. Four cases are

plotted in Figure 2 to show the optimal window size. The upper left panel shows mean squared

error as a function of window size K, using daily data with the horizon T = 1 year. The remaining
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Number of Jumps per Day N = 1 Number of Jumps per Day N = 2

10% Linear Test (BNS) Our Test Linear Test (BNS) Our Test

nobs 1− FTD (SE) 1− FTD (SE) 1− FTD (SE) 1− FTD (SE)

48 0.8520 (0.0112) 0.8717 (0.0107) 0.9690 (0.0055) 0.9820 (0.0042)

72 0.8819 (0.0102) 0.8967 (0.0097) 0.9860 (0.0037) 0.9879 (0.0036)

96 0.8987 (0.0091) 0.9220 (0.0085) 0.9860 (0.0037) 0.9890 (0.0033)

288 0.9360 (0.0075) 0.9620 (0.0060) 0.9930 (0.0026) 0.9990 (0.0010)

5% Linear Test (BNS) Our Test Linear Test (BNS) Our Test

nobs 1− FTD (SE) 1− FTD (SE) 1− FTD (SE) 1− FTD (SE)

48 0.8040 (0.0123) 0.8480 (0.0114) 0.9570 (0.0064) 0.9730 (0.0051)

72 0.8248 (0.0120) 0.8509 (0.0113) 0.9690 (0.0055) 0.9770 (0.0047)

96 0.8347 (0.0117) 0.8740 (0.0105) 0.9720 (0.0052) 0.9810 (0.0043)

288 0.8900 (0.0096) 0.9340 (0.0079) 0.9890 (0.0033) 0.9960 (0.0020)

1% Linear Test (BNS) Our Test Linear Test (BNS) Our Test

nobs 1− FTD (SE) 1− FTD (SE) 1− FTD (SE) 1− FTD (SE)

48 0.5650 (0.0157) 0.6310 (0.0153) 0.8160 (0.0123) 0.8670 (0.0107)

72 0.6640 (0.0149) 0.7130 (0.0140) 0.8677 (0.0107) 0.9039 (0.0093)

96 0.6470 (0.0151) 0.7330 (0.0143) 0.8770 (0.0104) 0.9260 (0.0083)

288 0.7610 (0.0135) 0.8470 (0.0114) 0.9490 (0.0070) 0.9740 (0.0050)

0.5% Linear Test (BNS) Our Test Linear Test (BNS) Our Test

nobs 1− FTD (SE) 1− FTD (SE) 1− FTD (SE) 1− FTD (SE)

48 0.4603 (0.0158) 0.5375 (0.0158) 0.6857 (0.0147) 0.7668 (0.0134)

72 0.4940 (0.0158) 0.6127 (0.0155) 0.7570 (0.0136) 0.8230 (0.0121)

96 0.5493 (0.0157) 0.6590 (0.0150) 0.8070 (0.0125) 0.8740 (0.0105)

288 0.6753 (0.0145) 0.7990 (0.0127) 0.9130 (0.0089) 0.9570 (0.0064)

Table IV: The probabilities and standard errors (in parenthesis) of rejecting the null hypothesis of no jump with

the linear test by Barndorff-Nielsen and Shephard (2006) (BNS) and our new test, given one or two jumps a day.

The variance of jumps are 10%, 5%, 1% and 0.5% of σ2.
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Figure 2: Graphs of mean squared total error with daily and 6-hourly returns, as a function of window size K.
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three use 6-hourly return data with the horizons T = 1, 3, and 7 years. It turns out that it is

optimal for K to be the smallest integer in the condition set, K = Op(∆tα) with −1 < α < −0.5,

because it gives the lowest mean squared error in our simulation. Increasing window size would

not always increase the test’s efficiency, especially for the intensity estimation, because increasing

window size lowers the number of multiple tests for a fixed number of observations.

4 Applications: Dynamics of Jump Arrivals

One of the advantages of our new test is that it facilitates study of jump dynamics up to at

intra-day levels. Not only can it lead to improved models for many empirical studies that involve

jumps, but also allows investigation of unknown phenomenon in real-time markets.

4.1 Application to Option Pricing Models

Improvements in continuous-time option pricing models with time-varying jump intensity have

already been stressed in a number of theoretical and empirical studies [see, for example, Bates

(2000, 2002), Duffie, et al (2000), Andersen, Benzoni, and Lund (2002), Pan (2002), Chernov

et al (2003), Dubinsky and Johannes (2005)]. In these studies, volatility levels, jump sizes, or

earnings announcements were chosen to explain time-varying jump intensities in linear and non-

linear fashions. As reported earlier in this paper, only a few (2%) obvious jumps can be detected

and estimated using daily observations, which all of aforementioned empirical studies employed.

Using our more advanced econometric technique, in-depth investigation on jump dynamics using

a high-frequency time series of underlying securities on which options depend is first warranted.

Following this, cross-sectional option data can be used to pin down the market price of jump size

or intensity risks based on the predetermined model.
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4.2 Empirical Analysis

In this paper, we conduct an empirical study to explore real-time jump dynamics in individual

U.S. stock prices. From the Trade and Quote (TAQ) database, we collected ultra-high-frequency

stock prices and generate returns by taking differences of log prices. We multiply all returns by

100 to present them as percentages. The time span used is the 3 months from September 1 to

November 30, 2005, which was the most recent data available, and never previously investigated.

We chose four major U.S. companies: Wal-Mart (WMT), IBM (IBM), Coca Cola (KO), and

General Electric (GE). Using stock prices from the New York Stock Exchanage (NYSE), 15-

minute returns were used for the results in Table V. As proven in the simulation in Section 3, as

15-minute return is enough to achieve a decent power for the test. With this choice of frequency,

our empirical results are not greatly affected by the presence of market microstructure noise.

Therefore, we ignore the effect of the noise in this particular study. The significance level for all

series is 5%. The outcomes of the tests are each arrival date, time, jump size, and mean and

variance of the detected jump size distribution. We do not assume that there is no more than one

jump per day, but we do assume that when a jump occurs, the jump size dominates the return. We

find that most of the jumps in equity prices under consideration arrive around the time of market

opening. Except for one or two jumps, they were associated with news events. Using Factiva, we

searched for real-time business news and information releases around jump arrival times. Sources

for Factiva include the Wall Street Journal, the Financial Times, and Dow Jones and Reuters

newswires. During 3 months, there was one scheduled corporate news event for each company,

which was the third-quarter earnings announcement. Around earnings announcement times, we

find similar evidence as Dubinsky and Johannes (2005), who set an equity option pricing model

with jump events conditional on deterministic earnings announcement date (EAD). In addition
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to prescheduled announcements, however, we find the evidence of stock price jumps’ association

with more of unscheduled news events. We also discover that the sizes of jumps associated with

earnings announcements are not necessarily the largest in our sample, which suggests strongly that

scheduled events are not sufficient for an individual equity pricing model with jumps. Deepening

our understanding on jump dynamics of individual equities can also lead to exploiting a profitable

trading strategy.

5 Concluding Remarks

We introduce a new nonparametric test to detect realized jumps up to at intra-day frequency and

characterize their sizes. We show that jump dynamics and overall return distributions of any type

of security can be investigated. Monte Carlo simulation experiments show that intra-day time

series data increase the precision of jump tests, decreasing the likelihood of global misclassification

of jumps. Our empirical study gives strong evidence of an association between jump arrivals and

both prescheduled earnings announcements and real-time news releases in U.S. equity markets.

Our test’s results are robust to model specification and nonstationarity of the series applied. We

consider the Poisson type of jumps in pricing models in this paper. One possible future direction

for research is to develop a test for jumps from pure jump processes, such as infinite activity

Levy processes. Another extension is to consider the presence of market microstructure noise at

ultra-high frequencies of data, which we are currently developing.
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Wal Mart (WMT) IBM (IBM)

Date Time Size (%) News S Date Time Size (%) News S

Sep 26 9:30am 1.29 Law Suit N Sep 13 9:45am -0.76 Announcement N

Oct 06 9:31am 1.12 EAD Y Sep 19 9:30am -0.74 Deal News N

Oct 10 9:30am 1.53 New Launch N Sep 21 9:30am -0.96 Option Market N

Oct 14 9:30am 0.93 Law Suit N Sep 27 9:45am 1.03 Good News N

Oct 19 10:45am 0.84 Investment N Oct 07 9:45am 1.04 Good News N

Oct 31 9:30am 1.33 Sales Up N Oct 10 9:30am 0.98 New Product N

Nov 15 9:48am -1.25 Announcement N Oct 11 9:30am 1.24 Expansion N

Nov 18 9:30am 1.11 Announcement N Oct 18 9:30am 1.99 EAD Y

Oct 19 9:30am -1.29 Rival EAD Y

Nov 18 9:30am 1.30 Announcement N

µy = 0.8625 σy = 0.8817 µy = 0.3830 σy = 1.1801

General Electric (GE) Coca Cola (KO)

Date Time Size (%) News S Date Time Size (%) News S

Sep 15 9:45am 0.70 Good News N Sep 13 9:45am -1.59 Bad News N

Sep 21 9:30am -0.95 Bad News N Sep 21 9:30am 0.96 Announcement Y

Oct 06 9:31am 2.03 Announcement N Oct 20 9:30am 2.60 EAD Y

Oct 07 9:30am 0.92 Good News N Nov 18 9:30am 1.42 Announcement N

Oct 14 9:30am 1.11 EAD Y Nov 18 9:45am -0.83 Announcement N

Nov 18 9:30am 2.20 Announcement N Nov 29 9:30am -0.88 Announcement N

µy = 1.0017 σy = 1.1324 µy = 0.28 σy = 1.6260

Table V: Jump dates, jump times, and observed jump sizes, with associated news events. µy and σy are mean

and standard deviation of observed jump sizes. The result is based on transaction prices from the NYSE during 3

months from September 1 to November 30, 2005. The significance level of each test is set at 5%. S denotes whether

the news was scheduled or not. EAD denotes an earnings announcement date
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6 Appendix

6.1 The Non-zero Drift

The main conclusion of Theorem 1 is not altered under an extension to the non-zero drift case.

Suppose now, we have the non-zero drift coefficient µ(t) for the return process; that is,

d log S(t) = µ(t)dt + σdW (t).

A modified version of Definition 1 for this case is as follows:

Definition 1.1 The statistic Tµ(ti), which tests at time ti whether there was a jump from ti−1 to

ti, is defined as

Tµ(ti) =
log S(ti)− log S(ti−1)− m̂i√

1
K−2

∑i−1
j=i−K+2 | log S(tj)− log S(tj−1)|| log S(tj−1)− log S(tj−2)|

,

where

m̂i =
1

K − 1

i−1∑

j=i−K+1

(log S(tj)− log S(tj−1)).

Then, we can extend Theorem 1 to the case of non-zero drift as below.

Theorem 1.1 Let Tµ(ti) be as in Definition 1.1 under the null and K = Op(∆tα), where

−1 < α < −0.5. Suppose Assumption 1 is satisfied. Then, as ∆t → 0,

supi|Tµ(ti)− T̂µ(ti)| = Op(∆t
3
2
−δ+α),

where

T̂µ(ti) =
Ui − Ūi−1

c
.
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Here, Ūi−1 = 1
K−1

∑i−1
j=i−K+1 Uj and the rest of notations are the same as in Theorem 1.

Proof of Theorem 1.1: See Appendix 5.2.

The error rate is the same as the zero drift case, since the error due to the drift term is dominated

by the error due to the diffusion part. T̂µ(ti) asymptotically follows a normal distribution with

its mean 0 and variance K
c2(K−1)

→ 1
c2

, since K →∞. Our choice of K makes the effect of jumps

on m̂i vanish because of the property of the Poisson process for rare jumps, which says that there

can be no more than a single jump in an infinitesimal time interval. Because this makes only a

finite number, say L, of jumps in the window, the jump test statistic for the non-zero drift case

becomes

T (ti) ≈ Ui − Ūi−1

c
− L× Y (τ)

cσ(K − 1)
√

∆t
Iτ∈(ti−K ,ti−1].

The second term will disappear because of the condition K
√

∆t →∞. This shows that jumps in

the window have asymptotically negligible effect on testing jumps from ti−1 to ti with our choice

of K.

6.2 Proof of Theorem 1 and Theorem 1.1 in Appendix 6.1

For ti−K < t < ti,

log S(t)− log S(ti−K) =
∫ t

ti−K

µ(u)du +
∫ t

ti−K

σ(u)dW (u).

Given the Assumption 1 imposed, we have with A1.1,

∫ ti

ti−1

µ(u)du− µ(ti−1)∆t = Op(∆t
3
2 )

and
∫ ti

ti−K

µ(u)du− µ(ti−K)K∆t = Op(∆t
3
2
+α)
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uniformly in all i. This implies

supi,t≤ti |
∫ t

ti−K

{µ(u)− µ(ti−K)}du| = Op(∆t
3
2
+α).

Similarly to lemma 1 in Mykland and Zhang (2001), under the condition A1.2, we can apply

Burkholder’s Inequality (Protter (1995)) to get

supi,t≤ti |
∫ t

ti−K

{σ(u)− σ(ti−K)}dW (u)| = Op(∆t
3
2
−δ+α),

where δ can be any number in 0 < δ < 3
2 + α. This result is also uniform in i for K = Op(∆tα)

as specified. Therefore, over the window, for t ∈ [ti−K , ti], dlogS(t) can be approximated by

dlogSi(t), such that

dlogSi(t) = µ(ti−K)dt + σ(ti−K)dW (t),

because

| (log S(t)− log S(ti−K))−
(
log Si(t)− log Si(ti−K)

)
|

= |
∫ t

ti−K

(µ(u)− µ(ti−K))du +
∫ t

ti−K

(σ(u)− σ(ti−K))dW (u)| = Op(∆t
3
2
−δ+α).

For all i, j and tj ∈ [ti−K , ti], the numerator is

log S(tj)− log S(tj−1)− m̂i

= log Si(tj)− log Si(tj−1)− 1
K − 1

i−1∑

l=i−K+1

(
log Si(tl)− log Si(tl−1)

)
+ Op(∆t

3
2
−δ+α)

= σ(ti−K)W∆t − 1
K − 1

i−1∑

l=i−K+1

σ(ti−K)W∆t + Op(∆t
3
2
−δ+α)

= σ(ti−K)
√

∆t(Uj − Ūi−1) + Op(∆t
3
2
−δ+α),

where Uj = 1√
∆t

(Wtj −Wtj−1) ∼ iid Normal(0, 1) and Ūi−1 = 1
K−1

∑i−1
j=i−K+1 Uj .

For the denominator, we put a volatility estimator based on the realized bipower variation for inte-

grated volatility estimator [see Barndorff-Nielsen and Shephard (2004)]. According to Proposition
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2 in Barndorff-Nielsen and Shephard (2004), the impact of the drift term is negligible; hence, it

does not affect the asymptotic limit behavior. Then, we are left to prove the following approxi-

mation of scaled volatility estimator:

plim∆t→0c
2σ̂2(t) = plim∆t→0

1
(K − 2)∆t

∑

j

| log S(tj)− log S(tj−1)|| log S(tj−1)− log S(tj−2)|

= c2σ2(t).

It is due to

1
(K − 2)∆t

i−1∑

j=i−K+3

| log S(tj)− log S(tj−1)|| log S(tj−1)− log S(tj−2)|

=
1

(K − 2)∆t

i−1∑

j=i−K+3

| log Si(tj)−log Si(tj−1)+Op(∆t
3
2
−δ+α)|| log Si(tj−1)−log Si(tj−2)+Op(∆t

3
2
−δ+α)|

=
1

(K − 2)∆t

i−1∑

j=i−K+3

| log Si(tj)− log Si(tj−1)|| log Si(tj−1)− log Si(tj−2)|+ Op(∆t
3
2
−δ+α)

=
1

K − 2

i−1∑

j=i−K+3

σ2(ti−K)|
√

∆tUj ||
√

∆tUj−1|+ Op(∆t
3
2
−δ+α)

= σ2(ti−K)c2 + Op(∆t
3
2
−δ+α),

where Ui’s are iid Normal(0, 1) and c = E(|Ui|) ≈ 0.7979. Then,

T (ti) =
(Ui − Ūi−1)

c
+ Op(∆

3
2
−δ+α).

This proves Theorem 1 and Theorem 1.1.

Alternatively, for the non-zero drift case, we can use Girsanov’s Theorem to suppose µ(t) = 0,

as in Zhang, Mykland and Ait-Sahalia (2005).

6.3 Proof of Theorem 2

When there is a possibility of rare Poisson jumps in the window, the scaled bipower variation

c2σ̂2(t) can be decomposed into two parts: one with jump terms and one without jump terms, as
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follows.

c2σ̂2(t) =
1

(K − 2)∆t

i−1∑

j=i−K+2

| log S(tj)− log S(tj−1)|| log S(tj−1)− log S(tj−2)|

= terms without jumps +
1

(K − 2)∆t

∑

terms with jumps
σ(tj)|∆Wtj ||Jump|

= terms without jumps +
1

(K − 2)∆t
Op(

√
∆t)

∑

terms with jumps
σ(tj)|Jump|

= terms without jumps +
1

(K − 2)∆t
Op(

√
∆t).

The order of the second term is due to the property of the Poisson jump process that allows a finite

number of jumps over the window. Since σ(tj)|Jump| = Op(1),
∑

terms with jumps σ(tj)|Jump| =

Op(1). The effect of jump terms becoming negligible requires the second term to be op(1) as ∆t

goes to 0. The window size K that satisfies K
√

∆t →∞ and K∆t → 0 as ∆t goes to 0 will work.

If we assume the window size to be K = β∆tα, where β is some constant, then the necessary

condition for α is −1 < α < −0.5. Accordingly,

lim∆t→0σ̂
2|alternative = lim∆t→0σ̂

2|null = σ2(t).

Then, putting the approximation for return above in the statistic yields

T (ti) ≈
σti−K

√
∆tUi + Y (τ)Iτ∈(ti−1,ti)

cσ(ti−K)
√

∆t
=

Ui

c
+

Y (τ)
cσ
√

∆t
Iτ∈(ti−1,ti).

6.4 Proof of Lemma 1

Proof of Lemma 1 follows from Aldous (1985) and the proof in Galambos (1978).

6.5 Proof of Theorem 3

We suppose there are N jumps from time t = 0 to t = T and claim there is a jump if |T (ti)| >

βnSn + Cn. Fix a set of jump times as An = {i : there is a jump in (ti−1, ti]}. Then,

P (We correctly classify all N jumps|N jumps) = P (For all i ∈ An, |T (ti)| > βnSn + Cn)
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≈
∏

i∈An

P (|T (ti)| > βnSn + Cn) ≈
∏

i∈An

P (|Y (ti)| > (βnSn + Cn)cσ
√

∆t)

=
∏

i∈An

(
1− F|Y |(yn)

)
∼

(
1− 2√

2π
yn + o(y2

n)
)N

= 1− 2√
2π

ynN + o(y2
nN).

6.6 Proof of Theorem 4

Let AC
n = {0, 1, ..., n− 1} −An be a set of non-jump times. Then,

P (We incorrectly reject any non-jumps|N jumps)

= P (for some i ∈ AC
n , |T (ti)| > βnSn + Cn|N jumps)

= P (maxi∈AC
n
|T (ti)| > βnSn + Cn|N jumps)

≈ P (maxi∈AC
n
|T̂ (ti)| > βnSn + Cn) = 1− Fξ(βn) = exp(−βn) + o(exp(−βn)).

By L’Hopital’s rule, we obtain the last step because

limβn→∞
1− Fξ(βn)
exp(−βn)

= 1.

6.7 Proof of Theorem 5

Prob(GMJ or GMNJ )=Prob(GMJ )+Prob(GMNJ ) and the results follows from Theorems 3 and

4. Minimum probability can be achieved at β∗n, which can be obtained by taking the first derivative

of probability with respect to βn and setting it equal to 0, as

∂P

∂βn
=

2√
2π

Snσc
√

∆tN − exp(−βn) = 0.
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