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Abstract

In the econometric literature of high frequency data, it is often assumed that one can carry
out inference conditionally on the underlying volatility processes. In other words, conditionally
Gaussian systems are considered. This is often referred to as the assumption of “no leverage
effect”. This is often a reasonable thing to do, as general estimators and results can often be
conjectured from considering the conditionally Gaussian case. The purpose of this paper is to
try to give some more structure to the things one can do with the Gaussian assumption. We shall
argue in the following that there is a whole treasure chest of tools that can be brought to bear
on high frequency data problems in this case. We shall in particular consider approximations
involving locally constant volatility processes, and develop a general theory for this approxima-
tion. As applications of the theory, we propose an improved estimator of quarticity, an ANOVA
for processes with multiple regressors, and an estimator for error bars on the Hayashi-Yoshida
estimator of quadratic covariation
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1 Introduction

Recent years have seen an explosion of literature in the area of estimating volatility on the basis

of high frequency data. The concepts go back to stochastic calculus, see, for example, Karatzas

and Shreve (1991) (Section 1.5), Jacod and Shiryaev (2003) (Theorem I.4.47 on page 52), and

Protter (2004) (Theorem II-22 on page 66). An early econometric discussion of this relationship

can be found in Andersen, Bollerslev, Diebold, and Labys (2000). Recent work both from the

probabilistic and econometric side give the mixed normal distribution of the error in approximation.

References include Jacod and Protter (1998), Barndorff-Nielsen and Shephard (2002), Zhang (2001)

and Mykland and Zhang (2002).

Further econometric literature includes, in particular, Gallant, Hsu, and Tauchen (1999), Cher-

nov and Ghysels (2000), Andersen, Bollerslev, Diebold, and Labys (2001, 2003), Dacorogna, Gençay,

Müller, Olsen, and Pictet (2001), Oomen (2004) and Goncalves and Meddahi (2005). Problems

that are attached to the estimation of covariations between two processes are discussed in Hayashi

and Yoshida (2005). Estimating instantaneous volatility at each point in time goes back to Foster

and Nelson (1996), see also Mykland and Zhang (2001), but this has not caught on quite as much in

the econometric application. There is also an emerging literature on that happens in the presence

of observation error, but we are not planning to address this question here.

In the econometric literature, it is often assumed that one can carry out inference condition-

ally on the underlying volatility processes. In other words, conditionally Gaussian systems are

considered. This is often referred to as the assumption of “no leverage effect”. This is often a

reasonable thing to do, as general estimators and results can often be conjectured from considering

the conditionally Gaussian case.

The purpose of this paper is to try to give some more structure to the things one can do with

the Gaussian assumption. We shall argue in the following that there is a whole treasure chest of

tools that can be brought to bear on high frequency data problems in this case. After setting up the

structure in Section 2, we do a warm-up in Section 3 to show that likelihood (parametric inference)

and cumulant methods can be used to define and analyze estimators. It will become clear that

there is mileage in considering systems that have locally constant volatility, and we approach this

systematically in Section 4, culminating in our main Theorems 1 and 2.

As applications of the theory, we consider first (Section 5.1) the problem of estimating quarticity.

We shall see that one can improve somewhat on the efficiency of the Barndorff-Nielsen and Shephard

(2002) estimator, though the latter also holds up pretty well. Then, in Section 5.2 we shall revisit

the ANOVA problem from Zhang (2001) and Mykland and Zhang (2002), this time in the setting

of several regressors. We shall see that with the theory in hand, one can use classical regression

theory of carry our an ANVOA. In fact, the amount of smoothing needed is over a finite number of

observations. This is a proposition which, I think, would have attracted long odds if not announced

as a theorem, and it is evidence of the power of the theorems from Section 4. Finally, we discuss the
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problem of setting error bars on the Hayashi-Yoshida estimator of quadratic covariation (Section

5.3).

Some disclaimers. First of all, we are not claiming to have invented the conditional Gaussian

assumption; it is used by a big fraction of the theory. Second, we do not claim that it can solve

all problems; for example, it does not help if one wishes to estimate the leverage effect. Third,

the results in the conditionally Gaussian case may not carry over to the general case, they only

provide suggestions for what may occur. We do, however, assume that the quadratic variations are

themselves random processes, to avoid excessive oversimplification.

Finally, this is not an attempt at a comprehensive study of what one can to with the Gaussian

case; there are much too many tools available and open problems for that. In particular, we do not

consider the case where observations have error. Our hope is that this study will encourage further

use in high frequency data of the ideas and results that are available for Gaussian situations.

2 The Model, and Some Immediate Conclusions.

In general, we shall work with a p-variate Itô process (X
(1)
t , ..., X

(p)
t ), given by the system

dX
(k)
t = µ

(k)
t dt + σ

(k)
t dW

(k)
t , k = 1, ..., p, (1)

where µ
(k)
t and σ(k) are adapted càdlàg random processes, and the W

(k)
t are Brownian motions

that are not necessarily independent. We shall suppose that the process X
(k)
t is observed at times

0 = tk,0 < tk,1 < ... < tk,nk
= T . If p = 1, we may sometimes suppress the “k”. The underlying

filtration will be called (Ft).

Assumption 1. (Sampling times). In addition, when doing asymptotics, we suppose that there is

an index N , so that tk,i = tN,k,i (the additional subscript will normally be suppressed). The grids

{0 = tN,k,0 < tN,k,1 < ... < tN,k,nN,k
= T} will not be assumed to be nested when N varies. To get

a concrete example of what one can take as N , one can use

N = nN,1 + ... + nN,p. (2)

We then do asymptotics as N → ∞. The basic assumption is that

max
1≤i≤nN,k

|tN,k,i − tN,k,i−1| = O(N−1) (3)

for each k, 1 ≤ k ≤ p. We emphasize that p is a fixed number which does not vary with N .

We now describe the setting for parametric inference.

Assumption 2. (A conditionally Gaussian system.) We let P be a probability distribution on the

form (1) for which µ
(k)
t = 0 for all k. We assume that we can take the quadratic variations and
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covariations
〈
X(k), X(l)

〉
t
to be F0-measurable. As is customary, in this case, we call (X

(1)
t , ..., X

(p)
t )

a Brownian martingale. Note that “nonrandom” is a special case of “F0-measurable”. We let Pω

denote the regular conditional probability distribution given F0, and note that the (Xt) process is

Gaussian under Pω, for (almost) every ω. We also suppose that the observation times tk,i are

nonrandom, but irregular.

We emphasize that the quadratic variations and covariations will normally themselves be taken

to be taken to be Itô-processes. It will be clear from Section 4 that this is desirable in predicting

results. See Remark 2 just after Theorem 2.

Remark 1. (If the drift µ is not zero.) Our asymptotic results in Section 4 and onwards will

remain valid, under mild regularity conditions, even when drift µ
(k)
t in (1) is nonzero. This is

explained in Section 4.3

Under Assumption 2, the set of observations (X
(k)
tk,i

− X
(k)
tk,i−1

, 1 ≤ i ≤ nk, 1 ≤ k ≤ p) is,

conditionally on F0, simply a multivariate normal vector with mean zero, and with covariances

given by

κk,i;l,j = Covω(X
(k)
tk,i

− X
(k)
tk,i−1

,X
(l)
tl,j

− X
(l)
tl,j−1

)

=

{ 〈
X(k), X(l)

〉
tk,i∧tl,j

−
〈
X(k), X(l)

〉
tk,i−1∨tl,j−1

if (tk,i−1, tk,i) ∩ (tl,j−1, tl,j) 6= ∅

0 otherwise
(4)

where, as usual, x ∧ y = min(x, y) and x ∨ y = max(x, y).

The log likelihood is then, as usual, given by

`(κ) = −
1

2
ln det(κ) −

1

2

∑

k,i,l,j

κk,i;l,j(X
(k)
tk,i

− X
(k)
tk,i−1

)(X
(l)
tl,j

− X
(l)
tl,j−1

) −
N

2
ln(2π), (5)

where κk,i;l,j are the elements of the matrix inverse of (κk,i;l,j), and N is given by (2). κ is the

N × N matrix of all the κk,i;l,j.

We are now in a position to show that the by now classical estimates of volatility and covariation

are, in fact, likelihood estimates under Assumption 2.

Note first that by standard considerations, the MLEs of the parameters are given by

κ̂k,i;l,j =

{
(X

(k)
tk,i

− X
(k)
tk,i−1

)(X
(l)
tl,j

− X
(l)
tl,j−1

) if (tk,i−1, tk,i) ∩ (tl,j−1, tl,j) 6= ∅

0 otherwise
(6)

(cf., for example, the derivation in Chapter 4 of Mardia, Kent, and Bibby (1979)). Thus, two

immediate conclusions.
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Example 1. (The classical estimate of quadratic variation). The MLE of
〈
X(k), X(k)

〉
T

is given

by
̂

〈
X(k), X(k)

〉
T

=
∑

i

κ̂k,i;k,i =
∑

i

(X
(k)
tk,i

− X
(k)
tk,i−1

)2. (7)

This is, of course, the estimate which has been commonly used in the literature, cf. the references

in the Introduction.

Example 2. (The MLE for covariation). The MLE of
〈
X(k), X(l)

〉
T

is similarly given by

̂〈
X(k), X(l)

〉
T

=
∑

i,j:(tk,i−1,tk,i)∩(tl,j−1 ,tl,j)6=∅

κ̂k,i;l,j

=
∑

i,j:(tk,i−1,tk,i)∩(tl,j−1 ,tl,j)6=∅

(X
(k)
tk,i

− X
(k)
tk,i−1

)(X
(l)
tl,j

− X
(l)
tl,j−1

). (8)

This coincides with the Hayashi and Yoshida (2005)-estimator.

Example 1 is, of course, the reinvention of a long known estimator. In the case of Example 2,

however, we are dealing with a procedure which only dates back a couple of years. Thus, we are

already close to the research frontier. And there is more in the following.

Note that even if estimators have been derived under Assumption 2, it has earlier been shown

by the authors cited in the Introduction that these estimators are have reasonable properties also

in the more general case. Thus, likelihood in the conditionally Gaussian case is a useful way of

generating estimators.

3 Warm-Up: The Quantification of Error in the Estimators.

It is customary in likelihood inference to use the Fisher information to quantify variance. We shall

here see that this leads to interesting conclusions. There is some insight in the following lemma.

Lemma 1. (Covariance and expected information). Under Assumption 2, if (tk,i−1, tk,i)∩(tl,j−1, tl,j) 6=

∅ and (tm,g−1, tm,g) ∩ (tn,h−1, tn,h) 6= ∅

Covω (κ̂k,i;l,j, κ̂m,g;n,h) = Eω

(
−

∂2`

∂κk,i;l,j∂κm,g;n,h

)−1

= κk,i;n,hκl,j;m,g + κk,i;m,gκl,j;n,h (9)

The lemma is a direct consequence of the exponential family structure, and the fact that if

Z1, ..., Z4 are jointly normal, then Cov(Z1Z2,Z3Z4) = Cov(Z1,Z3)Cov(Z2,Z4)+Cov(Z1,Z4)Cov(Z2,Z3).

Again, there are some immediate consequences of this.
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Example 1 (continued). For the estimate (7) of quadratic variation one obtains

Varω

(
̂

〈
X(k),X(k)

〉
T

)
= 2

∑

i

κ2
k,i;k,i

= 2
∑

i

Eω(X
(k)
tk,i

− X
(k)
tk,i−1

)2)2

=
2

3

∑

i

Eω

(
(X

(k)
tk,i

− X
(k)
tk,i−1

)4
)

, (10)

since for a mean zero normal random variable Z, E(Z 4) = 3E(Z2)2. This quantity is naturally

estimated by
2

3

∑

i

(X
(k)
tk,i

− X
(k)
tk,i−1

)4. (11)

This, of course, is the quarticity estimate of Barndorff-Nielsen and Shephard (2002). Again, the

estimator follows from a simple conditionally Gaussian likelihood. Its asymptotic validity has been

shown under more general Itô process assumptions by Barndorff-Nielsen and Shephard (2002) and

Mykland and Zhang (2002) (in the latter, see Remark 2 (p. 16) and the proof on p. 25).

We shall show in Section 5.1, however, that this may not be the best estimator available. This

will be one of the applications of our theory in Section 4 below.

The question now arises whether we can do anything new with the setup we have given. That

is what the rest of the paper is about.

A natural first question to ask is whether we can provide the error of the Hayashi and Yoshida

(2005) estimator, a.k.a. (8). The simple part of this is that by Lemma 1,

Varω

(
̂〈

X(k),X(l)
〉
T

)

=
∑

i,j:(tk,i−1,tk,i)∩(tl,j−1 ,tl,j)6=∅

∑

g,h:(tk,g−1,tk,g)∩(tl,h−1 ,tl,h)6=∅

Covω (κ̂k,i;l,j, κ̂k,g;l,h)

=
∑

i,j:(tk,i−1,tk,i)∩(tl,j−1 ,tl,j)6=∅

∑

g,h:(tk,g−1,tk,g)∩(tl,h−1 ,tl,h)6=∅

κk,i;k,gκl,j;l,h + κk,i;l,hκk,g;l,j

=
∑

i,j:(tk,i−1,tk,i)∩(tl,j−1 ,tl,j)6=∅

κk,i;k,iκl,j;l,j +
∑

(i,j,g,h)∈An

κk,i;l,hκk,g;l,j, (12)

where

An ={(i, j, g, h) : (tk,i−1, tk,i) ∩ (tl,j−1, tl,j) 6= ∅, (tk,g−1, tg,i) ∩ (tl,j−1, tl,j) 6= ∅,

(tk,i−1, tk,i) ∩ (tl,h−1, tl,h) 6= ∅ and (tk,g−1, tk,g) ∩ (tl,g−1, tl,g) 6= ∅}. (13)



Gaussian Calculus for High Frequency Data 6

A perhaps slightly more interpretable expression is to write

Varω

(
̂

〈
X(k),X(l)

〉
T

)
=

∑

i,j:(tk,i−1,tk,i)∩(tl,j−1 ,tl,j)6=∅

(κk,i;k,iκl,j;l,j + (κk,i;l,j)
2)

+
∑

(i,j,g,h)∈Bn

κk,i;l,hκk,g;l,j, (14)

Bn ={(i, j, g, h) : i 6= j, g 6= h, (tk,i−1, tk,i) ∩ (tl,j−1, tl,j) 6= ∅, (tk,g−1, tg,i) ∩ (tl,j−1, tl,j) 6= ∅,

(tk,i−1, tk,i) ∩ (tl,h−1, tl,h) 6= ∅ and (tk,g−1, tk,g) ∩ (tl,g−1, tl,g) 6= ∅}. (15)

The expressions (12) and (14), however, do not show how to estimate Varω

(
̂〈X(k),X(l)〉T

)
. For

example,

Eω(κ̂k,i;k,iκ̂l,j;l,j) = Eω((κ̂k,i;l,j)
2) = κk,i;k,iκl,j;l,j + 2(κk,i;l,j)

2, (16)

so that even if tk,i = tl,i (which is to say that there is no asynchonicity, so that the second term in

(14) vanishes), there is no directly obtainable estimate of the quantity in (14). We shall now see

how this type of issue can be remedied. We return to the problem of the Hayashi-Yoshida estimator

in Section 5.3.

4 Main Results: Locally Constant Volatility

The basic problem in estimating the quantity (14) is that there are not enough observations per

parameter. So long as there are a few observations per parameter, one can use standard theory of

sample cumulants (see, for example, Chapter 4 of McCullagh (1987)) to find unbiased estimators.

After that, at least under Assumption 2, consistency of the variance estimates will take care of

itself. There is some overhead in setting up the approximation (Section 4.1), but we believe that is

it worth it when we get to Section 4.2 and beyond.

4.1 Setup

We shall in the following show that it is valid, at least asymptotically, to consider approximate

systems of the type (1) were not only do we take µt = 0, but we also suppose that there are times

0 = τN,0 < τN,1 < ... < τN,vN
so that d

〈
X(k), X(l)

〉
t

is constant on (τN,ι−1, τN,ι] for each ι. The

requirement for this is that

max
ι

#{tN,k,j ∈ (τN,ι−1, τN,ι]} = O(1) as N → ∞, (17)

and

vN = O(N). (18)
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Assumption 3. (Structure of the quadratic variation process). Set ζ
(k,l)
t = d

〈
X(k), X(l)

〉
t
/dt. (This

process exists under the model 1 and the Kunita-Watanabe inequality). We assume that the matrix ζt

is an an Itô process. We shall further assume that the drift part of each ζt is absolutely continuous

with locally bounded derivative, and that each 〈ζ (k,l), ζ(m,n)〉t is continuously differentiable. We

finally assume that ζt is locally bounded, and that if λ
(p)
t is the smallest eigenvalue of ζt, then

inft λ
(p)
t > 0 a.s.

We are proposing to to hold the characteristics of the process constant in small time periods.

We first define our time periods, which have to be joint for all p coordinates of the process X.

Definition 1. (A reference set of time points). We shall let GN be the ordered set which contains

(but can be bigger that) all points tN,k,j and the τN,ι. Represent GN = {0 = θN,0 < θN,1 < ... <

θN,wN
= T}. We suppose for simplicity that there is a number M so that τN,ι = θN,Mι. This is

without loss of generality in view of assumption (17), since we can add point to GN until this is

true. (One can state results also without this assumption, but they look unnecessarily dreadful).

Note that wN = MvN .

We shall need the quadratic variation of the above set of time points: the “Asymptotic Quadratic

Variation of Time” (”AQVT”) H(t) is defined by

H(t) = lim
N→∞

wN

T

∑

θN,j+1≤t

(θN,j − θN,j−1)
2, (19)

provided the limit exists. From (3),

max
1≤i≤wN

|θN,i − θN,i−1| = O(N−1), (20)

whence every subsequence has a further subsequence for which H exists. Also, when the limit

exists, it is Lipschitz continuous.

We finally define the covariance matrix on the grid GN :

νk,l,i = Covω(X
(k)
θN,i

− X
(k)
θN,i−1

,X
(l)
θN,i

− X
(l)
θN,i−1

). (21)

To hold the characteristics of the process constant over the interval (τN,ι−1, τN,ι], we set

ν̄k,l,ι =
1

M

∑

θN,j∈(τN,ι−1,τN,ι]

νk,l,j. (22)

The idea is now to approximate our actual probability P by one which we shall call P N , for

which (X
(k)
θN,j

−X
(k)
θN,j−1

, k = 1, ..., p) are iid random vectors with mean zero and covariances ν̄k,l,ι as

θN,j ranges over (τN,ι−1, τN,ι] (for fixed (N, ι)). In general, of course, there are missing values from

these observations, but this is not always a problem, as we shall see.
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It will be useful at this point to use matrix notation. Write νj for the p × p matrix (νk,l,j)

and similarly with ν̄ι (the p × p matrix (ν̄k,l,ι) and ∆Xθj
(the p × 1 vector X

(k)
θj

− X
(k)
θj−1

). The log

likelihood ratio between the two measures (on the σ-field generated by the processes
〈
X(k), X(l)

〉
t

and the random variables X
(k)
θj

) becomes

log
dP

dP N
=

1

2

∑

ι

∑

θN,j∈(τN,ι−1,τN,ι]

(
log det(ν̄ι) − log det(νj) − ∆X∗

θj
(ν−1

j − ν̄−1
ι )∆Xθj

)
. (23)

Note that

log
dP

dP N
= log

dPω

dP N
ω

. (24)

4.2 Main Contiguity Theorem

We obtain the following main result, which is proved in Section 6.

Theorem 1. (Contiguity of P N and P ). Suppose that Assumptions 1-3 are satisfied. Assume that

the AQVT H exists, and that H ′(t)−1 is integrable. Set

ZN = −
1

2

∑

ι

∑

θN,j∈(τN,ι−1 ,τN,ι]

(
∆X∗

θj
(ν−1

j − ν̄−1
ι )∆Xθj

)
. (25)

Let γt =
∫ t
0 ζ−1

t dζt, and define

ΓZZ =
1

6
T 2M(M − 1)

∫ T

0
H ′(t)2

p∑

k=1

〈γ(k,k), γ(k,k)〉
′

tdt. (26)

Then (for almost all ω), as N → ∞, ZN converges in law under P N
ω to a normal distribution with

mean −ΓZZ and variance ΓZZ. Also, under P N ,

log
dP

dP N
= ZN +

1

2
ΓZZ + op(1). (27)

The theorem says that Pω and the approximation P N
ω are contiguous in the sense of, for example

Chapter IV Hájek and Sidak (1967) and Chapter IV of Jacod and Shiryaev (2003). This is because

it follows from the theorem that dPω/dP N
ω is uniformly integrable under P N

ω .

In particular, if an estimator is consistent under P N , it is also consistent under P . in other

words, one can, for purposes of consistency, assume that (X
(k)
θN,j

− X
(k)
θN,j−1

, k = 1, ..., p) are iid

random vectors with mean zero and covariances ν̄k,l,ι as θN,j ranges over (τN,ι−1, τN,ι] (for fixed

(N, ι)).

Rates of convergence (typically n1/2) are also preserved, but the asymptotic distribution may

be biased. One fairly general result is as follows.
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Theorem 2. Assume the conditions of Theorem 1. Let ξN,ι be a function of (ξt, τN,ι−1 ≤ t ≤ τN,ι).

Let ξ̂N,ι be an estimator based on (X
(k)
tk,j

− X
(k)
tk,j−1

, τN,ι−1 ≤ tk,j−1 and tk,j ≤ τN,ι, k = 1, ..., p) (that

is to say, that ξ̂N,ι is based on the actually observable increments in the time interval [τN,ι−1, τN,ι)]).

Set ξN =
∑

ι ξN,ι (this quantity would normally be independent of N and ξ̂N =
∑

ι ξ̂N,ι. Assume

that EN
ω (ξ̂N,ι) = ξN,ι (P N

ω -unbiasedness), and assume that the limits

Γξξ = lim
N→∞

VarN
ω (N1/2(ξ̂N − ξN))

and ΓξZ = lim
N→∞

CovN
ω (N1/2(ξ̂N − ξN),ZN). (28)

Also assume the Lindeberg Condition: for every ε > 0,

lim
N→∞

EN
ω

∑

ι

g(N1/2(ξ̂N,ι − ξN,ι)) = 0, (29)

where g(x) = x2I{|x|>ε}. Then under Pω,

N1/2(ξ̂N − ξN ) → N(ΓξZ ,Γξξ) (30)

in law, for almost every ω.

The result follows directly from Theorem 1 in view of Lindeberg’s Central Limit Theorem (see,

for example, Theorem 27.2 (p. 359-360) of Billingsley (1995)) and LeCam’s Third Lemma (see the

lemma on p. 208 in Hájek and Sidak (1967)). Note that by conditional independence,

Γξξ = lim
N→∞

N

vN∑

ι=1

VarNω(ξ̂N,ι), (31)

and similarly for ΓξZ .

In other words, the price for using P N rather than P is to incur a bias N−1/2ΓξZ + o(N−1/2).

In our examples, it will be the case that ΓξZ = 0.

The main obstacle to using Theorem 2 may be to calculate the Γ’s, but we shall see in the next

Section how this can be implemented.

Remark 2. (Rôle of the Itô assumption). It should be clear from the above that it would be a

radical oversimplification to assume that the process ζt is, say, continuously differentiable. If one

does that, then ΓZZ = ΓξZ = 0, and some of the predictive value of the above theorems would be

lost.

Finally, it is worth asserting the contiguity even in the case where the τN,ι are less regular that

assumed in Theorem 1.

Theorem 3. (Contiguity of P N and P in irregular cases). Suppose that Assumptions 1-3 are

satisfied. Set MN,ι = #{θN,k,j ∈ (τN,ι−1, τN,ι]}, and suppose that maxι Mι = O(1). Replace M

by Mι in equation (22). Then dP N/dP is uniformly integrable. In particular, any sequence which

converges in probability under P N also converges in probability under P .
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4.3 When the drift µ is not zero

We first consider the issue of consistency. We make the following assumption instead of Assumption

2.

Assumption 4. (A conditionally Gaussian system, with drift.) We modify 2 to let µt be nonzero.

We let Q be a probability distribution on the form (1), where µt is locally bounded. We now take µt

and quadratic variations and covariations
〈
X(k), X(l)

〉
t
, to be F0-measurable, so the system remains

conditionally Gaussian. The process µt and quadratic variations and covariations
〈
X(k), X(l)

〉
t
must

also be adapted to a filtration for which the W
(k)
t are Brownian motions.

Under Assumptions 3 and 4, Girsanov’s Theorem (see, for example, Chapter 5.5 of Karatzas

and Shreve (1991)) yields that there is a probability measure P satisfying Assumption 2 so that

for almost all ω

Qω and Pω are mutually absolutely continuous. (32)

This means that consistency holds under Qω if and only if it holds under Pω. Thus, for instance,

the final sentence in Theorem 3 hold also under Qω (one still verifies the conditions under P and

PN ).

To discuss this issue on the level of asymptotic distributions, we need the concept of stable

convergence, which we here adapt to contiguous sequences

Definition 2. Let P be a probability measure on a σ-field X , and let P N be a sequence of random

variables equivalent and contiguous to P , so that for all sets A ∈ X , P N (A) → P∞(A). If ZN is

a sequence of X -measurable random variables, then ZN converges stably in law to Z as N → ∞

under probability measures P N if there is an extension of X so that, for all A ∈ X and for all

bounded continuous g, ENIAg(Zn) → E∞IAg(Z) as N → ∞.

For further discussion of stable convergence, see Rényi (1963), Aldous and Eagleson (1978),

Chapter 3 (p. 56) of Hall and Heyde (1980), Rootzén (1980) and Section 2 (p. 169-170) of Jacod

and Protter (1998). It is a useful device in operationalizing asymptotic conditionality, and we have

earlier used in in Mykland and Zhang (2002), Zhang, Mykland, and Aı̈t-Sahalia (2005), and other

papers. In the current context, it will permit us to deal with the drift µ.

First, we generalize the above theorems. Let X be the σ-field generated by the process

Xt, 0 ≤ t ≤ T (for example, one can consider the Borel σ-field on the space of p-dimensional

càdlàg functions, as in Chapter VI of Jacod and Shiryaev (2003)). On can consider Pω as a mea-

sure on X , while P itself is a measure on the product σ-field F0 ×X .

Using the methodology from Jacod and Protter (1998), Mykland and Zhang (2002), Zhang,

Mykland, and Aı̈t-Sahalia (2005), and Zhang (2004), it is easy to see from our proofs of the

theorems in this paper that the convergence is, in fact, stable. Formally:
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Theorem 4. The convergence in Theorems 1 and 2 is stable under P N
ω , for (almost) every ω.

From this it follows directly that

Theorem 5. Assume the conditions of Theorem 2, but replace Assumption 2 by Assumption 4.

Then the convergence in law (30) holds also under Qω, for almost every ω.

The trick here is to note that for every bounded and continuous g

EQ
ω IAg

(
N1/2(ξ̂N − ξN )

)
= EP

ω

dQω

dPω
g
(
N1/2(ξ̂N − ξN )

)

→ EP
ω

dQω

dPω
g (N(ΓξZ ,Γξξ))

= EQ
ω g (N(ΓξZ ,Γξξ)) , (33)

by uniform integrability, whence Theorem 5 is shown.

Note that the above description is mainly a spelling out of the statement in the second paragraph

of the proof of Theorem 2 in Zhang, Mykland, and Aı̈t-Sahalia (2005) (p. 1410). The original idea

appears to go back to Rootzén (1980).

5 Some Applications of the Theory

.

5.1 Estimating Quarticity

We now return to Example 1. The process Xt is observed at times 0 = tN,0 < tN,1 < ... < tN,n1 = T .

We take N = n1.

To form our grid points, we take the θi’s to be identical with the ti’s. For simplicity of argument,

we assume that N is a multiple of M .

We now describe the system under P N . In each of vN intervals [τι−1, τι], we get M iid observa-

tions of ∆Xtj , which are normal with mean zero and variance ν̄ι.

Our object under P N is to estimate

VarNω

(
〈̂X,X〉T

)
= 2M

vN∑

ι=1

ν̄2
ι , (34)
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Up to high order, it is enough to estimate this quantity, since

VarN
ω

(
〈̂X,X〉T

)
=

2

M

vN∑

i=1

(∫ τι

τι−1
σ2

t dt

)2

= Varω

(
〈̂X,X〉T

)
+ op(N

−3/2) (35)

under Assumption 3. (The main term on either side of (35) is of order Op(N
−1)).

The question under P N is how to estimate ν̄2
ι from the M iid observations of ∆Xtj (tj ∈

(τι−1, τι]). Both likelihood theory and sufficiency suggests that the estimator must be of the form

constant × ˆ̄ν2
ι , where

ˆ̄νι =
1

M

∑

tj∈(τι−1,τι]

∆X2
tj . (36)

In fact, following Example 2.2.1 (p. 84-85) in Lehmann (1983), the estimator

M

M + 2
ˆ̄ν2
ι (37)

is a P N
ω -unbiased minimum variance (UMVU) estimator for ν̄2

ι . Our proposed estimator for

Varω(〈̂X,X〉T) is therefore

V̂ar( ̂〈X,X〉T ) =
2M2

M + 2

vN∑

i=1

ˆ̄ν2
ι . (38)

This estimator is UMVU under P N
ω . Note that for M = 1, our estimator coincides with the

estimator from Barndorff-Nielsen and Shephard (2002), cf. (our) equation (11).

To further assess the quality of our estimator (38), note that

VarNω

{
V̂ar(〈̂X,X〉T)

}
=

(
2M2

M + 2

)2 vN∑

ι=1

VarN
ω

{
ˆ̄ν2
ι

}
.

=

(
2M2

M + 2

)2
1

M4
Var((χ2

M)2)

vN∑

ι=1

ν̄4
ι

=
4(M + 3)M

M + 2

vN∑

ι=1

ν̄4
ι

=
4(M + 3)M

M + 2

1

M

(
T

N

)3 ∫ T

0
σ8

t dH(t) + op(N
−3)

=
4(M + 3)

M + 2

(
T

N

)3 ∫ T

0
σ8

t dH(t) + op(N
−3) (39)

by using the methodology from Section 5 of Zhang (2004)

To apply Theorem 2, we see by the same methods as above (cf. also the proof of Theorem 1)

that CovN
ω (ZN,N3/2(V̂ar(〈̂X,X〉T) − Var(〈̂X,X〉T)) = op(N−1/2), and that the Lindeberg condition

is obviously satisfied. Hence we have obtained
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Theorem 6. Assume the conditions of Theorem 1. Then, under Pω,

N3/2
{

V̂ar(〈̂X,X〉T ) − Varω( ̂〈X,X〉T )
}

(40)

converges in law to a normal distribution with mean zero and variance

4(M + 3)

M + 2
T 3

∫ T

0
σ8

t dH(t). (41)

Several comments are in order. First of all, picking M > 1 does improve on the estimator

from Barndorff-Nielsen and Shephard (2002) (which corresponds to M = 1). The improvement,

however, is not huge: the variance is reduced by up to 25 % as M → ∞. In other words, the

Barndorff-Nielsen and Shephard (2002) estimator emerges relatively well from the comparison.

There are some open questions here. One is that we here use a fixed starting point for dividing

the observations into gruops of size M . One should, or course, start group 1 at points 0 up to M−1,

and then average across the results. By a sufficiency argument, this will improve the performance

of the estimator. The second is that it looks like it would be optimal to let M → ∞ with N . This

would typically induce bias, and there is probably a bias-variance tradeoff to be explored here.

Finally, note that setting errors for estimators is not necessarily the same as estimating the

size of the error. This issue was the underlying problem in the observed-vs.-estimated-expected-

information debate, which went back to Fisher and Neyman, see, for example, Cox (1958) and Efron

and Hinkley (1978). The debate created a slew of important results in the 1980s and 1990s, such

as Barndorff-Nielsen (1986, 1991), Jensen (1992, 1995, 1997), McCullagh (1984, 1987), McCullagh

and Tibshirani (1990), Pierce and Peters (1994), Reid (1988), Skovgaard (1986, 1991), and many

others. (For those who are familiar with the area: thanks for all the fun, and apologies for not

citing everyone!) In other words, showing that V̂ar(〈̂X,X〉T ) has low variance is not the same as

showing that it is a good statistic with which to set a confidence interval.

5.2 ANOVA with Multiple Regression and Finite Smoothing

We here revisit the problem from Zhang (2001) and Mykland and Zhang (2002). There are processes

X
(1)
t , ..., X

(p)
t and Yt which are observed synchronously at times 0 = tN,0 < tN,1 < ... < tN,n1 = T .

(The asynchronous problem is also interesting, but beyond what we are planning to do in this

paper). In this treatment, we shall take the times to be equidistant, so ∆t = T/n1, but this can of

course be generalized. The two processes are related by

dYt =

p∑

i=1

f (i)
s dX(i)

s + dZt, with 〈X(i), Z〉t = 0 for all t and i. (42)

The problem is now to estimate 〈Z,Z〉T , that is to say the residual quadratic variation of Y after

regressing on X. As documented in Zhang (2001) and Mykland and Zhang (2002), this is useful

for for statistical and trading purposes.
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We take the θi’s to be identical with the ti’s. We assume that M > p. For simplicity of

argument, we also assume that n1 is a multiple of M (this does not really affect the conclusions).

We now describe the system under P N . In each of vN intervals [τι−1, τι] we get M iid observa-

tions of (∆Xtj ,∆Ytj ), which are normal with mean zero and covariance matrix ν̄ι. For tj ∈ (τι−1, τι],

in obvious notation,

ν̄ZZ,ι = EN
ω ∆Z2

tj = ν̄Y Y,ι − ν̄∗
XY,ιν̄

−1
XX,ιν̄XY,ι (43)

The strategy is now as follows: in each time interval, regress ∆Ytj on ∆Xtj linearly, and without

intercept. Call the residuals ∆̂Ztj . Set

ξ̂ι,N =
M

M − p

∑

tj∈(τι−1 ,τι]

∆̂Z
2

tj

and ξι,N = EN
ω


 ∑

tj∈(τι−1,τι]

∆Z2
tj


 (44)

Standard regression theory (see, for example, Weisberg (1985)) yields that, because of the Gaus-

sianity

EN
ω

(
ξ̂ι,N | ∆Xtj , all j = 1, ..., n1

)
= ξι,N , (45)

and, in fact, more generally,

(M − p)
ξ̂ι,N

ξι,N
, ι = 1, ..., vN are iid χ2

M−p under P N
ω given all ∆Xtj , j = 1, ..., n1. (46)

A natural estimator for 〈Z,Z〉T is therefore

̂〈Z,Z〉T =
M

M − p

n1∑

j=1

∆̂Z
2

tj =

vN∑

ι=1

ξ̂ι,N . (47)

From (43) and (45), and by Assumption 3,

EN
ω ( ̂〈Z,Z〉T ) = EN

ω




n1∑

j=1

∆Z2
tj




=

∫ T

0
ζ
(Y Y )
t dt −

vN∑

ι=1

(∫ τι

τι−1

ζ
(XY )
t dt

)∗(∫ τι

τι−1

ζ
(XX)
t dt

)−1(∫ τι

τι−1

ζ
(XY )
t dt

)

=

∫ T

0
ζ
(Y Y )
t dt −

T

vN

vN∑

ι=1

(
ζ(XY )
τι−1

+
vN

T

∫ τι

τι−1

(τι − t)dζ
(XY )
t

)∗

×

(
(ζ(XX)

τι−1
)−1 −

vN

T
(ζ(XY )

τι−1
)∗
∫ τι

τι−1

(τι − t)dζ
(XX)
t ζ(XY )

τι−1

)(
ζ(XY )
τι−1

+
vN

T

∫ τι

τι−1

(τι − t)dζ
(XY )
t

)

+ op(N
−1/2)

= 〈Z,Z〉T + op(N
−1/2). (48)
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Similarly, from (45)-(46),

VarN
ω ( ̂〈Z,Z〉T) =

2

M − p

vN∑

ι=1

ξ2
ι,N

= n−1
1 2

M

M − p

∫ T

0
(〈Z,Z〉′t)

2dt + op(n
−1
1 ) (49)

In seeking to apply Theorem 2, let X be the p × M -matrix whose j’th row is made up of

(∆X
(1)
tMι+j

, ...,∆X
(p)
tMι+j

). Set H = X (X ∗X )−1X ∗, and note that this is the standard “hat ma-

trix” for the regression in time period # ι (see Chapter 5.1 of Weisberg (1985) for this and

for the following manipulations). Call the j’th diagonal element of H as hMι+j . Finally set

∆Z = (∆ZtMι+1
, ...,∆ZtM(ι+1)

)∗. Note that our regression means that ∆̂Z = (I − H)∆Z, and so

ξ̂N,i = (M/(M − p))∆Z∗(I − H)∆Z.

To match notation with Theorem 2, finally let X (p+1) = Y . Obtain from (45)-(46) and the

normality of the observations that

CovN
ω


 ∑

tN,j∈(τN,ι−1 ,τN,ι]

∆X∗
tj (ν

−1
j − ν̄−1

ι )∆Xtj , ξ̂N,ι | X




= CovN
ω


 ∑

tN,j∈(τN,ι−1,τN,ι]

∆Ztj(ν
−1
j − ν̄−1

ι )(YY)∆Ztj , ξ̂N,ι | X




=
M

M − p

∑

tN,j∈(τN,ι−1 ,τN,ι]

CovN
ω

(
(ν−1

j − ν̄−1
ι )(YY)∆Z2

tj , (1 − hj)∆Z2
tj

)

= 2
M

M − p
ν̄2

ZZ,ι

∑

tN,j∈(τN,ι−1,τN,ι]

(ν−1
j − ν̄−1

ι )(Y Y )(1 − hj). (50)

At this point, note that by symmetry, EN
ω (1 − hj) is independent of j, and so EN

ω (1 − hj) =

EN
ω tr(I − H)/M = (M − p)/M . Thus, from (45) and (50),

CovN
ω


 ∑

tN,j∈(τN,ι−1,τN,ι]

∆X∗
tj
(ν−1

j − ν̄−1
ι )∆Xtj , ξ̂N,ι


 = 2ν̄2

ZZ,ι

∑

tN,j∈(τN,ι−1,τN,ι]

(ν−1
j − ν̄−1

ι )(YY). (51)

Hence, in the notation of Theorem 2, we obtain that

CovN
ω (ξ̂N,ZN) = 2

∑

ι

ν̄2
ZZ,ι

∑

tN,j∈(τN,ι−1 ,τN,ι]

(ν−1
j − ν̄−1

ι )(Y Y )

= op(N
−1/2). (52)

Finally, the Lindeberg condition in Theorem 2 is satisfied from (46). We have therefore shown

the following corollary to this theorem:
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Theorem 7. (Multiple ANOVA in the Gaussian case). Let ̂〈Z,Z〉T be as defined in (47). Under

the conditions of Theorem 1,

n
1/2
1 ( ̂〈Z,Z〉T − 〈Z,Z〉T ) (53)

converges in law under Pω to a normal distribution with mean zero and variance

2
M

M − p

∫ T

0
(〈Z,Z〉′t)

2dt. (54)

Compared to the results of Zhang (2001) and Mykland and Zhang (2002), the difference in

method is that M is here finite and fixed, while in the earlier paper, M → ∞ with n1. In terms

of results, there is here no asymptotic bias (whereas this is present, though correctable from the

data, in the earlier work). On the other hand, the current estimator is not quite efficient, as the

asymptotic variance in Zhang (2001) and Mykland and Zhang (2002) is

2

∫ T

0
(〈Z,Z〉′t)

2dt (55)

(as in the single series case in Jacod and Protter (1998) and Barndorff-Nielsen and Shephard

(2002)). Of course, the expression in (54) converges to that of (55) as M → ∞. Comparing the

two sets of results, one is lead to conjecture that there is a bias-variance tradeoff where M should

go very slowly to infinity n1, but exploring that is beyond the scope of this paper.

5.3 Estimating the Variability in the Hayashi-Yoshida estimator

We now return to Example 2 from Section 3. We consider the variance (12). Fix k and l (k 6= l),

and recall that

Varω

(
̂

〈
X(k),X(l)

〉
T

)
=

∑

i,j:(tk,i−1,tk,i)∩(tl,j−1 ,tl,j)6=∅

(κk,i;k,iκl,j;l,j + (κk,i;l,j)
2)

+
∑

(i,j,g,h)∈Bn

κk,i;l,hκk,g;l,j, (56)

where Bn is given by (15). We are seeking to consistently estimate this variance.

There is, obviously, a local likelihood estimate along the lines of Section 5.1. To provide some

variety, we here provide a moment based estimate in the style of Barndorff-Nielsen and Shephard

(2002). In this section, we only consider consistency of the estimate, though, of course, the same

principles as before can be used to find asymptotic normality.

To follow up on equation (16), note this equality also holds in the asynchronous case. Also note

that

Eω(κ̂k,i;l,hκ̂k,g;l,j) = κk,i;l,hκk,g;l,j + κk,i;l,jκk,g;l,h + κk,i;k,gκl,h;l,j (57)
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Thus, if we set

V̂1 =
∑

i,j:(tk,i−1,tk,i)∩(tl,j−1 ,tl,j)6=∅

κ̂k,i;k,iκ̂l,j;l,j

V̂2 =
∑

(i,j,g,h)∈Bn

κ̂k,i;l,hκ̂k,g;l,j, (58)

we obtain

V1 = EωV̂1 =
∑

i,j:(tk,i−1,tk,i)∩(tl,j−1 ,tl,j)6=∅

(κk,i;k,iκl,j;l,j + 2(κk,i;l,j)
2)

V2 = EωV̂2 = 2
∑

(i,j,g,h)∈Bn

κk,i;l,hκk,g;l,j, (59)

Obviously, V̂1 and V̂2 are consistent estimators of their expectations. (Note that the precise technical

statement here is that N(V̂i − Vi) → 0 in probability as N → ∞).

Since Varω

(
̂〈

X(k),X(l)
〉
T

)
is not a linear combination of V1 and V2, we need to find a third

estimator to make up the difference. There would seem to be many ways of accomplishing this,

but the following struck us as appealing.

Note that is is sufficient to obtain a consistent estimate for

V3 =
∑

i,j:(tk,i−1,tk,i)∩(tl,j−1 ,tl,j)6=∅

(κk,i;l,j)
2 (60)

We shall use the theory from the previous section and find a consistent estimator under a suitable

PN .

Assume that a grid GN = {θN,j} is given as in the previous section. Define as follows:

Dk,ι = {i : (tk,i−1, tk,i) ⊆ (τι−1, τι)}

Dk,l,ι = {(i, j) : (tk,i−1, tk,i) ∪ (tl,j−1, tl,j) ⊆ (τι−1, τι) and (tk,i−1, tk,i) ∩ (tl,j−1, tl,j) 6= ∅}

Mk,i = # of intervals (θN,h−1, θN,h) ⊆ (tk,i−1, tk,i))

Mk,i;l,j = # of intervals (θN,h−1, θN,h) ⊆ (tk,i−1, tk,i) ∩ (tl,j−1, tl,j)

mk,ι =
∑

i∈Dk,ι

Mk,i

mk,l,ι =
∑

(i,j)∈Dk,l,ι

Mk,i;l,j. (61)

Now note that under the approximate measure P N

EN
ω

∑

(i,j)∈(Dk,ι×Dl,ι−Dk,l,ι)

κ̂k,i;k,iκ̂l,j;l,j = ν̄2
k,l,ι

∑

(i,j)∈(Dk,ι×Dl,ι−Dk,l,ι)

M(k, i; k, i)M(l, j; l, j)

= ν̄2
k,l,ι(mk,ιml,ι − mk,l,ι). (62)
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On the other hand, if we set

D̄k,l,ι = {(i, j) : tk,i−1, tl,j−1 ∈ [τι−1, τι) and (tk,i−1, tk,i) ∩ (tl,j−1, tl,j) 6= ∅}

M̄k,i;l,j = # of intervals (θN,h−1, θN,h) ⊆ (tk,i−1, tk,i) ∩ (tl,j−1, tl,j)

m̄
(2)
k,l,ι =

∑

(i,j)∈Dk,l,ι

M2
k,i;l,j, (63)

then by continuity (Assumption 3),

V3 =
∑

ι

v̄2
k,l,ιm̄

(2)
k,l,ι + o(N−1). (64)

It therefore follows from the theory in the previous section that if we set

V̂3 =
∑

ι

m̄
(2)
k,l,ι

mk,ιml,ι − mk,l,ι

∑

(i,j)∈(Dk,ι×Dl,ι−Dk,l,ι)

κ̂k,i;k,iκ̂l,j;l,j, (65)

then V̂3 − V3 = oP (N−1).

Take the grid GN = {θN,j} to consist of all points of the form tk,i or tl,j. Thus wN ≤ nk + nl.

Fix M as a sufficiently large integer (more about the exact condition below). We let τ1 be one of

the first M points of GN , and then let the following τι be every M ’th point in GN . (We can without

impacting the asymptotics ignore the first and last interval, which may not have M points).

One can therefore, finally, use the estimate

V̂arω

(
̂

〈
X(k), X(l)

〉
T

)
= V̂1 +

1

2
V̂2 − V̂3. (66)

As an example of grid, one can let GN = {θN,j} consist of all points of the form tk,i or tl,j.

Thus wN ≤ nk + nl. Fix M as a sufficiently large integer. We let τ1 be one of the first M points

of GN , and then let the following τι be every M ’th point in GN . (We can without impacting the

asymptotics ignore the first and last interval, which may not have M points). In line with general

principles of sufficiency, one should, of course, average V̂3 over the M choices of initial point τN,1.

This does not, of course, affect consistency. Otherwise, the same comments as in Section 5.1 apply.

6 Proof of Theorem 1

Proof of Theorem 1. Set Uj = ν̄
1/2
ι ν−1

j ν̄
1/2
ι − I, where ν̄

1/2
ι is the symmetric square root of ν̄ι.

By standard Gaussian arguments,

EN
ω (∆X∗

θj
(ν−1

j − ν̄−1
ι )∆Xθj

) = tr(Uj)

and VarN
ω (∆X∗

θj
(ν−1

j − ν̄−1
ι )∆Xθj

) = 2tr(U 2
j ). (67)
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Set Vj = νj − ν̄ι, and note that

tr(U r
j ) = tr((−ν̄−1

ι Vj)
r) + rtr((−ν̄−1

ι Vj)
r+1) + .... (68)

Also note that for r ≥ 2,

|tr((ν̄−1
ι Vj)

r)| ≤ |tr((ν̄−1
ι Vj)

2)|r/2 (69)

Using Lemma 2 (given below), we obtain that, under P N

∑

j

tr(U2
j ) = 2ΓZZ + op(1) (70)

Also, since ∑

θN,j∈(τN,ι−1 ,τN,ι]

tr(ν̄−1
ι Vj) = 0 (71)

by construction, we obtain

∑

ι

∑

θN,j∈(τN,ι−1 ,τN,ι]

tr(Uj) =
∑

j

tr(U2
j ) + op(1)

= 2ΓZZ + op(1) (72)

By the Lindeberg’s Central Limit Theorem (see, for example, Theorem 27.2 (p. 359-360) of Billings-

ley (1995)), the result for ZN follows (the Lindeberg condition is similarly checked, using normality).

1

2

∑

ι

∑

θN,j∈(τN,ι−1 ,τN,ι]

(log det(ν̄ι) − log det(νj)) =
1

2

∑

j

log det(I + Uj)

=
1

2

∑

j

(tr(Uj) −
1

2
tr(U2

j )) + op(1)

=
1

2
ΓZZ + op(1). (73)

This shows the Theorem.

It remains to prove

Lemma 2. Assume the Conditions of Theorem 1. Let ft be a continuous process adapted to the

filtration σ(
〈
X(k), X(l)

〉
s
, 0 ≤ s ≤ t). Set ζ

(k,l)
t =

〈
X(k), X(l)

〉′
t
. Then

∑

ι

∑

θN,j∈(τN,ι−1 ,τN,ι]

fτN,ι−1
(νk,l,j − ν̄k,l,ι)(νm,n,j − ν̄m,n,ι)

=
1

3
T 2v−2

N

(
1 −

1

M

)∫ T

0
ftH

′(t)2d〈ζ(k,l), ζ(m,n)〉t + op(N
−2) (74)
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Proof of Lemma 2 Without loss of generality, by Girsanov’s Theorem, we assume that ζ
(k,l)
t

is a martingale.

First, suppose that
n∑

j=0

(
θN,j − θN,j−1 −

T

wN

)2

= o(N−1). (75)

Write

νk,l,j − ν̄k,l,ι =

∫ θN,j

θN,j−1

ζ(k,l)
u du −

1

M

∫ τN,ι

τN,ι−1

ζ(k,l)
u du

=

∫ θN,j

θN,j−1

(ζ(k,l)
u − ζ

(k,l)
θN,j−1

)du

+ (θN,j − θN,j−1)(ζ
(k,l)
θN,j−1

− ζ(k,l)
τN,ι−1

)

−
1

M

∫ τN,ι

τN,ι−1

(ζ(k,l)
u − ζ(k,l)

τN,ι−1
)du

+

(
(θN,j − θN,j−1) −

τN,ι − τN,ι−1

M

)
ζ(k,l)
τN,ι−1

=

∫ θN,j

θN,j−1

(θN,j − u)dζ(k,l)
u

+ (θN,j − θN,j−1)(ζ
(k,l)
θN,j−1

− ζ(k,l)
τN,ι−1

)

+

∫ τN,ι

τN,ι−1

(τN,ι − u)dζ(k,l)
u

+

(
(θN,j − θN,j−1) −

τN,ι − τN,ι−1

M

)
ζ(k,l)
τN,ι−1

=

∫ τN,ι

τN,ι−1

gN,j(u)dζ(k,l)
u

+

(
(θN,j − θN,j−1) −

τN,ι − τN,ι−1

M

)
ζ(k,l)
τN,ι−1

(76)



Gaussian Calculus for High Frequency Data 21

The last term in (76) is ignorable in view of assumption (75). Thus,

∑

ι

∑

θN,j∈(τN,ι−1 ,τN,ι]

fτN,ι−1
(νk,l,j − ν̄k,l,ι)(νm,n,j − ν̄m,n,ι)

=
∑

ι

fτN,ι−1

∫ τN,ι

τN,ι−1

∑

θN,j∈(τN,ι−1 ,τN,ι]

gN,j(u)2d〈ζ(k,l), ζ(m,n)〉u + op(N
−2)

=
1

3

∑

ι

(
1 −

1

M

)
fτN,ι−1

〈ζ(k,l), ζ(m,n)〉′τN,ι−1
(τN,ι − τN,ι−1)

3 + op(N
−2)

=
1

3
T 2v−2

N

∑

ι

(
1 −

1

M

)
fτN,ι−1

〈ζ(k,l), ζ(m,n)〉′τN,ι−1
(τN,ι − τN,ι−1) + op(N

−2)

=
1

3
T 2v−2

N

(
1 −

1

M

)∫ T

0
ftd〈ζ

(k,l), ζ(m,n)〉t + op(N
−2) (77)

This shows the result under assumption (75). (Note that under this assumption, H ′(t) = 1 identi-

cally.)

For the more general case, set

G(t) =

∫ t

0

1

H ′(s)
ds. (78)

Define θ̃N,j = G(θN,j) τ̃N,j = G(τN,j), T̃ = G(T ), X̃
(k)
G(t) = X

(k)
t , and f̃

(k)
G(t) = f

(k)
t . If ζ̃

(k,l)
u =

〈X̃(k), X̃(l)〉
′
u, then ζ̃

(k,l)
G(t)

= ζ
(k,l)
t H ′(t). Since,

∫ T̃

0
f̃ud〈ζ̃(k,l), ζ̃(m,n)〉t =

∫ T

0
ftH

′(t)2d〈ζ(k,l)ζ(m,n)〉t, (79)

the result of the lemma follows.

7 Conclusion

We have sought to demonstrate that the conditional Gaussian assumption is useful in finding

estimators for high frequency financial data. We also show general asymptotic theorems for this

case. In application, we develop new estimators for quarticity, for residual variance in ANOVA,

and for the variance of an estimator of covariation. A particular feature of the methodology is that

classical techniques for normal data can be used to propose and analyze estimators. We conjecture

that the machinery can be used for a whole range of other problems with similar data.

A big caveat is that the analysis does not help in cases where there is leverage effect, or more

generally where one can not do the analysis conditionally on the volatility processes. The current

method, however, suggests estimators that can be analyzed under more general conditions.
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