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We study asymptotic properties of the local Whittle estimator of the long memory

parameter for a wide class of fractionally integrated nonlinear time series models.

In particular, we solve the conjecture posed by Phillips and Shimotsu (2004, An-

nals of Statistics 32, 656-692) for Type I processes under our framework, which

requires a global smoothness condition on the spectral density of the short mem-

ory component. The formulation allows the widely used FARIMA models with

GARCH innovations of various forms and our asymptotic results provide a theo-

retical justification of the findings in simulations that the local Whittle estimator

is robust to conditional heteroskedasticity. Additionally, our conditions are easily

verifiable and are satisfied for many nonlinear time series models.

1 INTRODUCTION

Since the seminal work of Robinson (1995a,b), semiparametric estimation of the

long memory parameter of time series has been an active area of research. Let

d ∈ (−1/2, 1/2) be the order of integration. Consider the I(d) process {Xt} defined

by

(1 −B)d(Xt − µ) = ut, t ∈ Z, (1)

where µ is an unknown mean, B is the backward shift operator and {ut}t∈Z is a

mean zero, covariance stationary short-memory process. Let fX(·) and fu(·) be

the spectral density functions of {Xt} and {ut}, respectively. Then (1) implies

fX(λ) = |1 − eiλ|−2dfu(λ). (2)

The process {Xt} has long memory if d ∈ (0, 1/2), short memory if d = 0 and

anti-persistent if d ∈ (−1/2, 0). A non-stationary process {Xt} can be defined
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when d ≥ 1/2. For example, if d ∈ [1/2, 3/2), we can write Xt as the sum of an

I(d− 1) process, i.e.

Xt = X0 +

t
∑

j=1

Yj, (1 −B)d−1Yt = ut; (3)

where X0 is a random variable whose distribution does not depend on t. The case

for d ≥ 3/2 can be similarly defined by the repeated use of partial summation

(Velasco 1999a,b). An alternative definition of an I(d) process is given by

(1 −B)d(Xt −X0) = ut1(t ≥ 1). (4)

Equivalently, letting φk(d) =
∏k

j=1((d+ j − 1)/j), k ≥ 1, φ0(d) = 1, we have

Xt = X0 + (1 −B)−dut1(t ≥ 1) = X0 +

t−1
∑

k=0

φk(d)ut−k. (5)

Clearly (5) is well-defined for any d ∈ R. Under the formulation (4), the process

{Xt} is non-stationary when d ≥ 1/2 and only asymptotically stationary when

d ∈ (−1/2, 1/2). The main distinction between Type I processes [(1) and (3)] and

Type II processes (4) lies in the presample treatment. These two definitions of

I(d) processes could lead to different asymptotic behaviors for various statistics.

For example, the normalized partial sum of Xt when d > 1/2 converges to two dis-

tinct fractional Brownian motions (Marinucci and Robinson, 1999a,b). A detailed

discussion of their differences can be found in Robinson (2005) and Shimotsu and

Phillips (2006).

Two popular semiparametric frequency domain approaches to estimate d have

been extensively studied in the literature: log periodogram regression (LP, Geweke

and Porter-Hudak, 1983) and local Whittle estimation (LW, Künsch, 1987). LP is

easy to compute since it only involves least squares regression, but it is less efficient

than LW which is constructed based on the likelihood principle (Robinson, 1995b).

The asymptotic properties of LP have been investigated by Robinson (1995a),

Velasco (1999a, 2000) among others for Type I processes and by Kim and Phillips

(1999), Phillips (1999b) for Type II processes. Regarding the asymptotic theory of

LW estimator, Robinson (1995b) and Velasco (1999b) dealt with Type I processes.

For Type II processes, see Phillips and Shimotsu (2004) (PS hereafter), Shimotsu

and Phillips (2006) (SP hereafter). PS (2004) and SP(2006) nearly completed

the study of asymptotic properties of LW estimator for Type II processes in that

they characterized the asymptotic distribution for d ∈ [−1,−1/2) ∪ (−1/2, 1/2) ∪
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(1/2,M ], where M is a fixed constant. Their asymptotic analysis was facilitated

by an exact representation of the Fourier transform of Type II fractional processes

(Phillips, 1999a). PS (2004) conjectured that their asymptotic results are still

valid for Type I processes with different constants in the asymptotic distributions.

See the review article by Moulines and Soulier (2003) for other semiparametric

methods of estimating d in the frequency domain.

So far, it seems that most asymptotic analysis of LW estimator has been lim-

ited to linear processes, i.e. Xt = µ+
∑∞

k=0 akζt−k [cf. Robinson (1995b), Velasco

(1999b)] or ut =
∑∞

k=0 akζt−k [cf. PS (2004), SP(2006)], where the ζt are martin-

gale differences with constant conditional variance, i.e.

σ2
t := E(ζ2

t |Fζ
t−1) = a positive constant. (6)

Here F ζ
t = σ(· · · , ζt−1, ζt). To obtain the asymptotic distribution of the local

Whittle estimator, it is often additionally assumed that E(ζ k
t |Fζ

t−1), k = 3, 4, are

also constants [Velasco (1999b), PS(2004), SP(2006)]. As mentioned in Robinson

and Henry (1999), it is a drawback not to allow conditional heteroskedasticity,

which is an intrinsic feature for ARCH and GARCH models in financial time

series. Robinson and Henry (1999) attempted to relax the constant conditional

variance condition (6) for LW estimator in the case of Type I processes when

d ∈ (−1/2, 1/2). For general nonlinear processes, Dalla et al. (2006) proved

the consistency of LW estimates and also discussed the convergence rate. Their

results indicate that LW estimator might have a non-Gaussian limit distribution.

No distributional theory was provided in their paper.

This paper has two goals. First, we attempt to solve the conjecture posed

in PS (2004) for Type I processes when d ∈ [3/4, 3/2). Second, we consider the

asymptotic distribution of LW estimator for a wide class of nonlinear processes

ut = F (. . . , εt−1, εt), (7)

where εt are independent and identically distributed (iid) random variables and

F is a measurable function such that ut is well-defined. Then ut is a stationary

causal ergodic process. The framework (7) is very general. Wiener (1958) claimed

that, for every stationary and ergodic process (ui), there exists iid random vari-

ables εi and a measurable function F such that ui = F (· · · , εi−1, εi). Rosenblatt

(1959,1971) showed that Wiener’s assertion does not hold in general and asked

whether the distributional equality, i.e. (ui, i ∈ Z) =D (F (· · · , εi−1, εi), i ∈ Z)

holds. For more detailed descriptions of the Wiener-Rosenblatt conjecture, see

Kallianpur (1981) and Tong (1990, page 204). As in Wiener (1958), Priest-

ley (1988) and Wu (2005b), (7) can be interpreted as a physical system with
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(. . . , εt−1, εt) being the input, F being a filter and ut being the output. Our de-

pendence measures on the process {ut} basically quantify the degree of dependence

of outputs on inputs (cf Remark 2.5). The class (7) includes the linear process

ut =
∑∞

i=0 aiεt−i as a special case. It also includes general GARCH (Bollerslev,

1986) and ARMA-GARCH (Ling and Li, 1997) processes. Together with (1), the

widely used FARIMA-GARCH model is also within this framework; see Section

4. Our theoretical results confirm the findings from finite sample simulations in

Robinson and Henry (1999), Henry (2001) and Nielsen and Frederiksen (2005) that

the local Whittle estimator is robust to conditional heteroskedastic innovations if

the bandwidth is appropriately chosen.

The following notation will be used throughout the paper. For a random

variable ξ, write ξ ∈ Lp (p > 0) if ‖ξ‖p := [E(|ξ|p)]1/p <∞ and let ‖·‖ = ‖·‖2. For

ξ ∈ L1 define projection operators Pkξ = E(ξ|Fk)−E(ξ|Fk−1), Fk = (. . . , εk−1, εk).

Let C > 0 denote a generic constant which may vary from line to line. Denote by

⇒ and
P→ convergence in distribution and in probability, respectively. The symbols

OP(1), oP(1) and oa.s.(1) signify being bounded in probability, convergence to zero

in probability and in the almost sure sense respectively. Let N(µ, σ2) be a normal

distribution with mean µ and variance σ2.

The paper is organized as follows. Section 2 introduces the local Whittle es-

timator as well as some notation and assumptions. Section 3 provides a distri-

butional theory of LW estimates for Type I processes when d ∈ (−1/2, 1/2) ∪
(1/2, 3/2). Applications are given in Section 4 and conclusions are made in Sec-

tion 5. We leave the technical details to the appendix.

2 LOCAL WHITTLE ESTIMATION

Let i =
√
−1 be the imaginary unit. For a process {Zt}t∈Z, define the periodogram

IZ(λ) = |wZ(λ)|2, where wZ(λ) = wZ,n(λ) =
1√
2πn

n
∑

t=1

Zte
itλ.

Let λj = 2πj/n, j = 1, · · · , n, be the Fourier frequencies. Denote the true value

of d by d0. Given the observation X1, . . . , Xn, the local Whittle estimate for d0 is

defined as the minimizer of the local objective function R(d), i.e.

d̂ = argmind∈[∆1,∆2]R(d),

where

R(d) = log



m−1
m
∑

j=1

λ2d
j IX(λj)



− 2d

m

m
∑

j=1

log λj . (8)
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Throughout the paper, we assume m = m(n) satisfies m−1 + m/n → 0, ∆1 and

∆2 satisfy −1/2 < ∆1 < ∆2 <∞ and d0 ∈ [∆1,∆2].

Let E(ut) = 0 and γu(k) = E(utut+k) be the covariance function of (ut); let

fu(λ) =
1

2π

∑

k∈Z

γu(k) exp(ikλ)

be the spectral density. Assume throughout the paper that G0 = fu(0) > 0. We

make the following assumptions.

Assumption 2.1. CU :=
∑

k∈Z
|γu(k)| <∞.

Remark 2.1. Assumption 2.1 indicates that ut has short memory. Under this

assumption, the spectral density fu is continuous and bounded.

Assumption 2.2.
∑∞

k=0 k‖P0uk‖ <∞.

Remark 2.2. The quantity ‖P0uk‖ is closely related to the predictive dependence

measure introduced by Wu (2005b); see Remark 2.5. Following Wu and Min

(2005), Assumption 2.2 is called L2 dependent with order 1. Assumption 2.2

implies
∑

k∈Z
|kγu(k)| <∞ [cf Lemma 6.1], thus fu(·) is continuous differentiable

over [−π, π].

Assumption 2.3.
∑

k1,k2,k3∈Z
|cum(u0, uk1

, uk2
, uk3

)| <∞.

Remark 2.3. Summability conditions on joint cumulants are widely used in spec-

tral analysis. It is an important problem to verify such conditions. For a linear

process ut =
∑

j∈Z
ajεt−j with εj being iid, Assumption 2.3 holds if

∑

j∈Z
|aj | <∞

and ε1 ∈ L4. For nonlinear processes (7), it is satisfied under a geometric moment

contraction (GMC) condition with order 4 (Wu and Shao, 2004). The process {ut}
is GMC with order α, α > 0, if there exists a C = C(α) and ρ = ρ(α) ∈ (0, 1) such

that

E(|u∗n − un|α) ≤ Cρn, n ∈ N, (9)

where u∗n = F (· · · , ε′−1, ε
′
0, ε1, · · · , εn) is a coupled version of un. Here {ε′t}t∈Z is

an iid copy of {εt}t∈Z. The property (9) indicates that the process {un} forgets its

past exponentially fast and it can be verified for many nonlinear time series models

[Wu and Min (2005), Shao and Wu (2005a)]. Define the 4th cumulant spectral

density

f4(w1, w2, w3) =
1

(2π)3

∑

k1,k2,k3∈Z

cum(u0, uk1
, uk2

, uk3
) exp



−i
3
∑

j=1

wjkj



 .
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Under Assumption 2.3, f4(·, ·, ·) is continuous and bounded. Section 4 provides

another sufficient condition for the summability of joint cumulants.

Assumption 2.4. Suppose ut ∈ Lq, q > 4. Let u′k = F (· · · , ε−1, ε
′
0, ε1, · · · , εk) and

assume
∑∞

k=1 k‖uk − u′k‖q <∞.

Remark 2.4. For the linear casual process ut =
∑∞

j=0 ajεt−j , ‖uk−u′k‖q = |ak|‖ε′0−
ε0‖q. So Assumption 2.4 holds if

∑∞
k=0 k|ak| < ∞ and ε1 ∈ Lq. Assumption 2.4

implies Assumption 2.2 since E[(uk − u′k)|F0] = P0uk and ‖P0uk‖ ≤ ‖P0uk‖q ≤
‖uk − u′k‖q.

Remark 2.5. Interpreting (7) as a physical system, Wu (2005b) introduced the

physical dependence measure δq(k) := ‖uk − u′k‖q and the predictive dependence

measure ωq(k) := ‖gk(F0)−gk(F ′
0)‖q, where gk(F0) = E(uk|F0) and F ′

0 = (F−1, ε
′
0).

Intuitively, δq(·) quantifies the dependence of uk on ε0 by measuring the distance

between uk and its coupled version u′k. For ωq(k), since gk(F0) = E(uk|F0) is the

k-step ahead predicted mean, ωq(k) measures the contribution of ε0 in predicting

future expected values. By Theorem 1 in Wu (2005b), ‖P0uk‖ ≤ ω2(k) ≤ 2‖P0uk‖.
So Assumption 2.2 is equivalent to

∑∞
k=0 kω2(k) <∞. In many applications phys-

ical and predictive dependence measures are easy to use since they are directly

related to data-generating mechanisms.

Assumption 2.5. For some β ∈ (0, 2], fu(λ) = (1 +O(λβ))G0 as λ ↓ 0.

Remark 2.6. Assumption 2.5 is commonly made in the study of local Whittle

estimation [PS(2004), SP(2006)]. For the popular FARIMA(p, d, q) or FARIMA-

GARCH processes (see Section 4), β = 2. Our Assumptions 2.2 and 2.4 imply the

continuous differentiability of fu(·), thus β ≥ 1.

Assumption 2.6. Assume for β > 1,

(log n)3 = o(m) and m = o(n2/3), (10)

and for β = 1, (log n)3 = o(m), m3(logm)2/n2 → 0.

Remark 2.7. Previous work by Robinson (1995b) and PS (2004) requires

1

m
+
m2β+1(logm)2

n2β
→ 0. (11)

Note that for β ≥ 1, Assumption 2.6 is stronger than (11). Under (11), the variance

of d̂ dominates its bias. In terms of choosing the bandwidth which minimizes the

mean square error, the optimal order for m is n2β/(2β+1) [cf. Henry and Robinson
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(1996)]. On the other hand, Assumption 2.6 does not seem to be overly restrictive:

Assumption A4’ in Robinson and Henry (1999) requires m = o(n1/2/ log n) in an

early attempt to establish central limit theorem for LW estimator without imposing

(6).

3 MAIN RESULTS

Four cases, d0 ∈ (−1/2, 1/2), d0 ∈ (1/2, 1), d0 ∈ (1, 3/2) and d0 = 1 are dealt with

in Sections 3.1, 3.2, 3.3 and 3.4 respectively.

3.1 d0 ∈ (−1/2, 1/2)

Under the Type I formulation (1), we write

Xt = µ+ (1 −B)−d0ut = µ+

∞
∑

j=0

φj(d0)ut−j . (12)

Since IX(λj), j = 1, · · · ,m, which is used in the local Whittle estimation, is invari-

ant to the mean, we can and do assume µ = 0.

Proposition 3.1. For the process (12), let ut ∈ L4. Then under Assumptions 2.1

and 2.2, we have d̂
P→ d0 and

2(d̂ − d0) = −Fm(1 + oP(1)) +OP(logm/m),

where Fm = m−1
∑m

j=1 sjλ
2d0

j G−1
0 IX(λj) and sj = log(j/m) + 1.

Theorem 3.1. For the process (12), under Assumptions 2.3-2.6, we have

√
m(d̂− d0) ⇒ N(0, 1/4). (13)

Robinson (1995b) first obtained the asymptotic distribution of the LW estima-

tor in the setting of linear processes under the assumption that the innovations

are martingale differences with constant conditional variance. Robinson and Henry

(1999) attempted to relax the latter restriction (see (6)) under the following frame-

work:

Xt = µ+

∞
∑

j=0

ajζt−j ,

∞
∑

j=0

a2
j <∞,

where

E(ζt|Fζ
t−1) = 0, σ2

t = ψ0 +

∞
∑

j=1

ψjζ
2
t−j , ψ0 ≥ 0, ψj ≥ 0, j ∈ N. (14)
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The widely used ARCH and GARCH models are included in this framework; com-

pare (22) in Section 4. The asymptotic normality was obtained under quite restric-

tive conditions. For example, they require maxt∈Z E(ζ8
t ) <∞, E(ζ3

t |Fζ
t−1) = E(ζ3

t )

almost surely and for t ≥ u ≥ v,

E(ζ2
t ζuζv−1) = 0, E(ζ4

t ζu|Fζ
u−1) = E(ζ4

t ζ
2
uζv|Fζ

v−1) = 0 almost surely.

In the GARCH case (22), we only need to assume a q-th moment condition (q >

4) and allow various forms of conditional heteroskedasticity; see Section 4 for

more discussion. Note that the existence of higher order moments requires more

restriction on the parameter space in the GARCH type models. On the other hand,

our formulation excludes possible long memory in conditional variance, which is

included in their framework.

Remark 3.1. The short memory conditions on ut (such as Assumptions 2.2 and

2.4) imply the continuous differentiablitity of fu(·) over the full band [−π, π],

while in previous work (see Robinson (1995b), Robinson and Henry (1999) and

SP (2004)), only local smoothness of fu(·) or fX(·) around a neighborhood of

zero frequency is imposed. In particular, our assumptions on ut exclude the so-

called Gegenbauer process [Gray, Zhang and Woodward (1989)], in which the

spectral density function has a pole at a nonzero frequency [see SP (2004) for more

discussion]. These global smoothness assumptions together with the stronger rate

condition on m are the prices we pay for allowing nonlinear processes.

3.2 d0 ∈ (1/2, 1)

Recall (3) for the definition of Xt. Write

Xn −X0 =

n
∑

t=1

Yt =

∞
∑

j=0

Aj,nun−j, (15)

where Aj,n = Φj − Φj−n, Φj =
∑j

i=0 φi(d0 − 1) = φj(d0) if j ≥ 0 and Φj = 0 if

j < 0. Further write

wX(λs) = (2πn)−1/2
n
∑

t=1

t
∑

j=1

Yje
itλs = (2πn)−1/2

n
∑

j=1

Yj

n
∑

t=j

eitλs

= − eiλs

1 − eiλs

(Xn −X0)√
2πn

+
wY (λs)

1 − eiλs
. (16)

For a complex number z let Re(z) be its real part and z̄ its conjugate. Then

IX(λs) =
(Xn −X0)

2

2πn|1 − eiλs |2 +
IY (λs)

|1 − eiλs |2 − 2(Xn −X0)√
2πn|1 − eiλs |2

Re(wY (λs)e
−iλs). (17)
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Proposition 3.2. Suppose that Xt is generated by (3) with d0 ∈ (1/2, 1). Assume

ut ∈ L4 and Assumptions 2.1-2.2, we have d̂
P→ d0 and 2(d̂ − d0) = −Fm(1 +

oP(1)) +OP(logm/m).

Remark 3.2. Under Type I formulation, Velasco (1999b) showed that d̂ is consis-

tent for linear processes when d0 ∈ [1/2, 1). For Type II processes, the consistency

was established by PS (2004). At d0 = 1/2, we conjecture that the consistency of

d̂ still holds for nonlinear processes.

Theorem 3.2. Let Xt be defined in (3) with d0 ∈ (1/2, 1). (i). Under Assump-

tions 2.3-2.6, we have

m1/2(d̂− d0) ⇒ U1/2, d0 ∈ (1/2, 3/4),

m2−2d0(d̂− d0) ⇒ J(d0)U
2
2 , d0 ∈ (3/4, 1),

where

J(d0) =
(2π)2d0−2(1 − d0)

Γ(d0)2(2d0 − 1)2

{

1

(2d0 − 1)
+

∫ ∞

1
(yd0−1 − (y − 1)d0−1)2dy

}

(18)

and U1 and U2 are iid N(0, 1) random variables.

(ii). Let ut =
∑∞

i=0 aiεt−i,
∑∞

k=0 k|ak| < ∞,
∑∞

i=0 ai 6= 0, Eε21 = 1 and

ε1 ∈ L4. Then under Assumptions 2.5 and (11), for d0 = 3/4, we have

m1/2(d̂− d0) ⇒ U1/2 + J(d0)U
2
2 .

PS (2004) dealt with Type II processes and conjectured that if d0 ∈ [3/4, 1),

then their asymptotic results still hold for Type I processes possibly with different

J(d0). Here, we prove the conjecture in the framework of fractionally integrated

nonlinear processes. In comparison with the asymptotic distribution in the Type

II case, the extra term
∫∞
1 (yd0−1 − (y − 1)d0−1)2dy in (18) is due to the so-called

prehistorical influence. At d0 = 3/4, the first two terms in (17) are of the same

stochastic magnitude. In this particular case, it seems very hard to obtain asymp-

totic results for nonlinear processes.

3.3 d0 ∈ (1, 3/2)

Theorem 3.3. Suppose {Xt} is generated from (3) with d0 ∈ [1, 3/2) and ut ∈ L4.

Then under Assumptions 2.1-2.2, we have d̂
P→ 1.

Remark 3.3. Theorem 3.3 confirms the conjecture posed by PS (2004) (see Remark

3.3 therein), which says that d̂
P→ 1 for Type I processes if d0 ∈ (1, 3/2). More

refined structures exist if d0 = 1; see Section 3.4 below.
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3.4 d0 = 1

Theorem 3.4. Suppose {Xt} is generated from (3) with d0 = 1. Assume that
∑∞

k=1 kδ4(k) <∞ and m = mn → ∞ satisfies

(m3/2 logm)χ(n) = O(1), where χ(n) = n−1/4 log(n). (19)

Then under Assumptions 2.3 and 2.5, we have

√
m(d̂− d0) ⇒

−W1 +
√

2W2W3

2(1 +W 2
3 )

, (20)

where W1,W2,W3 are iid N(0, 1).

The limit distribution in (20) is equivalent to the form stated in Theorem 4.2

of PS (2004), who obtained the asymptotic distribution of d̂ for Type II processes

with d0 = 1. It suggests the interesting dichotomous phenomenon: the asymptotic

behaviors in the three cases d0 < 1, d0 = 1 and d0 > 1 are very different. In

addition, the condition on the bandwidth m is quite stringent here. Basically we

require m = O(n1/6(log n)−4/3).

In summary, for fractional nonlinear processes [(1) and (3)], the LW estimator

is consistent when d0 ∈ (−1/2, 1/2) ∪ (1/2, 1] and is inconsistent when d0 > 1.

When d0 ∈ (−1/2, 1/2) ∪ (1/2, 3/4), the asymptotic distribution is normal with

asymptotic variance independent of the true value d0. For Type II processes, SP

(2000) proposed a modified LW estimator, which basically replaces IX(λj) in R(d)

(see (8)) by I∗X(λj), where

I∗X(λj) = |w∗
X(λj)|2, w∗

X(λj) = wX(λs) +
eiλs

1 − eiλs

Xn −X0√
2πn

.

The modified LW estimator is shown to be consistent for d0 ∈ (0, 2) and is asymp-

totically normally distributed with variance 1/4 for d0 ∈ (1/2, 7/4). We would

expect that this result still holds for Type I processes in our setting in view of

(16), although the boundary case d0 = 3/2 is hard to handle. We shall not pursue

this generalization in this paper.

4 APPLICATIONS

In this section, we shall show that our main technical Assumptions 2.3 and 2.4

are satisfied by a number of widely used models in financial time series analysis.

The so-called FARIMA(p, d, q)-GARCH(r, s) model [Ling and Li (1997), Li, Ling

10



and McAleer (2002)] has been used by Baillie et al. (1996), Hauser and Kunst

(1998a,b) and Lien and Tse (1999) among others to model both long memory and

conditional heteroskedasticity. It admits the following form

φ(B)(1 −B)d(Xt − µ) = ψ(B)ζt, (21)

ζt = εtσt, σ
2
t = α0 +

r
∑

i=1

αiζ
2
t−i +

s
∑

i=1

βiσ
2
t−i, (22)

where {εt} are iid with zero mean and unit variance, φ(B) = 1 − ∑p
i=1 φiB

i,

ψ(B) = 1 +
∑q

i=1 ψiB
i. Assume that all the roots of φ(z) = 1 −

∑p
i=1 φiz

i and

ψ(z) = 1+
∑q

i=1 ψiz
i are outside the unit circle, φp 6= 0, ψq 6= 0 and φ(z) and ψ(z)

have no common root. Rewrite (21) into the form of (1) with ut = φ(B)−1ψ(B)ζt,

where ut is an ARMA-GARCH process. For a GARCH process, the necessary

and sufficient conditions for the existence of 4-th moments have been investigated

by Ling and McAleer (2002a,b). Wu and Min (2005) showed that ζt is GMC(4)

[cf eqn (9) with α = 4] provided that ζt ∈ L4. Since an ARMA process with

GMC(4) innovations is still GMC(4) [cf. Theorem 5.2 in Shao and Wu (2005a)],

the process ut is GMC(4) if ζt ∈ L4. Therefore, our Assumption 2.3 is satisfied

since GMC(4) implies the summability of 4th cumulants [cf. Proposition 2 of Wu

and Shao (2004)].

In the literature, various forms of GARCH have been proposed to model con-

ditional heteroskedasticity. An important class is the asymmetric GARCH(r, s)

models [Ding et al. (1993)]. Interestingly, for general asymmetric GARCH(r, s)

models (which include (22) as a special case), Shao and Wu (2005a) showed that

they satisfy GMC(q), q ∈ N under the q-th moment condition. Another popular

asymmetric GARCH model is so-called EGARCH(p, q) model proposed by Nelson

(1991), which admits the following form:

ζt = σtεt, log(σ2
t ) = α0 +

ψ̃(B)

φ̃(B)
g(εt−1), g(εt) = θεt + γ[|εt| − E(|εt|)],

where α0, θ and γ are constants, ψ̃(B) = 1 + β1B + · · · + βqB
q and φ̃(B) =

1 − α1B − · · · − αpB
p are polynomials with zeros outside the unit circle having

no common factors. Robinson and Henry (1999) also considered the above model

in their finite sample simulation. However, they mentioned that the EGARCH

model is not included in their theoretical framework (14). If εt are iid N(0, 1),

Min (2004) showed that ζt is GMC(q) for any q ∈ N.

For other types of nonlinear time series models such as bilinear models [Subba

Rao and Gabr (1984)], threshold autoregressive models [Tong (1990)] and signed

11



volatility models [Yao (2004)], the GMC property has been verified by Wu and Min

(2005) and Shao and Wu (2005a) under certain contraction conditions. Regarding

our Assumption 2.4, it holds if the process ut is GMC(q) for some q > 4 [see Wu

(2005a) for a rigorous proof].

A common assumption in spectral analysis is the summability of joint cumu-

lants up to certain orders [Brillinger (1975), Rosenblatt (1985)]. The following

proposition gives a sufficient condition under which the summability of joint cu-

mulants is true. It generalizes Proposition 2 in Wu and Shao (2004).

Theorem 4.1. Assume ut = F (· · · , εt−1, εt) ∈ Lk, k ≥ 2, k ∈ N. Then
∑

m1,···,mk−1∈Z

|cum(u0, um1
· · · , umk−1

)| <∞ (23)

provided that
∑∞

n=0 n
k−2(

∑∞
m=n δk(m)2)1/2 <∞, where δk(m) = ‖um − u′m‖k.

Remark 4.1. Since (
∑∞

m=n δk(m)2)1/2 ≤
∑∞

m=n δk(m), (23) holds if

∞
∑

n=0

nk−1δk(n) <∞, k ≥ 2. (24)

Therefore
∑∞

n=0 n
3δq(n) <∞, q > 4 implies our Assumption 2.3,2.4 and β = 2 in

Assumption 2.5.

Example 4.1. ARCH(∞) [Robinson (1991)]:

ζt = εtσt, σ2
t = ψ0 +

∞
∑

j=1

ψjζ
2
t−j , ψ0 ≥ 0, ψj ≥ 0, j ∈ N, (25)

where εt are iid mean zero random variables having suitable moments. Note that

(25) is a special form of (14). Both general ARCH(p) and GARCH(r, s) models

fall into this framework when the weights ψj either vanish for j > p or decay

exponentially to zero. This property implies the exponential decay rate of the

autocorrelation of ζ2
t . Giraitis et al. (2000a) gave a sufficient condition for the

existence of a stationary solution and found that the autocorrelation of ζ 2
t can

decay slowly like a power function, but no long memory structure of ζ 2
t is allowed.

Further development can be found in Zaffaroni (2004). We shall show that our

condition can be satisfied with hyperbolically decaying coefficients ψj.

Proposition 4.1. For (25), let ε1 ∈ L6. Assume that ‖ε21‖
1/2
3

∑∞
j=1 ψ

1/2
j < 1 and

∑∞
j=1 ψ

1/2
j j3 <∞, then we have

∑

k1,k2,k3∈Z

|cum(ζ0, ζk1
, ζk2

, ζk3
)| <∞ and

∞
∑

k=1

k‖ζk − ζ ′k‖6 <∞, (26)

12



where ζ ′k is the coupled version of ζk as in Assumption 2.4.

Example 4.2. LARCH (“Linear ARCH”) [Robinson (1991)]:

ζt = εtσt, σt = a+
∞
∑

j=1

bjζt−j , t ∈ Z, (27)

where a and bj, j ∈ N are not constrained to be nonnegative. Giraitis et al. (2000b)

provided a sufficient and necessary condition for the existence of a stationary

solution and demonstrated that ζ2
t could have long memory autocorrelation unlike

the ARCH(∞) case. The following proposition covers part of the short memory

case where bj is allowed to have a hyperbolic decay.

Proposition 4.2. For (27), let ε1 ∈ L5. Assume that ‖ε1‖5
∑∞

j=1 |bj | < 1 and
∑∞

j=1 |bj |j3 <∞. Then

∑

k1,k2,k3∈Z

|cum(ζ0, ζk1
, ζk2

, ζk3
)| <∞ and

∞
∑

k=1

k‖ζk − ζ ′k‖5 <∞.

5 CONCLUSIONS

This paper presents an asymptotic theory for the local Whittle estimator of a class

of fractionally integrated nonlinear processes. The theory we develop here matches

the empirical evidence found in finite sample simulations by Robinson and Henry

(1999), Henry (2001) and Nielsen and Frederiksen (2005), which suggest that the

local Whittle estimator is robust to conditional heteroskedasticity. Recently, long

memory in volatility has received a lot of attention in the literature [cf. Hurvich

et al. (2005) and references therein]. Robinson and Henry (1999) showed that

the local Whittle estimator of long memory parameter in the level is unaffected

by long memory in volatility. Our framework excludes this interesting case in

that the conditional heteroscedastic models included are all of short memory type.

However, our framework is general enough to allow various kinds of short memory

GARCH models.

Under the current framework, it is certainly worth investigating the asymptotic

properties of the local Whittle estimator for Type II processes and also the exact

local Whittle estimator [SP (2005)]. These topics are beyond the scope of this

paper and will be studied in the future.
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6 TECHNICAL APPENDIX AND PROOFS

For the convenience of notation, write IXj = IX(λj), Iuj = Iu(λj), IY j = IY (λj),

fXj = fX(λj), fuj = fu(λj), fY j = |1− eiλj |2−2d0fuj, ĨXj = IXjf
−1
Xj , Ĩuj = Iujf

−1
uj ,

ĨY j = IY jf
−1
Y j , wXj = wX(λj), wuj = wu(λj) and wY j = wY (λj), j = 1, · · · ,m.

Let gj = wXj/
√

fXj and hj = wuj/
√

fuj. Denote D(w) = Dn(w) =
∑n

t=1 e
itw,

α(λ) =
∑∞

l=0 φl(d0)e
ilλ = (1 − eiλ)−d0 and αj = α(λj). When d0 ∈ (−1/2, 1/2),

it is easy to see that α(·) satisfies the following condition: α(λ) is differentiable in

a neighborhood of the origin (0, ε) and also α′(λ) = O(|α(λ)|λ−1) as λ ↓ 0. Let

K(w) = (2πn)−1|D(w)|2 be the Fejér’s kernel. We introduce the following working

assumption:

Assumption 6.1. fu(·) is differentiable at (0, ε) for some ε > 0 and

|f ′u(λ)| = O(λ−1) as λ ↓ 0. (28)

The following lemma describes the relationship between γu(k) and ‖P0uk‖.

Lemma 6.1. For ut in (7),
∑∞

k=0 k
q‖P0uk‖ < ∞ implies

∑

k∈Z
|kqγu(k)| < ∞ for

q > 0.

Proof of Lemma 6.1. Since Pj and Pj′ are orthogonal if j 6= j ′,

γu(k) = E(u0uk) = E





∑

j∈Z

Pju0

∑

j′∈Z

Pj′uk



 =
∑

j∈Z

E(Pju0Pjuk).
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Therefore, by the Cauchy-Schwarz inequality,

∑

k∈Z

|kqγu(k)| ≤
∑

k∈Z

|k|q
∑

j∈Z

‖Pju0‖‖Pjuk‖ =
∑

j∈Z

‖Pju0‖
∑

k∈Z

|k|q‖P0uk−j‖

≤ max(2q, 2)





∞
∑

j=0

|j|q‖P0uj‖





2

<∞.

♦

Remark 6.1. By Lemma 6.1, Assumption 2.2 leads to
∑

k∈Z
|γu(k)k| <∞, which

implies that f ′u(·) is continuous on [−π, π]. So Assumption 6.1 is satisfied. Since

‖P0uk‖ ≤ δ2(k), we have
∑∞

k=0 k
qδ2(k) < ∞ implies

∑

k∈Z
|kqγu(k)| < ∞ for

q > 0.

Lemma 6.2. Suppose {Xt} is from (1) with d0 ∈ (−1/2, 1/2). Under Assumptions

2.1, 6.1, the following expressions hold uniformly over 1 ≤ k < j ≤ m = o(n):

|E{gj ḡj} − 1| + |E{hj h̄j} − 1| + |E{gj h̄j} − α(−λj)/|αj || = O(log j/j); (29)

E{gjgj} = O(log j/j), E{gjgk} = O(log j/k), E{gj ḡk} = O(log j/k);

E{hjhj} = O(log j/j), E{hjhk} = O(log j/k), E{hj h̄k} = O(log j/k);

E{gjhj} = O(log j/j), E{gjhk} = O(log j/k), E{gj h̄k} = O(log j/k).

Furthermore, if Assumption 2.3 is satisfied, then we have

cov(Iuj , Iuk) = f2
uj1(j = k) +O(log(j ∨ k)(j ∧ k)−1) (30)

uniformly over j, k = 1, · · · ,m. Here a ∨ b = max{a, b}, a ∧ b = min{a, b}.

Proof of Lemma 6.2. Since the cross spectral density fXu(λ) = (1− e−iλ)−d0fu(λ)

when d0 ∈ (−1/2, 1/2), it is easily seen that (28) implies |f ′
Xu(λ)| = O(λ−1−d0)

and |f ′X(λ)| = O(λ−1−2d0) as λ ↓ 0. Then the lemma is a direct consequence of

Robinson (1995a); see Theorem 2 and its proof therein. Regarding (30), we have

cov(Iuj , Iuk) = cum(wuj , w̄uj , wuk, w̄uk) + cov(wuj , wuk)cov(w̄uj , w̄uk)

+cov(wuj, w̄uk)cov(w̄uj , wuk)

= O(1/n) +O(log(j ∨ k)(j ∧ k)−1) + f2
uj1(j = k)

uniformly over j = 1, · · · ,m in view of Assumption 2.3 and the first assertion. ♦
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Remark 6.2. To show (29), we only need to use the equation (4.1) in Robinson

(1995a), whose proof does not require the rate of convergence of fu(λ) as λ ↓ 0.

For the remaining nine statements, our assumptions suffice. See Velasco (1999b)

for a similar result when d0 ∈ [1/2, 1).

The next two lemmas (Lemmas 6.3 and 6.4) are useful for the consistency and

the asymptotic normality of d̂, respectively.

Lemma 6.3. For the process (12) with d0 ∈ (−1/2, 1/2), suppose Assumption 2.1

holds. Then

E|ĨXj − Ĩuj| = O(j−1/2) uniformly over j = 1, · · · ,m. (31)

Proof of Lemma 6.3. Write φk = φk(d0). By (12),

Rnj := wXj − wuj(1 − eiλj )−d0 =
1√
2πn

n
∑

t=1

Xte
itλj − wuj(1 − eiλj )−d0

=
1√
2πn

∞
∑

k=0

φke
ikλj

{

n
∑

t=1

ute
itλj + Vk,j

}

− wuj(1 − eiλj )−d0

=
1√
2πn

∞
∑

k=0

φke
ikλjVk,j,

where Vk,j =
∑n−k

t=1−k ute
itλj −∑n

t=1 ute
itλj . After straightforward calculations, we

get

|1 − eiλj |2d0E|Rnj|2 = |1 − eiλj |2d0(2πn)−1
E

∣

∣

∣

∣

∣

∞
∑

k=0

φke
ikλjVk,j

∣

∣

∣

∣

∣

2

=

∫ π

−π
fu(λ)K(λ+ λj)

∣

∣

∣

∣

α(−λ)

α(λj)
− 1

∣

∣

∣

∣

2

dλ

≤ CU

∫ π

−π
K(λ− λj)

∣

∣

∣

∣

α(λ)

α(λj)
− 1

∣

∣

∣

∣

2

dλ = O(1/j)

uniformly over j = 1, · · · ,m. The last equality above is due to Lemma 3 of

Robinson (1995b) in view of the properties of α(λ). Finally, (31) follows from the

Cauchy-Schwarz inequality and the fact that EIuj = fuj + o(1) uniformly over

j = 1, · · · ,m under Assumption 2.1 [cf. Proposition 10.3.1 in Brockwell and Davis

(1991)]. ♦
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Lemma 6.4. For the process (12) with d0 ∈ (−1/2, 1/2), suppose Assumptions 2.1,

2.3, and 6.1 hold. Then

E

∣

∣

∣

∣

∣

∣

r
∑

j=1

(ĨXj − Ĩuj)

∣

∣

∣

∣

∣

∣

≤ C(r1/4(1 + log r)1/2 + r1/2n−1/4), r ≤ m = o(n),

where C is a generic constant independent of r, m and n.

Proof of Lemma 6.4. The proof is a generalization of the argument in Robinson

(1995b, pages 1648-1651) to the nonlinear case. Let l = 1+br1/2 log rc. By Lemma

6.3, E|∑l
1(ĨXj − Ĩuj)| ≤ Cl1/2. It then suffices to consider l + 1 ≤ j ≤ r. Write

E{∑r
l+1(ĨXj − Ĩuj)}2 = (2π)2(a1 + a2 + b1 + b2), where

a1 =
r
∑

l+1

{2(E|gj |2)2 + |E(g2
j )|2 − 2|E(gjhj)|2 − 2|E(gj h̄j)|2

−2E|gj |2E|hj |2 + 2(E|hj |2)2 + |E(h2
j )|2},

a2 =

r
∑

l+1

{cum(gj , gj , ḡj , ḡj) − 2cum(gj , hj , ḡj , h̄j) + cum(hj , hj , h̄j , h̄j)},

b1 = 2

r
∑

j=l+1

r
∑

k=j+1

{(E|gj |2 − E|hj |2)(E|gk|2 − E|hk|2)

+|E(gjgk)|2 + |E(gj ḡk)|2 − |E(gjhk)|2 − |E(gj h̄k)|2

−|E(gkhj)|2 − |E(gkh̄j)|2 + |E(hjhk)|2 + |E(hj h̄k)|2},

b2 = 2

r
∑

j=l+1

r
∑

k=j+1

{cum(gj , gk, ḡj , ḡk) − cum(gj , hk, ḡj , h̄k)

−cum(hj , gk, h̄j , ḡk) + cum(hj , hk, h̄j , h̄k)} =: 2

r
∑

j=l+1

r
∑

k=j+1

s(j, k).

By Lemma 6.2, we have |a1| ≤ C
∑r

l+1(log j)/j≤ C(log r)2 and

|b1| ≤ C

r
∑

j=l+1

r
∑

k=j+1

{

(log j)(log k)

jk
+

(log k)2

j2

}

≤ C
r(log r)2

l
.

Since the summand in a2 is the summand in b2 with j = k, we shall derive the

order of the summand in b2 first. After a straightforward calculation [cf. Brillinger

(1975)], we can write (2πn)2fujfuks(j, k) as
∫

Π3

{

α(w1 + w2 + w3)α(−w2)

|αj |2
− 1

}{

α(−w1)α(−w3)

|αk|2
− 1

}

dFjk(w1, w2, w3),(32)
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where Π3 = [−π, π]3 and

dFjk(w1, w2, w3) = f4(w1, w2, w3)Ejk(w1, w2, w3)dw1dw2dw3,

Ejk(w1, w2, w3) = D(λj − w1 − w2 − w3)D(λk +w1)D(w2 − λj)D(w3 − λk).

Under Assumption 2.3, f4(·, ·, ·) is bounded. Following Robinson (1995b, page

1649), (32) is a sum of three types of components. The first type is

∫

Π3

{

α(w1 + w2 + w3)

αj
− 1

}{

α(−w2)

ᾱj
− 1

}

×
{

α(−w1)

αk
− 1

}{

α(−w3)

ᾱk
− 1

}

dFjk(w1, w2, w3). (33)

By the Cauchy-Schwarz inequality, Lemma 3 of Robinson (1995b) and the period-

icity, (33) is bounded in absolute value by Cn2PjPk, where

Pj =

∫ π

−π

∣

∣

∣

∣

α(λ)

αj
− 1

∣

∣

∣

∣

2

K(λ− λj)dλ = O(j−1) uniformly over 1 ≤ j ≤ m.

So |(33)| ≤ Cn2j−1k−1. A typical second type of component is

∫

Π3

{

α(w1 + w2 + w3)

αj
− 1

}{

α(−w1)

αk
− 1

}{

α(−w3)

ᾱk
− 1

}

dFjk(w1, w2, w3).(34)

Again, by the Cauchy-Schwarz inequality and the periodicity, we have |(34)| ≤
Cn2P

1/2
j Pk ≤ Cn2j−1/2k−1 since

∫ π
−π K(λ)dλ = 1. It is easily seen that other com-

ponents of second type can be bounded either by Cn2j−1/2k−1 or Cn2j−1k−1/2.

We proceed to show that the third type of component is bounded in magnitude

by Cn3/2j−1/2k−1/2. An example of the third type component is

∫

Π3

{

α(w1 +w2 + w3)

αj
− 1

}{

α(−w1)

αk
− 1

}

dFjk(w1, w2, w3)

=

∫

Π3

{

α(θ)

αj
− 1

}{

α(−w1)

αk
− 1

}

Ejk(w1, θ − w1 − w3, w3)

×f4(w1, θ − w1 − w3, w3)dw1dθdw3

=

∫

Π2

{

α(θ)

αj
− 1

}{

α(−w1)

αk
− 1

}

D(λj − θ)D(λk + w1)Gjk(θ, w1)dθdw1,(35)

where Π2 = [−π, π]2 and

Gjk(θ, w1) =

∫ π

−π
D(θ − w1 − w3 − λj)D(w3 − λk)f4(w1, θ − w1 − w3, w3)dw3.
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Then we have |(35)| ≤ Cn3/2P
1/2
j P

1/2
k ≤ Cn3/2j−1/2k−1/2 by the Cauchy-Schwarz

inequality if the following relation holds:

Ω :=

∫

Π2

|Gjk(θ, w1)|2dθdw1 ≤ Cn. (36)

To show (36), let c(k1, k2, k3) = cum(u0, uk1
, uk2

, uk3
) and rewrite Gjk(θ, w1) as

Gjk(θ, w1) =
1

(2π)3

∑

k1,k2,k3∈Z

n
∑

t1,t2=1

c(k1, k2, k3)

∫ π

−π
eiw3(k2−k3−t1+t2)dw3

× exp{i[−w1k1 − k2(θ −w1) + t1(θ − w1 − λj) − t2λk]}

=
1

(2π)2

∑

k1,k2,k3∈Z

n
∑

t1=1

c(k1, k2, k3)1(1 ≤ t1 − k2 + k3 ≤ n)

× exp{i[−w1k1 − (θ − w1 − λk)k2 − λkk3 + t1(θ − w1 − λj − λk)]}.

By a similar argument as above, we have

(2π)2Ω =

∣

∣

∣

∣

∣

∑

k1,k2,k3∈Z

∑

k′

1
,k′

2
,k′

3
∈Z

n
∑

t1 ,t′
1
=1

c(k1, k2, k3)c(k
′
1, k

′
2, k

′
3)

×1(1 ≤ t1 − k2 + k3 ≤ n)1(1 ≤ t′1 − k′2 + k′3 ≤ n) ×
1(k1 − k′1 − k2 + k′2 + t1 − t′1 = 0)1(k′2 − k2 + t1 − t′1 = 0)

× exp{i[(t′1 − t1)λj + (t′1 − t1 + k2 − k′2 − k3 + k′3)λk]}
∣

∣

∣

∣

∣

≤ n
∑

k1,k2,k3∈Z

∑

k′

1
,k′

2
,k′

3
∈Z

|c(k1, k2, k3)||c(k′1, k′2, k′3)|,

which entails (36) under Assumption 2.3. Finally, we deduce that

a2 ≤ C
r
∑

1

(j−2 + j−3/2 + n−1/2j−1) ≤ C,

b2 ≤ C

r
∑

j=l+1

r
∑

k=j+1

(j−1k−1 + j−1k−1/2 + j−1/2k−1 + n−1/2j−1/2k−1/2)

≤ C{(1 + log r)2 + r1/2 log r + rn−1/2}.

The conclusion follows since l = 1 + br1/2 log rc. ♦

Lemma 6.5. For the process Xt in (3) with d0 ∈ (1/2, 3/2), under Assumption 2.1,

E(Xn −X0)
2 ≤ Cn2d0−1, n ∈ N, where C only depends on d0 and CU .
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Proof of Lemma 6.5. Recall D(w) =
∑n

t=1 e
itw. By (3), we have

E(Xn −X0)
2 =

∫ π

−π
|D(λ)|2|1 − eiλ|2−2d0fu(λ)dλ

≤ CU

∫ π

−π
|1 − einλ|2|1 − eiλ|−2d0dλ =: CU

∫ π

−π
Gn(λ, d0)dλ.

Fix a δ ∈ (0, 1), let hn = δ/n. Then on [0, hn], Gn(λ, d0) ≤ C(nλ)2λ−2d0 . On

(hn, δ), Gn(λ, d0) ≤ Cλ−2d0 and Gn(λ, d0) ≤ C on [δ, π]. Hence

∫ π

0
Gn(λ, d0)dλ ≤

∫ hn

0
Cn2λ2−2d0dλ+

∫ δ

hn

Cλ−2d0dλ+

∫ π

δ
Cdλ ≤ Cn2d0−1.

The constant C above only depends on d0 and CU once we fix δ. Thus the con-

clusion follows since Gn(λ, d0) = Gn(−λ, d0). ♦

Lemma 6.6. Let ut = F (· · · , εt−1, εt) and Snk = n−1/2
∑k

j=1 uj , k = 1, · · · , n.
Suppose that Eut = 0 and

∑∞
k=1 kδ4(k) < ∞, then on a richer probability space,

there exists a standard Brownian motion IB such that

max
0≤k≤n

|Snk −
√

2πG0IB(k/n)| = oa.s.(χ(n)), (37)

where χ(n) = n−1/4 log(n). Consequently,

max
s=1,...,m

|ωu(λs) − ξs| = oa.s.(mχ(n)), (38)

where ξs = G
1/2
0

∑n
k=1{IB(k/n) − IB((k − 1)/n)}eikλs .

Proof of Lemma 6.6. By Theorem 3 and Corollary 5 in Wu (2005a), we have (37).

Since

wu(λs) − ξs =

n−1
∑

k=1

(Snk −
√

2πG0IB(k/n))
eikλs − ei(k+1)λs

√
2π

+
Snn −

√
2πG0IB(1)√
2π

= oa.s.(χ(n))

n−1
∑

k=1

|1 − eiλs | + oa.s.(χ(n)) = oa.s.(mχ(n))

uniformly over s = 1, · · · ,m, (38) follows. ♦

Remark 6.3. The strong approximation (38) is used to obtain the asymptotic

distribution of d̂ when d0 = 1. A similar result for linear processes has been used

by Phillips (1999b) to derive the asymptotic distribution of the estimator from

log-periodogram regression at d0 = 1.
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Lemma 6.7. For (3) with d0 ∈ (3/4, 3/2), assume
∑∞

k=0 ‖P0uk‖q < ∞, where

q > 2/(2d0 − 1) for d0 ∈ (3/4, 1) and q = 2 for d0 ∈ [1, 3/2). Then

Xn −X0

nd0−1/2K(d0)
⇒ N(0, 1), (39)

where

K(d0)
2 = 2πG0Γ(d0)

−2

{

1

2d0 − 1
+

∫ ∞

1
(yd0−1 − (y − 1)d0−1)2dy

}

= J(d0)(2π)3−2d0 (2d0 − 1)2G0(1 − d0)
−1 for d0 ∈ (3/4, 1).

Proof of Lemma 6.7. When d0 ∈ (3/4, 1)∪(1, 3/2), the result follows from Theorem

2.1 in Shao and Wu (2006), who proved a functional central limit theorem. When

d0 = 1, it follows from Theorem 1 in Hannan (1973). ♦

Proof of Proposition 3.1. Let ηj = λ2d0

j IXj/G0. By Theorem 2.1 in Dalla et al.

(2006), it suffices to prove that

E(ηj) ≤ C, j = 1, · · · ,m, and
1

bτmc

bτmc
∑

j=1

ηj
P→ 1, for any τ ∈ (0, 1]. (40)

The former assertion is a direct consequence of Lemma 6.3 and the fact that

EIuj = fuj +o(1) uniformly over j = 1, · · · ,m under Assumption 2.1 [cf. Brockwell

and Davis (1991), Proposition 10.3.1]. For the latter, let τm = bτmc. By Lemma

6.3,

τ−1
m

τm
∑

j=1

ηj =
1

G0τm

τm
∑

j=1

ĨXjfXjλ
2d0

j =
1

G0τm

τm
∑

j=1

ĨujfXjλ
2d0

j + oP(1)

=
1

G0τm

τm
∑

j=1

Iuj + oP(1) := Jn + oP(1).

We shall adopt a martingale approximation approach to prove Jn = 1 + oP(1).

Let dk =
∑∞

t=k Pkut be stationary martingale differences and we approximate
∑n

t=1 ute
itλ by

∑n
t=1 dte

itλ. By Lemma 4 in Wu and Shao (2005), ‖∑n
t=1(ut −

dt)e
itλj‖ ≤ C(

√
n|1 − e−iλj | + 1), where C is independent of n and λj. Therefore,

Jn =
1

2πnG0τm

τm
∑

j=1

∣

∣

∣

∣

∣

n
∑

t=1

dte
itλj

∣

∣

∣

∣

∣

2

+ oP(1)
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=
1

2πnG0

n
∑

t=1

d2
t +

1

πnG0

n
∑

k=2

k−1
∑

k′=1

dkdk′an(k − k′) + oP(1)

=: J1n + J2n + oP(1),

where an(l) = τ−1
m

∑τm

j=1 cos(lλj). Note that zk = dk
∑k−1

k′=1 dk′an(k − k′) forms

martingale differences with respect to Fk and dk ∈ L4 under ut ∈ L4 (see Lemma

4 in Wu and Shao (2005)), we have var(J2n) = O(n−2)
∑n

k=2 E(z2
k) = O(1/m) by

Burkholder’s inequality [Hall and Hedye (1980), page 23] and Lemma 5 in Wu

and Shao (2005). Thus the conclusion follows since ‖d0‖2 = 2πG0 [Wu and Shao

(2005)] and, by the ergodic theorem, J1n − 1 = oa.s.(1). ♦

Remark 6.4. In Dalla et al. (2006), their d is twice the d used in our paper.

Also they set ∆1 = −1/2 and ∆2 = 1/2 since they only consider the case d0 ∈
(−1/2, 1/2). A detailed check of their argument shows that their Theorem 2.1 is

still applicable to our case as long as d0 ∈ [∆1,∆2].

Proof of Theorem 3.1. By Proposition 3.1, it suffices to show
√
mFm ⇒ N(0, 1).

Since fXjG
−1
0 λ2d0

j = 1 +O(λβ
j ) holds uniformly over j = 1, · · · ,m under Assump-

tion 2.5 and
∑m

j=1 |sj |E(ĨXj)λ
β
j = o(m1/2) under (11), we can write

√
mFm =

I1 + I2 + oP(1), where

I1 = m−1/2
m
∑

j=1

sj(ĨXj − Ĩuj) and I2 = m−1/2
m
∑

j=1

sj Ĩuj.

For I1, by summation by parts, we get from Lemma 6.4 that

E(|I1|) ≤ m−1/2
m−1
∑

r=1

log(1 + 1/r)E

∣

∣

∣

∣

∣

∣

r
∑

j=1

(ĨXj − Ĩuj)

∣

∣

∣

∣

∣

∣

+m−1/2
E

∣

∣

∣

∣

∣

∣

m
∑

j=1

(ĨXj − Ĩuj)

∣

∣

∣

∣

∣

∣

≤ Cm−1/2
m−1
∑

r=1

(r−3/4(1 + log r)1/2 + r−1/2n−1/4) + o(1) = o(1).

Let Î2 = m−1/2
∑m

j=1 sjIujG
−1
0 and we have E|I2 − Î2| = m−1/2

∑m
j=1 sjO(λβ

j ) =

o(1) under (11). By Corollary 2 in Wu and Shao (2005), under Assumption 2.4

and (10), Î2 −E(Î2) ⇒ N(0, 1). The conclusion then follows since E(Î2) = o(1). ♦

Proof of Proposition 3.2. A careful investigation of Theorem 2.1 of Dalla et al.

(2006) and its proof suggests that their argument still apply if d0 ∈ (1/2, 1).
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Let ηj = λ2d0

j IXjG
−1
0 . It suffices to show (40). By Lemma 6.5, λ2d0

j ‖Xn −
X0‖2(2πn)−1|1−eiλj |−2 ≤ Cn2d0−2λ2d0−2

j ≤ C, 1 ≤ j ≤ m, where we have applied

the fact that |1 − eiλ|−2 = λ−2(1 +O(λ2)) over a neighborhood of λ = 0. Lemma

6.3 and the fact that EIuj = fuj+o(1) uniformly over j = 1, · · · ,m [cf. Proposition

10.3.1, Brockwell and Davis (1991)] imply that λ2d0

j E{IY (λj)}|1 − eiλj |−2 ≤ C for

j = 1, · · · ,m. By the Cauchy-Schwarz inequality, the third term in (17) multiplied

by λ2d0

j is bounded uniformly over j. So Eηj ≤ C, j = 1, · · · ,m. Next, for any

τ ∈ (0, 1], let τm = bτmc,

1

τm

τm
∑

j=1

λ2d0

j (Xn −X0)
2

2πnG0|1 − eiλj |2 = OP(n2d0−2)
1

τm

τm
∑

j=1

λ2d0−2
j = oP(1).

By Lemma 6.3 and the argument in the proof of Proposition 3.1,

1

τm

τm
∑

j=1

λ2d0

j IY j

G0|1 − eiλj |2 =
1

τm

τm
∑

j=1

ĨY j + oP(1)

=
1

τm

τm
∑

j=1

Ĩuj + oP(1) = 1 + oP(1).

Finally we need to show that

1

τm

τm
∑

j=1

G−1
0

2(Xn −X0)λ
2d0

j√
2πn|1 − eiλj |2

Re(wY je
−iλj ) = oP(1). (41)

Applying Lemma 6.2 to {wY j}, we get

n2d0−2

τ2
m

τm
∑

j,k=1

λ2d0

j λ2d0

k |1 − eiλj |−2|1 − eiλk |−2
∣

∣

∣
E{Re(wY je

−iλj )Re(wY ke
−iλk)}

∣

∣

∣

≤ C

τ2
m

τm
∑

j=1

j2d0−2 +
C

τ2
m

τm
∑

k=2

k−1
∑

j=1

jd0−1kd0−1j−1 log k = o(1).

Thus (41) holds since Xn = OP(nd0−1/2) (see Lemma 6.5). The conclusion follows.

♦

Proof of Theorem 3.2. (i). By Proposition 3.2, 2(d̂ − d0) = −Fm(1 + oP(1)) +

OP(logm/m). In view of (17), we first show that

m−1/2
m
∑

j=1

sjλ
2d0

j

(Xn −X0)√
2πn|1 − eiλj |2

(w̄Y je
iλj + wY je

−iλj ) = oP(1). (42)
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Since (Xn −X0)/
√

2πn = OP(nd0−1) (see Lemma 6.5), it suffices to show

Tm := nd0−1m−1/2
m
∑

j=1

sjλ
2d0

j

(w̄Y je
iλj + wY je

−iλj )

|1 − eiλj |2 = oP(1). (43)

Summation by parts yields Tm = nd0−1m−1/2{∑m−1
r=1 (sr − sr+1)D(r) + D(m)},

where D(r) :=
∑r

j=1 λ
2d0

j (w̄Y je
iλj + wY je

−iλj )|1 − eiλj |−2, 1 ≤ r ≤ m. Note that

|1 − eiλj |−2 = λ−2
j (1 + O(λ2

j)) uniformly over j = 1, · · · ,m. By Lemma 6.2, we

have

‖D(r)‖2 ≤
r
∑

j,k=1

λ2d0−2
j λ2d0−2

k (1 +O(λ2
j ))(1 +O(λ2

k))

×|E(w̄Y je
iλj + wY je

−iλj )(w̄Y ke
iλk + wY ke

−iλk)|

≤ C
r
∑

j=1

λ
2(d0−1)
j + C

r
∑

k=2

k−1
∑

j=1

λd0−1
j λd0−1

k

log k

j
≤ Cn2−2d0rd0 log r.

Since d0 < 1,

E(|Tm|) ≤ nd0−1m−1/2

{

m−1
∑

r=1

|sr − sr+1|‖D(r)‖ + ‖D(m)‖
}

≤ Cm−1/2

{

m−1
∑

r=1

r−1rd0/2
√

log r +md0/2
√

logm

}

= o(1),

hence (43) holds. When d0 ∈ (1/2, 3/4), by the argument in the proof of Theo-

rem 3.1 (where the role of λ2d0

j IXj is replaced by λ2d0−2
j IY j),

√
m(d̂− d0) = −m−1/2

m
∑

j=1

sjλ
2d0−2
j IY j(2G0)

−1 + oP(1) ⇒ N(0, 1/4).

When d0 ∈ (3/4, 1),

m2−2d0(d̂− d0) = −m1−2d0

m
∑

1

sjλ
2d0−2
j

(Xn −X0)
2

4πnG0
+ oP(1) ⇒ J(d0)U

2
2

in view of Lemma 6.7 and the fact that m1−2d0
∑m

1 sjj
2d0−2 = (2d0 − 1)−2(2d0 −

2) + o(1).

(ii). Denote by a(eiλ) =
∑∞

j=0 aje
ijλ. Recall (15) for the expression of Xn−X0.

We first claim that

Xn −X0 − a(1)

∞
∑

j=0

Aj,nεn−j = oP(nd0−1/2). (44)
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Let Ω1 = (2π)2d0−2(2d0 − 1)−2(1 − d0), yt = n1/2−d0An−t,nεt = n1/2−d0φn−t(d0)εt,

1 ≤ t ≤ n and Pn = n1/2−d0
∑∞

k=nAk,nεn−k. By (17) and (42), we have
√
mFm =

I1 + I2 + oP(1), where

I1 = m−1/2
m
∑

1

G−1
0 sjλ

2d0

j |1 − eiλj |−2 (Xn −X0)
2

2πn

= (2πn)−1m−1/2
m
∑

1

G−1
0 sjλ

2d0−2
j a(1)2

(

∞
∑

k=0

Ak,nεn−k

)2

(1 + oP(1))

= −2Ω1

(

n
∑

1

yt + Pn

)2

(1 + oP(1)),

and

I2 = m−1/2
m
∑

1

sjλ
2d0

j IY (λj)G
−1
0 |1 − eiλj |−2

= m−1/2
m
∑

1

sjλ
2d0−2
j IY (λj)G

−1
0 + oP(1) = m−1/2

m
∑

1

sjIujG
−1
0 + oP(1).

The validity of the last equality above follows from Lemma 6.4 and the argument in

the proof of Theorem 3.1. Under the assumption
∑∞

j=0 j|aj | <∞, it is easy to see

that a(eiλ) is differentiable in a neighborhood of zero and d
dλa(e

iλ) = O(λ−1)

as λ → 0+. Based on the above properties of α(·), Robinson (1995b, page

1644) showed that
∑m

1 sjIujG
−1
0 =

∑m
1 2πsjIε(λj) + oP(m1/2). Therefore I2 =

m−1/2
∑m

1 sj2πIε(λj)+oP(1) =
∑n

t=1 zt +oP(1), where z1 = 0, zt = εt
∑t−1

s=1 εsct−s

for t ≥ 2. cs = 2n−1m−1/2
∑m

1 sj cos(sλj). Letting Ω2 = Γ(d0)
−2(2d0 − 1)−1 and

Ω3 = Γ(d0)
−2{
∫∞
1 (yd0−1 − (y − 1)d0−1)2dy}, we shall show that

(

n
∑

1

zt,
n
∑

1

yt, Pn

)

⇒ (U1,Ω
1/2
2 W1,Ω

1/2
3 W2), (45)

where U1,W1,W2 are iid N(0, 1). Notice that Pn is independent of (
∑n

1 yt,
∑n

1 zt),

it suffices to show that Pn ⇒ Ω
1/2
3 W2, since PS (2004, page 687) has shown that

(
∑n

1 zt,
∑n

1 yt) ⇒ (U1,Ω
1/2
2 W1). Write

Pn = n1/2−d0

n2−1
∑

k=n

Ak,nεn−k + n1/2−d0

∞
∑

k=n2

Ak,nεn−k =: K1n +K2n.
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Note that |Ak,n| ≤ κ :=
∑∞

j=0 |φj(d0 − 1)| <∞ for all k ≥ n. Then for any ε > 0,

the following Linderberg condition holds:

n2−1
∑

k=n

E{A2
k,nn

1−2d0ε2n−k1(n1/2−d0 |Ak,nεn−k| > ε)}

= O(n1−2d0)

n2−1
∑

k=n+1

[kd0−1 − (k − n)d0−1]2 × E{ε211(|ε1| > nd0−1/2ε/κ)} → 0,

which entails that K1n[var(K1n)]−1/2 ⇒ N(0, 1). Since K1n and K2n are indepen-

dent of each other, the convergence of Pn follows from the fact that var(K2n) =

O(
∫∞
n (yd0−1 − (y − 1)d0−1)2dy) = o(1).

Combining the results above, we apply the continuous mapping theorem and

get
√
m(d̂− d0) ⇒ −U1/2 + Ω1(Ω

1/2
2 W1 + Ω

1/2
3 W2)

2, where the limit has the same

distribution as U1/2 + J(d0)U
2
2 .

It remains to show (44). By B-N decomposition (Phillips and Solo (1992)),

uj = a(1)εj + ε̃j−1 − ε̃j, ε̃j =
∞
∑

i=0

ãiεj−i, ãi =
∞
∑

k=i+1

ak.

Letting Bj,n = Aj,n −Aj+1,n, then we have

Xn −X0 − a(1)
∞
∑

j=0

Aj,nεn−j =
∞
∑

j=0

Aj,n(ε̃n−j−1 − ε̃n−j)

=

∞
∑

j=0

Bj,nε̃n−j−1 −A0,nε̃n,

where ‖A0,nε̃n‖ <∞ and

∥

∥

∥

∥

∥

∥

∞
∑

j=0

Bj,nε̃n−j−1

∥

∥

∥

∥

∥

∥

2

≤
∫ π

−π

∣

∣

∣

∣

∣

∣

∞
∑

j=0

Bj,ne
ijλ

∣

∣

∣

∣

∣

∣

2 ∣
∣

∣

∣

∣

∣

∞
∑

j=0

ãje
ijλ

∣

∣

∣

∣

∣

∣

2

1

2π
dλ

≤ 4





∞
∑

i=0

|φi(d0 − 1)|
∞
∑

j=0

|ãj |





2

<∞.

Thus (44) holds and the proof is completed. ♦

Remark 6.5. As we can see from the proof of Theorem 3.2, the third term of

(17) is negligible for all d0 ∈ (1/2, 1). The first term of (17) becomes dominant
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when d0 ∈ (3/4, 1), while the second term is dominant when d0 ∈ (1/2, 3/4). At

d0 = 3/4, the first two terms have the same stochastic order and the asymptotic

distribution is a mixture. This phenomenon has been observed by PS (2004) in the

Type II case and our result for the Type I case is consistent with their observation.

When d0 ∈ (3/4, 1), Assumption 2.4 can be replaced by
∑∞

k=1 k‖P0uk‖q < ∞,

q > 2/(2d0 − 1); compare Lemma 6.7 and Assumption 2.2.

Proof of Theorem 3.3. The proof follows the argument in PS (2004) for the Type II

case. For the purpose of completeness, we present the details here. For ease of pre-

sentation, let X0 = 0. Let Ĝ(d) = m−1
∑m

1 λ2d
j IXj, G(d) := G0m

−1
∑m

j=1 λ
2d−2
j

and S(d) = R(d) − R(1). Fix a small ∆ ∈ (0, 1/4), define Θ1 = {d : 1/2 + ∆ ≤
d ≤ ∆2} and Θ2 = {d : ∆1 ≤ d < 1/2 + ∆}. As in PS (2004), d̂

P→ 1 if

sup
Θ1

|T (d)| P→ 0 and P(inf
Θ2

S(d) ≤ 0) → 0, (46)

where

T (d) = log
Ĝ(1)

G0
− log

Ĝ(d)

G(d)
− log

(

2d− 1

m

m
∑

1

(

j

m

)2d−2
)

+(2d− 2)

{

m−1
m
∑

1

log j − (logm− 1)

}

.

Robinson (1995b, Lemmas 1,2) showed that the last term above is O(logm/m)

uniformly over d ∈ Θ1 and

sup
Θ1

∣

∣

∣

∣

∣

2d− 1

m

m
∑

1

(

j

m

)2d−2

− 1

∣

∣

∣

∣

∣

= O(m−2∆). (47)

Thus supΘ1
|T (d)| P→ 0 if

sup
Θ1

∣

∣

∣

∣

∣

log
Ĝ(1)

G0
− log

Ĝ(d)

G(d)

∣

∣

∣

∣

∣

P→ 0. (48)

Let

A(d) =
(2d − 1)

m

m
∑

1

(

j

m

)2d−2

j2−2d0λ2d0

j IXj
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and

B(d) =
(2d− 1)G0

m

m
∑

1

(

j

m

)2d−2

.

Following PS (2004), a simple calculation shows that

log
Ĝ(1)

G0
− log

Ĝ(d)

G(d)
= log

B(d)

G0
− log

A(d)

A(1)
.

Thus (48) is true if

sup
Θ1

∣

∣

∣

∣

A(d) −A(1)

A(1)

∣

∣

∣

∣

P→ 0 and sup
Θ1

∣

∣

∣

∣

B(d) −G0

G0

∣

∣

∣

∣

P→ 0. (49)

Now we treat d0 = 1 and d0 ∈ (1, 3/2) separately. When d0 = 1, we shall prove

sup
Θ1

|A(d) −G0 −X2
n/(2πn)| P→ 0. (50)

We have

|A(d) −G0 −X2
n/(2πn)| ≤ 2d− 1

m

m
∑

1

(

j

m

)2d−2

(λ2
jIXj −G0 −X2

n/(2πn))

+

∣

∣

∣

∣

∣

2d− 1

m

m
∑

1

(

j

m

)2d−2

− 1

∣

∣

∣

∣

∣

(G0 +X2
n/(2πn))

=: I1(d) + I2(d),

where supd∈Θ1
|I2(d)| = oP(1) by (47) and Lemma 6.5. Following the argument in

Robinson (1995b) and PS (2004), summation by parts yields

sup
d∈Θ1

|I1(d)| ≤ C

m−1
∑

r=1

r2∆−2

m2∆

∣

∣

∣

∣

∣

∣

r
∑

j=1

{λ2
jIXj −G0 −X2

n/(2πn)}

∣

∣

∣

∣

∣

∣

+
C

m

∣

∣

∣

∣

∣

∣

m
∑

j=1

{λ2
jIXj −G0 −X2

n/(2πn)}

∣

∣

∣

∣

∣

∣

≤ C(J1n + J2n + J3n) + CJ4n,

where by (17),

J1n =
X2

n

2πn

m−1
∑

r=1

r2∆−2

m2∆

r
∑

j=1

|λ2
j |1 − eiλj |−2 − 1|,
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J2n =

m−1
∑

r=1

r2∆−2

m2∆

∣

∣

∣

∣

∣

∣

r
∑

j=1

(λ2
j |1 − eiλj |−2Iuj −G0)

∣

∣

∣

∣

∣

∣

,

J3n =
|Xn|√
2πn

m−1
∑

r=1

r2∆−2

m2∆

∣

∣

∣

∣

∣

∣

r
∑

j=1

λ2
j

2Re(wuje
−iλj )

|1 − eiλj |2

∣

∣

∣

∣

∣

∣

.

It is easily seen that J1n = oP(1) in view of Lemma 6.5. Under Assumption 2.1,

EIuj = fuj + o(1) uniformly over j = 1, · · · ,m [cf. Proposition 10.3.1, Brockwell

and Davis (1991)], so we can write J2n :=
∑m−1

r=1 r2∆−1m−2∆|r−1
∑r

j=1 Iuj −G0|+
oP(1) =: J

(1)
2n + oP(1). Fix a τ ∈ (0, 1) and let τm = bτmc, by the martingale

approximation argument in the proof of Proposition 3.1,

lim sup
n→∞

EJ
(1)
2n ≤ lim sup

n→∞

τm
∑

r=1

r2∆−1

m2∆
E

∣

∣

∣

∣

∣

∣

1

r

r
∑

j=1

Iuj −G0

∣

∣

∣

∣

∣

∣

+ lim sup
n→∞

m−1
∑

r=τm+1

r2∆−1

m2∆
E

∣

∣

∣

∣

∣

∣

1

r

r
∑

j=1

Iuj −G0

∣

∣

∣

∣

∣

∣

≤ 3G0τ
2∆

2∆
.

Since τ is arbitrarily chosen, J
(1)
2n = oP(1), so J2n = oP(1). To show J3n = oP(1),

since |Xn| = OP(
√
n) (see Lemma 6.5), it suffices to verify

m−1
∑

r=1

r2∆−2

m2∆

∥

∥

∥

∥

∥

∥

r
∑

j=1

λ2
j |1 − eiλj |−22Re(wuje

−iλj )

∥

∥

∥

∥

∥

∥

= o(1). (51)

The above relation follows from Lemma 6.2 by a simple calculation. A similar

argument leads to J4n = oP(1), then we have supd∈Θ1
|I1(d)| = oP(1). So (50)

holds and supd∈Θ1
|(A(d) −A(1))/A(1)| = oP(1) when d0 = 1.

When d0 ∈ (1, 3/2), we shall approximate A(d) by

Ã(d) :=
2d− 1

m

m
∑

1

(

j

m

)2d−2 j2−2d0λ2d0

j

|1 − eiλj |2
X2

n

2πn
.

We shall show that supd∈Θ1
|A(d) − Ã(d)| = oP(1). Note that

A(d) − Ã(d) =
2d− 1

m

m
∑

1

(

j

m

)2d−2 j2−2d0λ2d0

j IY j

|1 − eiλj |2

−2d− 1

m

m
∑

1

(

j

m

)2d−2

j2−2d0λ2d0

j

2XnRe(wY je
−iλj )√

2πn|1 − eiλj |2

=: S1(d) − S2(d).
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Similarly as before, we have

sup
d∈Θ1

|S1(d)| ≤ C

m−1
∑

r=1

r2∆−2

m2∆

r
∑

j=1

j2−2d0λ2d0

j IY j

|1 − eiλj |2

+
C

m

m
∑

j=1

j2−2d0λ2d0

j IY j

|1 − eiλj |2 .

By Lemma 6.3, we have E supd∈Θ1
|S1(d)| = O[(logm)(m−2∆ + m2−2d0)] = o(1).

Concerning S2(d), we have

sup
d∈Θ1

|S2(d)| ≤ C|Xn|√
2πn

m−1
∑

r=1

r2∆−2

m2∆

∣

∣

∣

∣

∣

∣

r
∑

j=1

j2−2d0λ2d0

j

Re(2wY je
−iλj )

|1 − eiλj |2

∣

∣

∣

∣

∣

∣

+
C|Xn|√
2πnm

∣

∣

∣

∣

∣

∣

m
∑

j=1

j2−2d0λ2d0

j

Re(2wY je
−iλj )

|1 − eiλj |2

∣

∣

∣

∣

∣

∣

.

Thus, supd∈Θ1
|S2(d)| = oP(1) follows from Lemma 6.2 and the fact that |Xn| =

OP(nd0−1/2) (see Lemma 6.5); compare (51).

Hence, supΘ1
|A(d)−Ã(d)| P→ 0. Moreover, supd∈Θ1

|Ã(d)−(2π)2d0−3n1−2d0X2
n| =

oP(1) holds by Lemma 6.5 and (47). Therefore,

A(d) −A(1)

A(1)
=

oP(1)

(2π)2d0−3n1−2d0X2
n + oP(1)

uniformly on Θ1.

By Lemma 6.7, n1/2−d0Xn ⇒ N(0,K(d0)
2). So supΘ1

|[A(d) − A(1)]/A(1)| P→ 0.

supΘ1
|[B(d) −G0]/G0| = O(m−2∆) follows from (47). Thus (49) is established.

Next, we consider Θ2 = {d : ∆1 ≤ d ≤ 1/2 + ∆}. Let p = exp(m−1
∑m

1 log j).

Following the argument in the proof of Theorem 3.2 of PS (2004), we have

P(inf
Θ2

S(d) ≤ 0) ≤ P

(

S̃m(d0) ≤ 0
)

, (52)

where S̃m(d0) := m−1
∑m

1 (aj − 1)j2−2d0λ2d0

j IXj, aj = (j/p)2∆−1, 1 ≤ j ≤ p and

aj = (j/p)−3, p < j ≤ m. By a similar argument as before, we have

S̃m(d0) =
1

m

m
∑

1

(aj − 1)
j2−2d0λ2d0

j

|1 − eiλj |2 {G01(d0 = 1) +X2
n/(2πn)} + oP(1)

= (2π/n)2d0−2{G01(d0 = 1) +X2
n/(2πn)}m−1

m
∑

1

(aj − 1) + oP(1).
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Choose ∆ < 1/(2e), then m−1
∑m

1 (aj −1) > δ > 0 for large enough m. Therefore,

P(S̃m(d0) ≤ 0) → 0 as n→ ∞, which leads to d̂
P→ 1 in view of (46) and (52). ♦

The following lemma is used in proving the asymptotic distribution of d̂ when

d0 = 1.

Lemma 6.8. Let the nonnegative random variables ηj = ηj,m, j = 1, · · · ,m satisfy

Eηj ≤ C, 1 ≤ j ≤ m, where C is a finite constant. Suppose the random variables

Qm(x, d),m ≥ 1 satisfy that for any b ∈ (0, 1), d ∈ [d1, d2] ⊂ R,

sup
b≤x≤1

sup
d∈[d1,d2]

|Qm(x, d)| = oP(1), as m→ ∞ (53)

and for some γ ∈ (0, 1),

sup
d∈[d1,d2]

|Qm(x, d)| ≤ Cx−γ | log(x)[log(x) + 1]|, x ∈ [0, b]. (54)

Then as m→ ∞,

sup
d∈[d1,d2]

∣

∣

∣

∣

∣

∣

1

m

m
∑

j=1

Qm(j/m, d)ηj

∣

∣

∣

∣

∣

∣

= oP(1).

Proof of Lemma 6.8. Let bm = bbmc, then we have

∣

∣

∣

∣

∣

∣

1

m

m
∑

j=1

Qm(j/m, d)ηj

∣

∣

∣

∣

∣

∣

≤





bm
∑

j=1

+

m
∑

j=bm+1





∣

∣

∣

∣

1

m
Qm(j/m, d)ηj

∣

∣

∣

∣

=: I1m(d) + I2m(d).

By (53), supd∈[d1,d2] I2m(d) ≤ supb≤x≤1 supd∈[d1,d2] |Qm(x, d)|m−1
∑m

j=bm+1 ηj =

oP(1). Under (54), E supd∈[d1,d2] I1m(d) ≤ Cm−1
∑bm

j=1(j/m)−γ | log(j/m)(log(j/m)+

1)| → 0 as b ↓ 0. The conclusion follows. ♦

Proof of Theorem 3.4. The following argument is a variant of the one used by

Dalla et al. (2006) in their proof of Theorem 2.1. Again, we assume X0 = 0 for the

convenience of presentation. Let vj = log j−m−1
∑m

k=1 log k and ηj = λ2d0

j G−1
0 IXj .

Recall (8) for the objective function R(d). Note that R′(d) = 2Tn(d)/Sn(d), where

Tn(d) =
1

m

m
∑

j=1

(j/m)2(d−d0)vjηj and Sn(d) =
1

m

m
∑

j=1

(j/m)2(d−d0)ηj .
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Fix an ε ∈ (0, 1/4). On Ω1n := {|d̂− d0| ≤ ε}, we have

Sn(d̂) ≥ 1

m

m
∑

1

j2εηj

m2ε
=

1

m

m
∑

1

j2ε

m2ε

(

1 +
X2

n

2πnG0

)

+ oP(1) ≥ 1

2ε+ 1
+ oP(1),

which yields Tn(d̂) = R′(d̂)Sn(d̂)/2 = 0 on Ω1n ∩ Ω2n, where Ω2n = {Sn(d̂) ≥
1/(2ε + 2)} and P(Ω2n) → 1 as n→ ∞. By the mean-value theorem, there exists

a d̄ which lies in between d̂ and d0 such that Tn(d̂) − Tn(d0) = (d̂ − d0)T
′
n(d̄) on

Ω1n ∩ Ω2n, where T ′
n(d̄) = 2m−1

∑m
1 (j/m)2(d̄−d0) log(j/m)vjηj. Assume that

T ′
n(d̄) − 2[1 +X2

n/(2πnG0)] = oP(1) on Ω1n ∩ Ω2n. (55)

The proof of (55) is given in the end. Recall (38) for the form of ξj, 1 ≤ j ≤ m.

We apply Lemma 6.5 and (17) and get

√
mTn(d0) =

1√
m

m
∑

1

vjηj

=
1√
m

m
∑

1

vj

G0

[

(1 +O(λ2
j ))

{

Iuj +
X2

n

2πn
− 2XnRe(wuje

−iλj )√
2πn

}]

=
1√
m

m
∑

1

vj

G0

{

Iuj −
2XnRe(wuje

−iλj )√
2πn

}

+ oP(m5/2n−2 logm)

=
1√
m

m
∑

1

vj |ξj|2
G0

− IB(1)√
m

m
∑

1

vj√
G0

(ξje
−iλj + ξ̄je

iλj ) + oP(1).

The last equality above is due to Lemma 6.6 and (19). By Theorem 3.3, (d̂ −
d0)(1 + oP(1)) = (d̂− d0)1(Ω1n ∩ Ω2n). Since X2

n/(2πn) = G0IB(1)2 + oP(1),

√
m(d̂− d0)(1 + oP(1)) =

−Z(1)
n + IB(1)Z

(2)
n + oP(1)

2{1 + IB(1)2} + oP(1)
,

where Z
(1)
n = m−1/2

∑m
1 vj|ξj |2G−1

0 and Z
(2)
n = m−1/2

∑m
1 vj(ξje

−iλj +ξ̄je
iλj )G

−1/2
0 .

We shall show that (Z
(1)
n , Z

(2)
n ) ⇒ (W1,

√
2W2). By the Cramer-Wold device, it

suffices to show that, for any α ∈ (0, 1),

m−1/2
m
∑

1

vjzj ⇒ αW1 +
√

2(1 − α)W2, (56)

where zj = αG−1
0 |ξj |2 + (1 − α)G

−1/2
0 (ξje

−iλj + ξ̄je
iλj ), j = 1, · · · ,m are inde-

pendent random variables. Note that
∑m

1 vj = 0, m−1
∑m

1 v2
j = 1 + o(1) and
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var(m−1/2
∑m

1 vjzj) → α2 + 2(1 − α)2. Then the convergence (56) follows from

the obvious Lindeberg condition, i.e. for any δ > 0,

1

m

m
∑

j=1

v2
j E{z2

j 1(|vjzj | ≥ δ
√
m)} ≤ 1

m

m
∑

j=1

v2
j E{z2

11(|z1| ≥ δ
√
m/(2 logm))} → 0.

It is easily seen that IB(1) is independent of ξj, j = 1, · · · ,m, thus independent of

Z
(1)
n and Z

(2)
n . Applying the continuous mapping theorem, we get

√
m(d̂− d0) ⇒

−W1 +
√

2W2W3

2(1 +W 2
3 )

. (57)

It remains to show (55). To that end, write

T ′
n(d̄)/2 = H1n +H2n

=
1

m

m
∑

1

log(j/m)vjηj +
1

m

m
∑

1

[(j/m)2(d̄−d0) − 1] log(j/m)vjηj .

Since vj = log(j/m) + 1 +O(logm/m) uniformly over j = 1, · · · ,m [see Lemma 2

in Robinson (1995b)] and X2
n/n = OP(1) (see Lemma 6.5), we have

H1n − 1 − X2
n

2πnG0
=

1

m

m
∑

1

log

(

j

m

)

vj(ηj − 1 −X2
n(2πnG0)

−1) + oP(1)

= H
(1)
1n +H

(2)
1n +H

(3)
1n + oP(1),

where by (17),

H
(1)
1n =

1

m

m
∑

1

log

(

j

m

)

vjX
2
n(2πnG0)

−1(λ2
j |1 − eiλj |−2 − 1),

H
(2)
1n =

1

m

m
∑

1

log

(

j

m

)

vj

(

Iujλ
2
j

G0|1 − eiλj |2 − 1

)

,

H
(3)
1n = − 1

m

m
∑

1

log

(

j

m

)

2vjλ
2
jRe(wuje

−iλj )

|1 − eiλj |2G0

Xn√
2πn

.

By Lemma 6.5, H
(1)
1n = oP(1). Regarding H

(2)
1n , we have

H
(2)
1n = oP(1) +m−1

m
∑

1

log(j/m)vj(Iuj − EIuj)G
−1
0 ,
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where the variance of the latter term is o(1) by (30) of Lemma 6.2. H
(3)
1n = oP(1)

follows from Lemma 6.2 and a similar argument as before; compare the proof of

Theorem 3.3.

By Lemma 6.2 and Lemma 6.5, there exists a finite constant C such that

Eηj ≤ C, j = 1, · · · ,m. Therefore, on Ω1n ∩ Ω2n, H2n = 1
m

∑m
1 [(j/m)2(d̄−d0) −

1] log(j/m){log(j/m)+1}ηj+oP(1) = oP(1) follows from Theorem 3.3 and Lemma 6.8

by setting Qm(x, d) = [x2(d−d0)−1] log(x){log(x)+1}, d1 = d0− ε and d2 = d0 + ε.

Thus the conclusion holds. ♦

Proof of Theorem 4.1. Let J = cum(u0, um1
, · · · , umk−1

), where 0 = m0 ≤ m1 ≤
· · · ≤ mk−1. Denote by nl = ml −ml−1, 1 ≤ l ≤ k − 1. Define the random vector

Y0 = Y0,l = (um0−ml−1
, · · · , uml−2−ml−1

, u0). Further let (ε′n)n∈Z be an iid copy of

(εn)n∈Z, Ωn = (· · · , ε′n−1, ε
′
n) and define u∗t = F (Ω0, ε1, · · · , εt), t ≥ 0. Following

Proposition 2 in Wu and Shao (2004), by the stationarity and the additivity of

cumulants,

J = cum(Y0, uml−ml−1
, uml+1−ml−1

, · · · , umk−1−ml−1
)

=
k−l−1
∑

j=0

cum(Y0, u
∗
ml−ml−1

, · · · , u∗ml+j−1−ml−1
, uml+j−ml−1

− u∗ml+j−ml−1
,

uml+j+1−ml−1
, · · · , umk−1−ml−1

) =:
k−l−1
∑

j=0

Bj.

Denote by ζj = ‖uj −u∗j‖k and Sj = Sj,k :=
∑∞

i=j δk(i)
2. Proposition 2 of Wu and

Shao (2004) asserts that |Bj | ≤ C1ζml+j−ml−1
, where C1 only depends on k and

the moments E|u0|i, 1 ≤ i ≤ k. Therefore, by Proposition 2 of Wu (2005a),

J ≤ C1

k−l−1
∑

j=0

ζml+j−ml−1
≤ C2

k−l−1
∑

j=0

S
1/2
ml+j−ml−1

≤ C3S
1/2
nl
,

where C2 = 18k3/2(k − 1)−1/2C1, C3 = C2k. Since the above holds for any l,

1 ≤ l ≤ k − 1, we have J ≤ C3 min1≤l≤k−1 S
1/2
nl

. Finally,

∑

m1,···,mk−1∈Z

|cum(u0, um1
· · · , umk−1

)| ≤ k!
∑

0≤m1≤···≤mk−1

|cum(u0, um1
· · · , umk−1

)|

≤ k!

∞
∑

n1=0

· · ·
∞
∑

nk−1=0

C3 min
1≤l≤k−1

S1/2
nl
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≤ C3k!

∞
∑

n=0

nk−2S1/2
n <∞

by our assumption. ♦

Proof of Proposition 4.1. Write (25) into the following form

ρt := ζ2
t = σ2

t ε
2
t , σ2

t = ψ0 +

∞
∑

j=1

ψjζ
2
t−j.

Note that ‖ε21‖
1/2
3

∑∞
j=1 ψ

1/2
j < 1 implies ‖ε21‖

∑∞
j=1 ψj < 1. By Theorem 2.1

of Giraitis et al. (2000a), there exists a unique strictly stationary solution and

ρt ∈ L2. Denote it by ζt = G(· · · , εt−1, εt) and let ζ ′t = G(· · · , ε−1, ε
′
0, ε1, · · · , εt)

for t ∈ N. Note that

ρ3
t = ε6t



ψ0 +

∞
∑

j=1

ψjρt−j





3

= ε6t







ψ3
0 + 3ψ2

0

∞
∑

j=1

ψjρt−j + 3ψ0





∞
∑

j=1

ψjρt−j





2

+





∞
∑

j=1

ψjρt−j





3




.

By the Cauchy-Schwarz inequality, we have Eρ3
t ≤ [1−Eε6t (

∑∞
j=1 ψj)

3]−1
Eε6t [ψ

3
0 +

3ψ2
0

∑∞
j=1 ψjEρt + 3ψ0(

∑∞
j=1 ψj)

2
Eρ2

t ] < ∞, i.e. ρt ∈ L3. For k ∈ N, let ρ′k :=

(ζ ′k)
2 = ε2k{ψ0 +

∑k
j=1 ψj(ζ

′
k−j)

2 +
∑∞

j=k+1 ψjζ
2
k−j}. Thus we get

ρk − ρ′k = ε2k

k
∑

j=1

ψj [ρk−j − ρ′k−j].

Let sk := ‖ρk − ρ′k‖3, αj = ψj‖ε21‖3, then sk ≤∑k
j=1 αjsk−j, which implies

√
sk ≤

∑k
j=1

√
αj

√
sk−j. It suffices to show

∑∞
k=1 k

3s
1/2
k <∞ since it implies

∞
∑

k=1

k‖ζk − ζ ′k‖6 ≤
∞
∑

k=1

ks
1/2
k <∞

and

∞
∑

k=1

k3‖ζk − ζ ′k‖4 ≤
∞
∑

k=1

k3‖ρk − ρ′k‖1/2 ≤
∞
∑

k=1

k3s
1/2
k <∞, (58)
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where the latter implies the first assertion of (26) in view of Remark 4.1. In the

above we have applied the fact that (ζk − ζ ′k)
2 = ε2k(σk − σ′k)

2 ≤ ε2k|σ2
k − (σ′k)

2| =

|ρk −ρ′k|, where σ′k is the coupled version of σk with ε0 replaced by ε′0. Let s̃0 = s0

and
√
s̃k =

∑k
j=1

√
αj

√

s̃k−j, then sk ≤ s̃k. Define g(z) =
∑∞

j=1
√
αjz

j and

h(z) =
∑∞

j=0

√

s̃jz
j, then h(z) = s0/(1−g(z)). Note that g(1) < 1. Let h(p)(z) be

the p-th derivative of h(z). A simple calculation shows that h(p)(1), p = 1, 2, 3 are

all finite under
∑∞

j=1 j
3ψ

1/2
j < ∞. Thus

∑∞
k=1 k

3√sk ≤ ∑∞
k=1 k

3
√
s̃k < ∞. The

conclusion follows. ♦

Proof of Proposition 4.2. Note that ‖ε1‖5
∑∞

j=1 |bj | < 1 implies ‖ε1‖{
∑∞

j=1 b
2
j}1/2 <

1. It follows from Theorem 2.1 of Giraitis et al. (2000b) that there exists a strictly

stationary solution ζt = G(· · · , εt−1, εt) and ζt ∈ L2. By the same argument as in

the proof of Proposition 4.1, ζt ∈ L5. For k ∈ N, ζk−ζ ′k = εk
∑k

j=1 bj(ζk−j −ζ ′k−j).

The conclusion follows from a similar argument as in the proof of Proposition 4.1

and we omit the details. ♦
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