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We enjoyed reading the Hansen-Lunde paper (HL thereafter), and are pleased to be able to
contribute some comments. We raise some issues which we feel are important. Some of them are
addressed in our own work, while some are open questions. We certainly believe that this is an
important area where there will be substantial further developments over the next few years.

1 Covariation Between the Efficient Price and the Noise

Exploring a possible correlation between the efficient price and the noise, as HL do, is an exciting
and challenging task. By examining the volatility signature plots of trades and quotes, HL report
that RV estimates based on quotes at very high frequency decrease. This is different from many
earlier findings on volatility signature plots based on transaction prices. It is important to figure
out how much of that is driven by the pre-processing of the data in the HL paper, and we discuss
below the role that this might have played in delivering that result.

A different issue is that volatility signature plots give us a point estimate of RV at different
sampling frequencies. A substantial increase or decrease of RV at high sampling frequencies can
signify an upward bias or downward bias. But, what magnitude of change in RV is large enough
to be considered as a signal for bias? This can be answered by superimposing the point-wise
interval estimates of RV on the original plot. It seems that HL attempts to address this issue

by providing a 95% confidence band of R̄V
(1tick)
ACNW30

. However, the provided 95% confidence band
seems to represent the variation between ask, bid and trades, rather than displaying the uncertainty
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in the estimator R̄V
(1tick)
ACNW30

itself. In other words, we do not know whether the dipping at the
higher sampling frequency in HL’s Figure 1 is statistically significant or not. We know that the

inconsistent estimator R̄V
(1tick)
ACNWk

would have a non-negligible bias and stochastic term, thus the
point-wise confidence intervals could be quite wide. We explore this further below, see Table 1. We
also explore the connection between this finding and the identifiability, or lack thereof, of certain
noise models.

2 Identifiability, Consistency, and Efficiency

It is important at this point to remind ourselves what the rationale is for (nonparametrically)
estimating certain quantities on the basis of high frequency data. The rationale is that these
quantities, such as volatility within a fixed time period — say, one day, can be computed with a
great deal of precision. This is the case when there is no microstructure noise, as seen in Jacod
(1994) and Jacod and Protter (1998) where the asymptotic distribution can be found in great
generality; for specific examples, see Zhang (2001) and Barndorff-Nielsen and Shephard (2002).
But if, for whatever reason, one cannot find precise estimates of volatility for a given day, one is
probably better off using a more parametric approach, for example, one could model the inter-
and/or intraday behavior, using a GARCH model or in continuous time dealing with the noise as
in Aït-Sahalia, Mykland, and Zhang (2005a).

So, what are the desirable (asymptotic) properties in an estimator? There are various ways of
spelling out this requirement. One is consistency, which says that with enough data, the volatility
(say) can be closely estimated with the estimator at hand. An even more basic requirement — on the
model — is identifiability, which says that there exists some estimator which is consistent. Finally,
there is efficiency, which means that one is making good use of the data at hand.

Unfortunately, the estimators that are used in HL, are not consistent (as was recognized by
Zhou, see p. 47 in Zhou (1996) and p.114 in Zhou (1998).) Of course, perhaps consistency is not
an absolute requirement; one could imagine situations where an estimator is inconsistent, but has
only a small error. For the Zhou estimators used in the HL paper, however, Table 1 documents
that the lack of consistency does generate substantial estimation errors.

Because their estimator is inconsistent, HL focus instead on unbiasedness and asymptotic un-

biasedness. It is, of course, desirable that an estimator be approximately unbiased, but one should

be aware that the property of unbiasedness alone can guarantee very little in some cases. To give

an extreme example, suppose that (in the absence of noise) log prices have constant drift and dif-

fusion coefficients, dpt = µdt+σdWt. In this case, E[(pT − p0)/T ] = µ, but the unbiased estimator

(pT − p0)/T is hardly a good approximation for µ. In fact, this estimator over any finite time span

T remains constant, irrespectively of how frequently sampling occurs. Results such as Corollary

3, therefore, have to be taken carefully, as they could indicate little about our ability to estimate

precisely the quantity of interest. This is also the case for the results in Section 4.1 in HL.

We should also note that the theory in the HL paper does not allow for a leverage effect, i.e.,
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number of observations m 100 1, 000 2, 000 5, 000 10, 000

λ = 1%

Standard RV 200% 2, 000% 4, 000% 10, 000% 20, 000%

Zhou’s 1 step corrected RV 28.3% 89.4% 126.5% 200.0% 282.8%

Two Scales RV 21.4% 14.6% 13.0% 11.1% 9.9%

λ = 0.5%

Standard RV 100% 1, 000% 2, 000% 5, 000% 10, 000%

Zhou’s 1 step corrected RV 14.4% 44.7% 63.2% 100.0% 141.4%

Two Scales RV 17.0% 11.6% 10.3% 8.8% 7.9%

Table 1: Root Mean Squared Error for three estimators.

Note: This table reports the RMSE as a fraction of IV, to first order asymptotically. λ is the noise to signal

ratio and m is the sample size. For simplicity, it is assumed for the purpose of this calculation that σ2 is

constant. The RMSE for the standard RV estimator is 2mλ (the bias is the dominant quantity); for Zhou’s

1 step corrected RV, it is (8m)1/2λ; and for our TSRV estimator, it is 961/6m−1/6λ1/3.

a correlation between the Brownian motions driving the asset price and that driving its stochastic

volatility, which empirically is substantial (of the order of −0.75). For this, however, one needs
the machinery of stochastic calculus, and we refer to Zhang, Mykland, and Aït-Sahalia (2002) and

Zhang (2004) for its application to this problem. The same goes, to some extent, for the issue of

allowing for a drift term µtdt in the efficient price.

In the case of independent noise, and noise with dependence in tick time, the volatility is

identifiable even though HL’s estimators are inconsistent. On the other hand, the volatility under

the assumption that noise and efficient price are dependent seems to not be identifiable, as in the

development right after Corollary 3. In other cases, the lack of consistency could also mask the lack

of identifiability, as in Section 4.1. We shall elaborate more on identifiability in the next section.

Note that by using the methodology introduced by Zhang, Mykland, and Aït-Sahalia (2002),

including a semimartingale model for the σt process and the device of letting k →∞ at an appro-

priate rate, Zhou (1996)-Zhou (1998)’s estimator can be improved to be consistent. A standard
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error for such an estimator can presumably be found by mimicking the methods we developed in

our two scales paper, Zhang, Mykland, and Aït-Sahalia (2002). This is recognized by HL (section

4.2), but unfortunately, they do not use this or any other consistent version in their analysis, nor

do they compute the variance of the estimator that would result.

3 Identifiable Noise Models

In principle, one could build a complex model to relate microstructure noise to the efficient price

. In practice, however, separating the signal from the noise is not that simple. There are several

difficult issues concerning how to model the noise. First of all, the noise can only be distinguished

from the efficient price under fairly careful modelling. In most cases, the assumption that the noise

is stationary, alone, as in HL’s Assumption 2, is not enough to make the noise identifiable. For

example, one could write down an additive model for the observed (log) price process {pt}:

pti,m = p∗ti,m + uti,m ,

and denote p∗t and ut are, respectively, signal and noise. This model, however, does not guarantee

that one can disentangle the signal or the volatility of the signal. To see this, suppose that the

efficient price can be written as

dp∗t = µtdt+ σtdWt,

where the drift coefficient µt and the diffusion coefficient σt can be random, and Wt is a standard

Brownian motion. If one assumed that ut is also an Itô process, say,

dut = νtdt+ γtdBt,

then pt is also an Itô process of the form

dpt = (µt + νt)dt+ ωtdVt,

where ω2t = σ2t + γ2t +2σtγtd < W,B >t /dt (by the Kunita-Watanabe inequality, see, for example,

Protter (2004)).

Unless one imposes additional constraints, it is therefore not possible to distinguish signal and

noise in this model, and the integrated variance (quadratic variation) of the process should be taken

to be
R T
0 ω2t dt. One could, of course, require µt = 0, as is done in Aït-Sahalia, Mykland, and Zhang

(2005a), but estimability is only possible as T → ∞, and given a parametric model or similar.
Note that HL makes the assumption that the drift in the efficient price is zero. This assumption

is necessary for their unbiasedness considerations, but for the purposes of asymptotics in a fixed

time interval T such as a day, it does not matter. This is for the same reason that a consistent

separation of efficient price is not possible in a fixed time interval, so long as the noise is also an

Itô process.
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The same statement, broadly interpreted (replace integrated volatility of any process X with

its quadratic variation), holds true for general semimartingales, see Theorem I.4.47 (p. 52) of

Jacod and Shiryaev (2003). One can in some cases extend the concept of quadratic variation to

non-semimartingales, such as the process discussed in Section 4.1 of HL, see equation (1) below.

As we shall see, even in this case the noise is not separable from the signal except under additional

assumptions.

We tentatively conclude, therefore, that the development just after HL’s Corollary 3 mostly

holds for models where one cannot, in fact, distinguish signal and noise. (Corollary 3 in itself is

more general, but does not address identifiability).

What makes this problem particularly difficult is that a substantial fraction of continuous

processes of interest here are Itô processes. And many Itô processes have stationary solution.

One can easily construct a stationary diffusion process with given marginal distribution and ex-

ponential autocorrelation function. By superposition, and by taking limits, one can, for example,

construct a Gaussian Itô process with mean zero and with any autocovariance function on the form

π(s) =
R∞
0 e−usν(du), where ν is any finite measure on [0,∞).

The only case where one can hope to distinguish between efficient price and noise, is if the noise

ut is not an Itô process. One way for this to occur is if the ut are independent for different t, and

hence the autocovariance function satisfies π(s) = 0 for s 6= 0. This is the model in HL’s Section 3.

It should be emphasized that consistency is not guaranteed if the noise is not a semimartingale.

This is the case for the noise used in HL’s Section 4.1. To see that, assuming that the function ψ

is sufficiently smooth, by Itô’s formula,

u(t) = B(t)ψ(0)−B(t− θ0)ψ(θ0) +

Z t

t−θ0
B(s)ψ0(t− s)ds, (1)

and the time-lagged Brownian motion precludes semimartingaleness, see, for example, Definition

I.4.21 (p. 43) of Jacod and Shiryaev (2003). Consistency does not follow even in this case. (If one

assumed that ψ(0) = ψ(θ0), one would be able to estimate this quantity along with the integrated

volatility.)

4 Inference in Tick Time

All the difficulties described above go away if one assumes that ut is independent for different

t’s, and independent of the efficient price. Since this is an overly restrictive assumption, both HL

(in Section 4.2) and ourselves (in Aït-Sahalia, Mykland, and Zhang (2005b)) have fallen back on

modeling dependence in tick time. The way this works is that if ti is tick number i, one assumes that

the process uti is stationary, and let the autocovariance function be given by π(k) = cov(uti , uti+k).

As discussed both here and in Aït-Sahalia, Mykland, and Zhang (2005b), this provides a scheme
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for obtaining reasonable estimates of the integrated volatility of the efficient price.

From a conceptual point of view, it also makes sense to sample in tick time, since this permits

sampling to adapt to the activity of the market. For transactions, it is also natural to think of

the stock price as being a measurement of the efficient price and, as such, subject to measurement

error, just like any other measurement.

The situation with bid and ask quotes is more complex. As HL note, taking every adjustment

as a tick will result in understating the volatility by a factor of about 1/
√
2, and it may be better

to take the transaction times as the tick times, even when dealing with quote data. This issue may

be part of what leads to falling estimates of volatility at very high frequencies, it should not affect

the analysis of transaction data though. This does not, of course, preclude that correlation between

signal and noise can exist.

An issue of a perhaps rather academic nature comes up in connection with the modelling of

dependency (within the noise, and between noise and signal). This appears to require a triangular

array formulation: as ticks become more frequent, so does the dependence occur over ever smaller

clock time intervals. This is particularly so for HL’s definition of correlation, which is only given

as a limit, and it is not quite clear how to set up (even a triangular array) model to achieve such

an effect.

Triangular array formulations is a valid and time honored way of asymptotically capturing

phenomena which would otherwise be unavailable in the limit. One of the more well known instances

of this is the “local to unity" asymptotics in an AR process. But here is a second worry, which

pertains to the signal-noise correlation which was found by the authors. The data themselves do

not live on a triangular array. The conceptual intent of triangular array asymptotics would seem to

preclude its usage on different sampling frequencies in this same dataset. The definition in Theorem

1 requires that the magnitude of ei,n go up as the tick frequency increases. This framework is clearly

plausible when used for different frequencies in different datasets, but it is hard to believe that this

occurs as one increases the sampling frequency in these given datasets. There is a problem of

modelling here which seems to be an open question for researchers to address.

5 Some Comments on the Empirical Analysis

The paper analyzes a vast amount of empirical data, the returns on the 30 DJIA stocks over the

five years 2000-2004, including an interesting cointegration analysis. To better understand how

different estimators behave, we looked at a small subset of the HL data, which was kindly made

available to us: the first stock in the sample (Alcoa, ticker symbol: AA) and one month (January

2004). Clearly, any conclusions drawn from such a limited analysis are to be taken with some

caution, but it is certainly possible for the patterns to hold more generally.
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Our first concern is the degree of pre-processing of the data that HL performed, prior to any

estimator being applied. As the table included here shows, HL on average create a “clean” set of

transactions by discarding about half of the starting sample (“raw”). In light of the percentage of

the number of transactions being deleted, we think we are no longer talking about a light touch

cleaning of the data, but rather major surgery on the data! And, as we will see, this is not without

consequences.

We downloaded the raw data for AA in January 2004 directly from the TAQ database. For

this particular stock and month, there were no transaction prices reported at 0 and this particular

sample appears to be free of major data entry errors. Discarding all price bouncebacks of magnitude

0.5% or greater eliminated fewer than 10 observations each day.1 So a minimal amount of data

cleaning would discard a very tiny percentage of the raw transactions. By contrast, the empirical

analysis in HL is conducted after eliminating transactions on the following basis: (i) deleting ex-

ante all observations originating from regional exchanges while retaining only those originating on

the NYSE; (ii) aggregating all transactions time-stamped to the same second; and (iii) eliminating

transactions that appear to have taken place outside a posted bid/ask spread at the same time

stamp.

Our view is that those unpleasant data features are precisely the types of things that any

estimator that is robust to microstructure noise ought to deal with, without prior intervention:

perhaps those transactions time-stamped to the same second did not occur exactly in that order,

especially if they took place on different exchanges; perhaps the regional exchanges are less liquid,

or less efficient at providing price discovery, but still provide meaningful information as to what

the volatility of the price process is for someone contemplating a trade there; perhaps the depth of

the quotes is insufficient to fulfill the order, and the transaction has a non-negligible price impact;

perhaps the matching of the quotes to the transactions that is used to eliminate transactions

(which in their vast majority did actually take place) is not perfect. In the end, this is what market

microstructure noise is all about!

Figure 1 examines the consequence of this pre-processing of the data. The left column in the

figure shows the results using the “raw” data (after eliminating bouncebacks), while the right col-

umn uses the HL “clean” sample. The first row in the figure shows the TSRV estimator, computed

for different numbers of subgrids over which our averaging takes place. The second row reports

a signature plot for the standard, uncorrected, RV estimator for different number of lags between

successive observations (that is, different sparse frequencies). The third row reports the same result

as in the second row but now for the autocovariance-corrected estimator used in the HL paper, also

as a function of the number of lags used to compute the RV and autocovariance correction. Daily

results are averaged over all 20 trading days in January 2004.

1We defined in Aït-Sahalia, Mykland, and Zhang (2005b) a “bounceback” as a log-return from one transaction

to the next that is both greater in magnitude than an arbitrary cutoff, and is followed immediately by a log-return

of the same magnitude but of the opposite sign, so that the price returns to its starting level before that particular

transaction.
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Trading Day Number of Transactions Transactions Retained % of Sample

Jan. 2004 (“RAW”) (“CLEAN”) Discarded

02 4, 516 2, 855 37%

05 6, 495 3, 770 42%

06 8, 683 3, 532 59%

07 6, 990 3, 575 49%

08 5, 661 2, 288 60%

09 11, 949 3, 402 72%

12 9, 969 3, 528 65%

13 8, 551 3, 274 62%

14 5, 879 3, 169 46%

15 6, 736 3, 798 44%

16 6, 853 2, 934 57%

20 6, 455 3, 639 44%

21 5, 789 3, 352 42%

22 7, 029 3, 447 51%

23 6, 685 3, 216 52%

26 5, 044 2, 753 45%

27 4, 857 3, 176 35%

28 7, 604 3, 071 60%

29 7, 854 3, 289 58%

30 5, 521 3, 331 40%

Table 2: Transactions on AA Stock, January 2004.

Note: This table reports the number of transactions of AA stock for each trading day in January 2004.

The column labeled “RAW” reports the number of transactions that occurred between 9:30am and 4:00pm

EST, obtained from the TAQ database. The column labeled “CLEAN” reports the number of transactions

retained for the empirical analysis in HL. The last column reports the percentage of transactions from the

raw data that are discarded when going to the clean dataset that is used for the empirical analysis in the

paper.
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Incidentally, the comparable plots in HL report the RV and Zhou estimators also estimated on

a daily basis, and then the results averaged over every trading day in 2004. While this time series

averaging has the advantage of delivering plots that visually appear to be very smooth, it is not

clear to us that this is how such estimators would be used in practice. Our view is that the whole

point of using nonparametric measurements of stochastic volatility, estimated on a day-by-day basis,

is that one believes that the quantity of interest can change meaningfully every day, at least for the

purposes for which it is to be used (such as adjusting a position hedge). While some averaging is

perhaps necessary, computing an average of the day-by-day numbers over an entire year seems to

be at odds with the premise of the exercise.

We argue that this pre-processing of the data has multiple consequences: first, it reduces the

sample size available for inference, which inevitably increases the variability of the estimators, i.e.,

decreases the precision with which we can estimate the quadratic variation. This is clear from

the figure, comparing the left and right columns for each row, especially for RV and the Zhou/HL

estimator.

Second, the “clean” data are smoothed to the point where the estimator analyzed by HL looks

in fact very close to the basic uncorrected RV (compare the second and third rows in the right

column of the figure.) So in this case at least, the autocovariance correction does not appear to do

much. In fact, the signature plot for RV computed from the “clean” data subset exhibits an atypical

behavior: as the sampling frequency increases, even to the highest possible level, the value of RV

decreases. This is certainly at odds with the empirical evidence available across many different

markets, time periods (and papers!)

Third, as a consequence of this decrease in the signature plot, the Zhou/HL estimator taken at

lag order 1 seems to underestimate the quadratic variation, with a point estimate (averaged over

all 20 days) that is about 0.0002 when the value appears (on the basis of TSRV) to be between

0.00025 and 0.0003.

Fourth, the data cleaning performed by HL may have changed the autocorrelation structure

of returns. Figure 2 shows this, by comparing the autocorrelogram from the “raw” and “clean”

datasets. The “clean” dataset results in a first order autocorrelation (which is indicative of the

inherent i.i.d. component of the noise of the data) that is about a quarter of the value obtained from

the raw data, while at the same time seeming to introduce spuriously higher positive autocorrelation

at orders 3 and above. So, at least for the data we analyze, the pre-processing of the data is far from

being inconsequential. The main manifestation of the noise, namely the first order autocorrelation

coefficient, has been substantially altered.

To conclude, this (limited) empirical analysis of a (small) subset of the HL data does raise some

concerns about the impact of the pre-processing of the data, and the empirical behavior of the

estimator used in the HL paper.
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Figure 1: Comparison of Estimators for the AA Transactions, January 2004.
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Figure 2: Autocorrelogram of log-returns from the AA Transactions, January 2004.
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6 Small Sample Behavior

The paper is silent about the small sample behavior of the estimators considered. This is par-

ticularly important in light of the fact, now documented, that RV-type quantities sometimes do

not behave exactly as their asymptotic distributions predict. Recently, Goncalves and Meddahi

(2005) developed an Edgeworth expansion for the basic RV estimator when there is no noise. Their

expansion applies to the studentized statistic based on the standard RV estimator and it is used

for assessing the accuracy of the bootstrap in comparison to the first order asymptotic approach.

Complementary to that work is the paper Zhang, Mykland, and Aït-Sahalia (2005), where we de-

velop an Edgeworth expansion for nonstudentized statistics for the standard RV, TSRV and other

estimators, but allow for the presence of microstructure noise.

It would be interesting to know how the autocovariance-corrected RV estimators behave in small

samples and, if need be, investigate the feasibility of Edgeworth corrections for them.
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