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1. Introduction

Hansen and Scheinkman (1995) (HS thereafter) derived moment conditions for estimating the para-

meters of continuous time Markov processes using discrete time data. The HS moment conditions are

correctly centered, so the resulting parameter estimators are consistent. One impediment however

to the wide application of HS moment conditions in practice is the fact that the asymptotic variance

of the resulting parameter estimators is not known explicitly, beyond its generic GMM expression

(see page 540 in Conley et al. (1997)). Indeed, the intervening matrices in the asymptotic variance

take the form of expected values which cannot be calculated explicitly. Since the HS moment condi-

tions involve the choice of a set of “test functions”, the selection of optimal test functions would be

greatly facilitated if one could, for instance, analyze their impact on the variance of the parameter

estimators in closed form. So would the comparison with alternative estimation strategies, such as

likelihood-based inference. These are the objectives of this paper.

Furthermore, in typical quote or transaction-level financial data, not only are the observations

sampled discretely in time, but it is often the case that the time separating successive observations is

itself random. In Aït-Sahalia and Mykland (2003), we developed methods to analyze the distribution

of likelihood-based estimators for diffusions under these circumstances, compared the relative impact

of discrete vs. random sampling, and in Aït-Sahalia and Mykland (2004) provided a general approach

to deriving the asymptotic properties of estimators based on arbitrary moment conditions. Our

method provides explicit expressions for all relevant characteristic of the asymptotic distribution. In

regular circumstances, the estimator β̂ of the parameter vector β0 converges in probability to some

β̄ and
√
T (β̂ − β̄) converges in law to N(0,Ωβ) as the time span T over which observations occur

tends to infinity.

For any such estimator, the corresponding asymptotic variance Ωβ and, when applicable the

bias β̄ − β0, are generally unknown in closed form. The solution we proposed is to derive Taylor

expansions for Ωβ and β̄−β0 starting with a leading term that corresponds to the limiting case where
the sampling is continuous in time. The expansion is with respect to a parameter � which indexes the

sampling intervals separating successive observations, as in ∆ L
= �∆0, where ∆0 is possibly random

with a given finite distribution. Discrete (but not random) sampling corresponds to the special case
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where Var[∆0] = 0. Our Taylor expansions are of the form

Ωβ = Ω
(0)
β + �Ω

(1)
β + �2Ω

(2)
β +O

¡
�3
¢
. (1)

While the limiting term as � goes to zero corresponds to continuous sampling, by adding higher

order terms in �, we progressively correct this leading term for the discreteness of the sampling.

This method can then be used to analyze the relative merits of different estimation approaches, by

comparing the order in � at which various effects manifest themselves, and when they are equal the

relative magnitudes of the corresponding coefficients in the expansion.

In this paper, we apply and extend these tools to the specific set of HS moment conditions for

diffusions, analyze the properties of the estimators and compare them to the Cramer-Rao lower

bounds. In particular, we give explicit expressions for the asymptotic variance matrix of the HS

estimators in the Taylor series form (1) for arbitrary test functions. We then turn to the determination

of optimal test functions and the relative efficiency of the resulting estimators compared to likelihood

benchmarks. Both are made possible by the explicit computation of (1).

Let the parameter vector be written as β0 = (θ0, γ0) where θ is the vector of parameters entering

the drift function and γ those entering the diffusion function. Recall that HS propose two sets of

moment conditions, called C1 and C2 respectively, whose definition we will recall below. C1 is based

on the stationary distribution of the process only, while C2 involves its transitions over the time

interval corresponding to the frequency of observation.

A quick summary of our results is as follows. In the case of estimating θ, for known γ, our message

is upbeat. Not only are the C1 and C2 estimators fully efficient to first order in � (confirming the

result of Conley et al. (1997) in the special case of constant ∆), but they are also very close to being

efficient to second order in �. On the other hand, a disappointing result is that up to second order

in �, the C2 estimator is no more efficient than the C1 estimator.

For estimating γ, however, the efficiency is substantially inferior to that of the likelihood estimate

(by an order in �). Assuming one is not going to use the likelihood, it would seem that a good way

of using the C1 and C2 estimators is therefore to estimate γ by some other method, and then to

estimate θ using C1 or C2. In view of the substantial theory on volatility inference for high frequency

data, this is a feasible approach.
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The paper is organized as follows. Section 2 sets up the model and summarizes our approach

to analyze the asymptotic variance of general estimators in the context of discretely and possibly

randomly sampled estimators of diffusions. Section 3 then applies the method to derive closed form

expansions for the asymptotic variance of HS estimators. In Section 4, we use these expressions to

study the choice of optimal test functions and the efficiency of HS estimators relative to likelihood-

based estimators. An application of these results to a specific example of a diffusion process is

contained in Section 5. Section 6 concludes, while proofs are in the Appendix.

2. The Setup

This paper shares a common setup with our earlier work on the topic of estimating discretely and

randomly sampled diffusions using either likelihood or generic moment conditions (Aït-Sahalia and

Mykland (2003) and Aït-Sahalia and Mykland (2004)). Namely, suppose that we observe the process

dXt = µ(Xt; θ)dt+ σ(Xt; γ)dWt (2)

at discrete times in the interval [0, T ], and we wish to estimate the d-dimensional parameter vector

β0 = (θ0, γ0) which lies in an open and bounded set. We let S = (x
¯
, x̄) denote the domain of the

diffusion Xt. Define the scale and speed densities of the process

s (x;β) ≡ exp
½
−2
Z x ¡

µ (; yθ) /σ2(y; γ)
¢
dy

¾
(3)

m (x;β) ≡ 1/ ¡σ2(x; γ)s (x;β)¢ , (4)

the scale and speed measures S (x;β) ≡ R x
s (w;β) dw and M (x;β) ≡ R x

m (w;β) dw, and the

transformation

g (x; γ) ≡
Z x du

σ(x; γ)
. (5)

We assume in Assumption 1 below conditions that make this transformation well-defined. By

Itô’s Lemma, X̃t ≡ g (Xt; γ) defined on S̃ = (g (x
¯
; γ) , g (x̄; γ)) satisfies dX̃t = µ̃

³
X̃t;β

´
dt + dWt

with

µ̃ (x;β) ≡ µ
¡
ginv (x; η) ; θ

¢
σ(ginv (x; η) ; η)

− 1
2

∂σ(ginv (x; η) ; η)

∂x

where ginv denotes the reciprocal transformation. We also define the scale and speed densities of X̃,

s̃ and m̃, and λ̃ (x;β) ≡ −
³
µ̃ (x;β)2 + ∂µ̃ (x;β) /∂x

´
/2.
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We will denote by L2 the Hilbert space of measurable real-valued functions f on S such that
kfk2 ≡ E

h
f (X0)

2
i
< ∞ for all values of β. When f is a function of other variables, in addition

to the state variable y1, we say that f ∈ L2 if it satisfies the integrability condition for every given

value of the other variables.

We call the observations times on the X process τ0 = 0, τ1, τ2, ..., τNT
, where NT is the smallest

integer such that τNT+1 > T . We suppose that the sampling intervals ∆n = τn− τn−1 are i.i.d., and

independent of the X process and of the parameter β (see Assumption 2 below). In other words, we

observe

Y0,∆1, Y1,∆2, Y2, ...,∆NT−1, YNT−1

where Yi = Xτ i .

Throughout the paper, we denote by ∆ a generic random variable with the common distribution

of the ∆n’s and write

∆ = �∆0 (6)

where ∆0 has a given finite distribution and � is deterministic. While we assume that the distribution

of the sampling intervals is independent of β, it may well depend upon it own nuisance parameters

(such as an unknown arrival rate). An important special case occurs when the sampling happens to

take place at a fixed deterministic interval ∆̄, corresponding to the distribution of ∆n being a Dirac

mass at ∆̄.

In Aït-Sahalia andMykland (2004), we considered r−dimensional moment conditions h(y1, y0, δ, β, �),
which are continuously differentiable in the d−dimensional parameter vector β, r ≥ d. In standard

GMM fashion, we form the sample average

mT (β) ≡ N−1
T

NT−1X
n=1

h(Yn, Yn−1,∆n, β, �) (7)

and obtain β̂ by minimizing the quadratic form

QT (β) ≡mT (β)
0WT mT (β) (8)

where WT is an r×r positive definite weight matrix assumed to converge in probability to a positive

definite limit Wβ. If the system is exactly identified, r = d, the choice of WT is irrelevant and

minimizing (8) amounts to setting mT (β) to 0. The function h is known in different strands of the
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literature either as a “moment function” [see e.g., Hansen (1982)] or an “estimating equation” [see

e.g., Godambe (1960) and Heyde (1997).]

Consistency of β̂ follows from

E∆,Y1,Y0 [h(Y1, Y0,∆, β0, �)] = 0. (9)

where we denote by E∆,Y1,Y0 expectations taken with respect to the joint law of (∆, Y1, Y0) at the true

parameter β0, and write E∆,Y1, etc., for expectations taken from the appropriate marginal laws of

(∆, Y1), etc. Some otherwise fairly natural estimating strategies lead to inconsistent estimators. To

allow for this, we do not assume that (9) is necessarily satisfied. Rather, we simply assume that the

equation E∆,Y1,Y0 [h(Y1, Y0,∆, β, �)] = 0 admits a unique root in β, which we define as β̄ = β̄(β0, �).

For the estimator to be consistent, it must be that β̄ ≡ β0 but, again, this will not be the case

for every estimation method (although it will be for the HS moment conditions). However, in all the

cases we consider, and one may argue for any reasonable estimation method, the bias will disappear

in the limit where �→ 0, i.e., β̄(β0, 0) = β0 (so that there is no bias in the limiting case of continuous

sampling) and we have an expansion of the form

β̄ = β̄(β0, �) = β0 + b(1)�+ b(2)�2 +O
¡
�3
¢
. (10)

For the HS moment conditions, we have simply b(i) = 0 for all i ≥ 1 as the estimators are correctly
centered.

With NT/T converging in probability to (E [∆])−1, it follows from standard arguments that
√
T (β̂ − β̄) converges in law to N(0,Ωβ), with

Ω−1β = (E [∆])−1D0
βS
−1
β Dβ. (11)

where

Dβ ≡ E∆,Y1,Y0

h
ḣ(Y1, Y0,∆, β̄, �)

i
, Sβ,j ≡ E∆,Y1,Y0

£
h(Y1+j , Yj ,∆, β̄, �)h(Y1, Y0,∆, β̄, �)

0¤
and Sβ ≡

P+∞
j=−∞ Sβ,j. If r > d, the weight matrix WT is assumed to be any consistent estimator of

S−1β ; otherwise its choice is irrelevant. A consistent first-step estimator of β̄, needed to compute the

optimal weight matrix, can be obtained by minimizing (8) with WT = Id.
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The standard infinitesimal generator Aβ0 is the operator which returns

Aβ0 · f =
∂f

∂δ
+ µ(y1, θ0)

∂f

∂y1
+
1

2
σ2(y1; γ0)

∂2f

∂y21
(12)

when applied to functions f that are continuously differentiable once in δ, twice in y1 and such that

∂f/∂y1 and Aβ0 · f are both in L2 and satisfy

lim
y1→x¯

∂f/∂y1
s(y1;β)

= lim
y1→x̄

∂f/∂y1
s(y1;β)

= 0 (13)

(see Hansen et al. (1998)). We define D to be the set of functions f which have these properties and
are additionally continuously differentiable in β and �.

To calculate Taylor expansions in � of the asymptotic variances when the sampling intervals are

random, we introduced in Aït-Sahalia and Mykland (2003) the generalized infinitesimal operator Γβ0

for the process X in (2). Our operator Γβ0 is defined by its action on f ∈ D as follows:

Γβ0 · f ≡ ∆0Aβ0 · f +
∂f

∂�
+

∂f

∂β

∂β

∂�
(14)

Define DJ as the set of functions f which with J +2 continuous derivatives in δ, 2(J +2) in y1, such

that f and its first J iterates by repeated applications of Aβ0 all remain in D and additionally have
J + 2 continuous derivatives in β and �.

The Taylor expansion of a function f(Y1, Y0,∆, β̄, �) ∈ DJ is:

EY1

£
f(Y1, Y0,∆, β̄, �)|Y0,∆ = δ

¤
=

JX
j=0

�j

j!

³
Γjβ0

· f
´
(Y0, Y0, 0, β0, 0) +Op

¡
�J+1

¢
. (15)

All the expectations are taken with respect to the law of the process at the true value β0. The

usefulness of this approach lies in its ability to deliver closed form expressions for the terms of the

Taylor series in (15) for arbitrary choices of the moment functions h.

As described in Assumption 3 below, the moment functions h selected to conduct inference are

of the generic form

h(y1, y0, δ, β, �) = h̃(y1, y0, δ, β, �) +
H(y1, y0, δ, β, �)

δ
,

where h̃ ∈ DJ and H ∈ DJ+1. The term H captures the singularity (i.e., powers of 1/δ) which can

occur in some estimation strategies (this will not be the case for the HS moment conditions, but

is necessary for likelihood inference, for instance). In Appendix B, we recall the general results in
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Aït-Sahalia and Mykland (2004) regarding the matrices Dβ, Sβ,0 and Tβ = Sβ −Sβ,0 as functions of

the specification of the vector of moment conditions h.

We will now make these results specific in the special case of the HS class of moment functions,

and compare them to other situations.

3. Estimators Based on Hansen-Scheinkman Estimating Equations

The HS moment conditions are in the form of expectations of the infinitesimal generator, one uncon-

ditional and one conditional, that can be applied to test functions. The simplifying feature of the

method of moments approach, which is not specific to the context of discretely sampled diffusions,

is that it requires only the specification of a set of moments rather than the full conditional density

of the diffusion. The flip side of this simplification, however, is that it will not, in general, make

efficient use of the entire information contained in the sample. We will characterize precisely this loss

of information in our specific context of discrete sampling from a diffusion. Unlike the typical use of

the method of moments, however, one cannot in general select as moment conditions the “natural”

conditional moments of the process since explicit expressions for the conditional mean, variance,

skewness, etc. are not available in closed-form. Rather, the moment conditions, i.e., our h functions,

are in the form of the infinitesimal generator of the process applied to arbitrary test functions.

Kessler and Sørensen (1999) proposed to use the eigenfunctions of the infinitesimal operator as

test functions; unfortunately, these are not explicit either, except in special cases. One additional

aspect of the HS method is that it does not permit full identification of all the parameters of the

model since multiplying the drift and diffusion functions by the same constant results in identical

moment conditions. So parameters are only identified up to scale. For instance, in the Ornstein-

Uhlenbeck example of Section 5, only the stationary variance γ/(2θ) can be identified, but not θ and

γ separately. Because of this limitation of the method, we will use the method to estimate θ with γ

known, or vice versa, but not both together.

HS give two ways of forming estimating functions in the case of sampling at a fixed deterministic

∆, which are referred to as the C1 and C2 moment conditions. In what follows, we apply our general

theory to determine the asymptotic properties of estimators using these estimating equations; our
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results give these properties when the sampling intervals are fixed and deterministic, but also when

they are random.

3.1. The C1 Moment Condition

Let us start by analyzing C1, as in the empirical implementation of the method in Conley et al.

(1997). The C1 method takes a sufficiently differentiable function ψ(y0, β) in the domain of the

operator Bβ defined below and forms the estimating function which in our notation is given by

hC1(y1, y0, δ, β, �) = hC1(y0, β) ≡ Bβ · ψ(y0, β) ≡ µ(y0, θ)
∂ψ

∂y0
+
1

2
σ2(y0; γ)

∂2ψ

∂y20
. (16)

This is a function of (y0, β) only. Note that the operator Bβ differentiates with respect to the

backward state variable y0 as opposed to the forward state variable y1 (as in our definition of Aβ).

The C1 estimating equation relies on the fact that we have the unbiasedness condition

EY0

£
Bβ0 · ψ(Y0, β)

¤
= 0. (17)

Once Bβ is evaluated at β0, this is true for any value of β in ψ, including β0. A consequence of this is

that the estimator is unbiased (recall (9)): we have β̄(β0, �) ≡ β0 identically because hC1 evaluated

at β0 has unconditional mean zero.

Equation (17) follows from the fact that X is a stationary process, hence the unconditional

expectation of any function of Xt, such as EXt [ψ(Xt, β)] , does not depend upon the date t at which

it is evaluated: thus (∂/∂t)EXt [ψ(Xt, β)] = 0, from which the result follows.

In our setup, hC1 only depends on (y0, β), and not on (y1, δ, �). It follows that

¡
Γβ0 · hC1

¢
(y1, y0, δ, β, �) ≡ 0 (18)

identically, and hence the expansions of hC1 (for the function q1), ḣC1 (for Dβ) and hC1 × hC1 (for

Sβ,0) will stop at their leading term and be exact.

Of course, we could equivalently have taken the moment function to be of the form

h̃C1(y1, β) ≡ Aβ · ψ(y1, β) = µ(y1, θ)
∂ψ

∂y1
+
1

2
σ2(y1; γ)

∂2ψ

∂y21
(19)
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i.e., as a function of y1 instead of y0.We would get the same result since the unconditional expectation

of any function f(Y1, β) ∈ DJ is obtained by computing in our method

EY1 [f(Y1, β)|Y0,∆] =
JX

j=0

�j

j!

³
Γjβ0

· f
´
(Y0, β0) +Op

¡
�J+1

¢
.

Next,
³
Γjβ0 · f

´
(Y0, β0) = ∆

j
0

³
Aj
β0
· f
´
(Y0, β0) since ∂f/∂� = 0 and ∂β/∂� = 0 given that the

estimator is unbiased. When taking unconditional expectations, we have

EY0

h³
Aj
β0
· f
´
(Y0, β0)

i
= 0

for all j ≥ 1 because the expected value of the generator applied to any function is zero — this is
indeed (17). That is, the expansion for the unconditional expectation over the law of Y0 will stop

after the leading (j = 0) term. Therefore, computing EY1 [f(Y1, β)] as prescribed by our method,

i.e., through the law of iterated expectations in the form E∆,Y0 [EY1 [f(Y1, β)|Y0,∆]] , will produce
the same result as writing down directly EY0 [f(Y0, β)]. In other words, using (16) or (19) as moment

functions will yield the same results. The form (16) gives the result directly, and we will therefore

use it.

Because of the form of hC1, the only difference between estimating θ and estimating γ appears

in Dβ. Also, because hC1(y0, y0, 0, β0, 0) is non-zero, we have αC1 = 0. The specific expressions are

qC1(Y0, β0, �) = qC1(Y0, β0, 0) = Bβ0 · ψ(Y0, β0), (20)

and

Dβ = D
(0)
β =

⎧⎨⎩ Dθ = EY0

h
∂µ(Y0,θ0)

∂θ
∂ψ(Y0,β0)

∂y

i
when estimating θ

Dγ =
1
2EY0

h
∂σ2(Y0,γ0)

∂γ
∂2ψ(Y0,β0)

∂y2

i
when estimating γ

(21)

Sβ,0 = S
(0)
β,0 = −

1

2
EY0

"
σ2(Y0, γ0)

∂µ(Y0, θ0)

∂y

µ
∂ψ(Y0, β0)

∂y

¶2#
(22)

+
1

4
EY0

"
σ4(Y0, γ0)

µ
∂2ψ(Y0, β0)

∂y2

¶2#

The more difficult calculation involves the time series term Tβ. As part of the proof of the

following theorem, we show that

Tβ = �−1T (−1)β + T
(0)
β +O(�) (23)
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where

T
(−1)
β =

2

E [∆0]
EY0 [(hC1 × rC1)]

T
(0)
β =

¡
E[∆20]− 2E[∆0]2

¢
4E[∆0]2

(
EY0

"
σ4
µ
∂2ψ

∂y2

¶2#
− 2EY0

"
σ2
µ
∂ψ

∂y

¶2 ∂µ
∂y

#)
.

We then put together the expansions of Dβ, Sβ,0 and Tβ to obtain the expansion for Ωβ. The

terms of order �0 are given by

Ω
(0)
θ = T

(−1)
β /

³
D
(0)
θ

´2
, Ω(0)γ = T

(−1)
β /

³
D(0)
γ

´2
,

when estimating θ or γ respectively, while the terms of order �1 are:

Ω
(1)
θ = E [∆0]

³
S
(0)
β,0 + T

(0)
β

´
/
³
D
(0)
θ

´2
, Ω(1)γ = E [∆0]

³
S
(0)
β,0 + T

(0)
β

´
/
³
D(0)
γ

´2
.

The specific expressions, which characterize the asymptotic properties of the estimators based on

the moment condition hC1, are given by:

Theorem 1. (Properties of the Estimators based on the C1 Condition) If hC1 is used to estimate

either θ or γ, the estimator is unbiased and we have

Ωβ = Ω
(0)
β + �Ω

(1)
β +O(�2) (24)

where, when estimating θ,

Ω
(0)
θ =

EY0

∙
σ2(Y0, γ0)

³
∂ψ(Y0,β0)

∂y

´2¸
EY0

h
∂µ(Y0,θ0)

∂θ
∂ψ(Y0,β0)

∂y

i2 (25)

Ω
(1)
θ =

V ar[∆0]

µ
EY0

∙
σ4(Y0, γ0)

³
∂2ψ(Y0,β0)

∂y2

´2¸− 2EY0

∙
σ2(Y0, γ0)

∂µ(Y0,θ0)
∂y

³
∂ψ(Y0,β0)

∂y

´2¸¶
4E [∆0] EY0

h
∂µ(Y0,θ0)

∂θ
∂ψ(Y0,β0)

∂y

i2
and, when estimating γ,

Ω(0)γ =

4EY0

∙
σ2(Y0, γ0)

³
∂ψ(Y0,β0)

∂y

´2¸
EY0

h
∂σ2(Y0,γ0)

∂γ
∂2ψ(Y0,β0)

∂y2

i2 (26)

Ω(1)γ =

V ar[∆0]

µ
EY0

∙
σ4(Y0, γ0)

³
∂2ψ(Y0,β0)

∂y2

´2¸− 2EY0

∙
σ2(Y0, γ0)

∂µ(Y0,θ0)
∂y

³
∂ψ(Y0,β0)

∂y

´2¸¶
E [∆0] EY0

h
∂σ2(Y0,γ0)

∂γ
∂2ψ(Y0,β0)

∂y2

i2 .
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3.2. The C2 Moment Condition

Consider now the C2 moment condition. The C2 method takes two functions ψ0 and ψ1, again

satisfying smoothness and regularity conditions, and forms the “back to the future” estimating

function

hC2(y1, y0, δ, β, �) = hC2(y1, y0, β) = {Aβ · ψ1(y1, β)}×ψ0(y0, β)−{Bβ · ψ0(y0, β)}×ψ1(y1, β). (27)

In general, Bβ should be replaced by the infinitesimal generator associated with the reverse

time process, A∗β (see ). But under regularity conditions, univariate stationary diffusions are time

reversible (see Kent (1978)) and so the infinitesimal generator of the process is self-adjoint and so

we can define hC2 above using the operator Bβ (itself defined in 16).

The C2 estimating equation relies on the fact that, when the operators Aβ and Bβ are evaluated

at the true parameter β0, then

EY0,Y1

£©
Aβ0 · ψ1(Y1, β)

ª× ψ0(Y0, β)−
©
Bβ0 · ψ0(Y0, β)

ª× ψ1(Y1, β)
¤
= 0. (28)

Once Aβ is evaluated at β0, this is true for any value of β in ψ, including β0.

Equation (28) is again a consequence of the stationarity of the processX. Namely, the expectation

of any function of (Xt, Xt+δ), such as EXt,Xt+δ
[ψ0(Xt, β)ψ1(Xt+δ, β)] , does not depend upon the

date t (it can of course depend upon the time lag δ between the two observations): hence

∂

∂t
EXt,Xt+δ

[ψ0(Xt, β)ψ1(Xt+δ, β)] = 0

from which (28) follows.

C2 can alternatively be obtained, as shown in Aït-Sahalia (1996), by combining the Kolmogorov

forward and backward equations characterizing the transition function p (y1|y0,∆.β) in a way that
eliminates the time derivatives of p, which are unobservable with discrete data. Combining the two

equations yields the “transition discrepancy”:

ν (y1|y0,∆, β) ≡
½
1

2

∂2

∂y21

¡
σ2 (y1, γ)p (y1|y0,∆, β)

¢− ∂

∂y1
(µ (y1, θ)p (y1|y0,∆, β))

¾
−
½
µ (y0, θ)

∂

∂y0
(p (y1|y0,∆, β)) +

1

2
σ2 (y0, γ)

∂2

∂y20
(p (y1|y0,∆, β))

¾
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which, for every (x, y) in S2 and ∆ > 0, must satisfy

ν (y1|y0,∆, β) = 0.

It follows that

EY0,Y1 [ν (Y1|Y 0,∆, β)ψ1(Y1, β)ψ0(Y0, β)] = 0. (29)

for all suitably differentiable (ψ0, ψ1). Now, writing the expected value in integral form, then inte-

gration by parts, and the fact that

π (y, β)µ (y, θ) =
1

2

∂

∂y

¡
σ2 (y, γ)π (y, β)

¢
,

it follows that the equality (29) implies the equality (28).

When considering this case, it is worth while to be careful about how the Dβ , Sβ and Ωβ matrices

depend on the distributions of ∆0 and Y0.

Theorem 2. If hC2 is used to estimate either β = θ or = σ2,

D
(0)
β = D̃

(0)
β D

(1)
β = E[∆0]D̃

(1)
β

S
(−1)
β =

1

E[∆0]
S̃
(−1)
β S

(0)
β = S̃

(0)
β +

V ar [∆0]

E [∆0]
2 S

(0)
β,0 (30)

where D̃(0)
β , D̃(1)

β , S̃(−1)β , S̃(0)β , and S(0)β,0 depend only on ψ0, ψ1, µ, σ
2 and the distribution of Y0 (and

not on the distribution of ∆0. Specifically,

D
(0)
β =

⎧⎨⎩ D
(0)
θ = EY0

h
∂µ
∂θ

³
∂ψ1
∂y ψ0 − ψ1

∂ψ0
∂y

´i
when estimating θ

D
(0)
γ = 1

2EY0

h
∂σ2

∂γ

³
∂2ψ1
∂y2

ψ0 − ψ1
∂2ψ0
∂y2

´i
when estimating σ2

(31)

D̃
(1)
β =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D̃
(1)
θ = 1

2EY0

h
σ2 ∂µ∂θ

³
∂2ψ0
∂y2

∂ψ1
∂y − ∂ψ0

∂y
∂2ψ1
∂y2

´i
when estimating θ

D̃
(1)
γ = 1

4EY0

h
σ2 ∂σ

2

∂γ

³
∂3ψ0
∂y3

∂ψ1
∂y − ∂ψ0

∂y
∂3ψ1
∂y3

´
+ σ2 ∂

2σ2

∂y∂γ

³
∂2ψ0
∂y2

∂ψ1
∂y − ∂ψ0

∂y
∂2ψ1
∂y2

´i
when estimating σ2

(32)

S
(0)
β,0 = EY0

h¡©
Aβ0 · ψ1(Y0, β0)

ª× ψ0(Y0, β0)−
©
Bβ0 · ψ0(Y0, β0)

ª× ψ1(Y0, β0)
¢2i (33)

S̃(−1) = EY0

"
σ2
µ
ψ1

∂ψ0
∂y
− ψ0

∂ψ1
∂y

¶2#
(34)

S̃(0) = 2
³
EY0

£
Aβ0 · (hC2 × r̆C2)

¤
+ S

(0)
β,0

´
(35)

We can now state the asymptotic properties of the estimators based on the C2 moment condition:

12



Theorem 3. (Properties of the Estimators based on the C2 Condition) If hC2 is used to estimate

either θ or σ2, the estimator is unbiased and we have

Ωβ = Ω
(0)
β + �Ω

(1)
β +O(�2) (36)

where, when estimating θ,

Ω
(0)
θ =

EY0

∙
σ2(Y0, γ0)

³
ψ1(Y0, β0)

∂ψ0(Y0,β0)
∂y − ψ0(Y0, β0)

∂ψ1(Y0,β0)
∂y

´2¸
EY0

h
∂µ(Y0,θ0)

∂θ

³
∂ψ1(Y0,β0)

∂y ψ0(Y0, β0)− ψ1(Y0, β0)
∂ψ0(Y0,β0)

∂y

´i2 (37)

and, when estimating σ2,

Ω
(0)
σ2
=

4 EY0

∙
σ2(Y0, γ0)

³
ψ1(Y0, β0)

∂ψ0(Y0,β0)
∂y − ψ0(Y0, β0)

∂ψ1(Y0,β0)
∂y

´2¸
EY0

h³
∂2ψ1(Y0,β0)

∂y2
ψ0(Y0, β0)− ψ1(Y0, β0)

∂2ψ0(Y0,β0)
∂y2

´i2 . (38)

The expressions for Ω(1)θ and Ω(1)
σ2
, which are more involved, are summarized by

Ω
(1)
β = E [∆0] Ω̃

(1)
β +

V ar [∆0]

E [∆0]

S
(0)
β,0

(D
(0)
β,0)

2
(39)

where

Ω̃
(1)
β =

S̃
(0)
β D̃

(0)
β − S̃

(−1)
β D̃

(1)
β

(D̃
(0)
β )3

. (40)

The form given in (39)-(40) will be useful in the next section.

4. Efficiency Properties of the Hansen-Scheinkman Estimators

4.1. Comparison with Likelihood-Based Estimators

In Aït-Sahalia and Mykland (2003), we studied the effect that the randomness of the sampling

intervals might have when estimating a continuous-time model with discrete data, as would be the

case with transaction-level returns data. We disentangled the effect of the sampling randomness from

the effect of the sampling discreteness, and compare their relative magnitudes. We also examined the

effect of simply ignoring the sampling randomness. We achieved this by comparing the properties of

three likelihood-based estimators, which make different use of the observations on the state process

13



and the times at which these observations have been recorded. We designed these estimators in such

a way that each one of them is subject to a specific subset of the effects we wish to measure. As a

result, the differences in their properties allowed us to zero in and isolate these different effects.

The first estimator of β̂ we considered is the Full Information Maximum Likelihood (FIML)

estimator, using the bivariate observations (Yn,∆n); the second is the partial information maximum

likelihood estimator using only the state observations Yn, with the sampling intervals integrated

out (IOML for Integrated Out Maximum Likelihood); the third is the pseudo maximum likelihood

estimator pretending that the observations times are fixed (PFML for Pretend Fixed Maximum

Likelihood). Not surprisingly, the first estimator, FIML, is asymptotically efficient, making the

best possible use of the joint data (Yn,∆n). The second estimator, IOML, corresponds to the

asymptotically optimal choice if one recognizes that the sampling intervals ∆n’s are random but

does not observe them. The third estimator, PFML, corresponds to the “head-in-the-sand” policy

consisting of acting as if the sampling intervals were all identical (pretending that ∆n = ∆̄ for all n)

when in fact they are random.

Both FIML and IOML confront the randomness issue head-on. FIML uses the recorded sampling

times, IOML does not, but still recognizes their relevance by integrating them out in the absence of

observations on them. Because the data are always discretely sampled, each estimator is subject to

the “cost of discreteness,” which we define to be the additional variance relative to the variance of an

asymptotically efficient estimator based on the full continuous-time sample path. It also represents

the error that one would make if one were to use continuous-time asymptotics when the data are

in fact discretely sampled. However, FIML is only subject to the cost of discreteness, while IOML

is penalized by both the fact that the data are discrete (the continuous-time sample path is not

observed) and randomly spaced in time (the sampling intervals are not observed). The additional

variance of IOML over that of FIML will therefore be identified as the “cost of randomness,” or the

cost of not observing the randomly-spaced sampling intervals. But if in fact one had recorded the

observations times but chosen not to use them in the empirical estimation phase, then what we call

the cost of randomness can be interpreted as the cost of throwing away, or not using, these data.

By contrast, PFML does as if the sampling times were simply not randomly spaced. Comparing

it to FIML gives rise to the cost imputable to ignoring the randomness of the sampling intervals,

as opposed to the what we call the cost of randomness, which is the cost due to not observing the

14



randomly-spaced sampling intervals. In the former case, one (mistakenly) uses PFML, while in the

latter case one realizes that the intervals are informative but, in their absence, IOML is the best one

can do. Different types of estimation strategies in empirical market microstructure that do not use

the sampling intervals can be viewed as versions of either IOML or PFML, depending upon their

treatment of the sampling intervals: throw them away, or ignore their randomness. They will often

be suboptimal versions of these estimators because they are subject to an additional efficiency loss

if they do not use maximum-likelihood.

All three estimators rely on maximizing a version of the likelihood function of the observations.

Let p(y1|y0, δ, β) denote the transition function of the process X. Because of the time homogeneity
of the model, the transition function p depends only on δ and not on (t, t+ δ) separately. All three

estimators make use of some functional of the density p: namely, p(Yn|Yn−1,∆n, β) for FIML; the ex-

pectation p̃(Yn|Yn−1, β) of p(Yn|Yn−1,∆n, β) over the law of ∆n|Yn−1 for IOML; and p(Yn|Yn−1, ∆̄, β)
for PFML (i.e., like FIML except that ∆̄ is used in place of the actual ∆n). In practice, even though

most diffusion models do not admit closed-form transition densities, all three estimators can be cal-

culated for any diffusion X using arbitrarily accurate closed-form approximations of the transition

function p (see Aït-Sahalia (2002)). We also show that p̃ can be obtained in closed form. While

FIML and IOML are always consistent estimators, i.e., β̄ = β0, this is not the case for PFML when

the sampling intervals are random. We are here particularly interested in comparing the C1 and C2

estimators with the FIML and IOML estimators.

>From Aït-Sahalia and Mykland (2003), we have that

ΩFIMLθ = Ω
(FIML,0)
θ +O

¡
�2
¢

(41)

ΩIOMLθ = Ω
(IOML,0)
θ + �Ω

(IOML,1)
θ +O

¡
�2
¢
, (42)

where

Ω
(FIML,0)
θ = Ω

(IOML,0)
θ =

³
EY0

h
σ−2(Y0, γ0) (∂µ(Y0, θ0)/∂θ)

2
i´−1

(43)

which is the the leading term in Ωθ corresponding to efficient estimation of θ with a continuous

record of observations.

And the price of ignoring the sampling times τ0, τ1, ... when estimating θ is, to first order,

represented by

Ω
(IOML,1)
θ =

E[V ar[∆0|χ21∆0]]
E [∆0]

V,
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and “χ21” is a χ
2
1 distributed random variable independent of ∆0, and

V =

µ
EY0

∙
σ40

³
∂2µ(Y0,β0)

∂y∂θ

´2¸− 2EY0

∙
σ20

∂µ(Y0,θ0)
∂y

³
∂µ(Y0,β0)

∂θ

´2¸¶
4 EY0

∙³
∂µ(Y0,θ0)

∂θ

´2¸2 . (44)

Note that V ≥ 0 by the asymptotic efficiency of FIML.

And the leading term in Ωγ corresponding to efficient estimation of γ is

ΩFIMLγ = � Ω(FIML,1)γ +O
¡
�2
¢

ΩIOMLγ = �Ω(IOML,1)γ +O
¡
�2
¢
,

where

Ω(FIML,1)γ = Ω(IOML,1)γ = E [∆0]
³
2EY0

h
(∂σ(Y0, γ0)/∂γ)

2 σ(Y0, γ0)
−2
i´−1

.

In the special case where σ2 is constant (γ = σ2), this becomes the standard AVAR of MLE from

i.i.d. Gaussian observations, i.e., Ω(1)γ = 2σ40E [∆0] .

These leading terms are achieved in particular when h is the likelihood score for θ and γ respec-

tively, as analyzed in Aït-Sahalia and Mykland (2003), but also by other estimating functions that

are able to mimic the behavior of the likelihood score at the leading order. So, we now turn to a

comparison of the AVAR of these two estimators to the likelihood-based FIML and IOML to find

out whether this is the case for these classes of moment conditions.

4.2. Efficiency of the C1 Estimator

>From Theorem 1, we can study the first order efficiency of the C1 estimator relative to the

likelihood-based estimators. For the purpose of estimating either θ for γ known, or vice versa,

or more generally for a scalar parameter β so that θ = θ(β) and γ = γ(β), Conley et al. (1997) (p.

565) proposes to use ψ given by

∂ψ(y, β)

∂y
=

∂

∂β

µ
2µ(y, θ)− ∂σ2(y, γ)/∂y

σ2(y, γ)

¶
. (45)

This choice of ψ yields a C1 estimator Aβ · ψ which is test function efficient in the sense of

Appendix C of Conley et al. (1997). In the case of estimating θ for γ known this in the same as as

16



saying that (45) minimizes Ω(0)θ . Similarly, in the case of estimating γ for θ known, (45) minimizes

Ω
(0)
γ .

We consider further the estimation of θ for γ known. With Theorem 1, one can see that something

stronger than test function efficiency holds. Ω(0)θ for this ψ coincides with the corresponding Ω(0)θ for

the full information maximum likelihood (FIML). In other words, to first order in �, Aβ · ψ is fully
efficient. This fact is easily seen by substituting (45) into (25), and comparing to the corresponding

expression in Corollary 2 (p.510) of Aït-Sahalia and Mykland (2003). (The latter expression is only

given for σ2 = γ2, but the extension to general σ2(y) follows from the development in Aït-Sahalia

and Mykland (2004).) The efficient first order asymptotic variance has the form

In view of this efficiency property, it is obvious that this choice of ψ also minimizes the expression

(25). This is shown, with different expressions, in Appendix C of Conley et al. (1997).

To consider the efficiency question more carefully, we shall for now fix σ2 to be independent

of y, and continue to use the first order optimal choice (25). Note that the relevant comparison

is not with the full information maximum likelihood (FIML), but rather what we in Aït-Sahalia

and Mykland (2003) called the “integrated out maximum likelihood” (IOML). This estimator comes

from a likelihood which uses the observations Y0, Y1, ..., but not the spacings ∆1,∆2, ... between the

observations. The reason that this is the relevant comparison is that the C1 estimators also do not

use these spacings. In view of the Cramér-Rao lower bound, the asymptotic variance of the IOML

is the best possible that can be obtained using the partial data Y0, Y1, .... Hence the discrepancy

between the two is then the cost of using the C1 estimator relative to a maximally efficient estimator.

To see what happens, recall V defined in (44). We then have from Theorem 1 that, on the one

hand, for the C1 estimator

Ω
(C1,1)
θ =

V ar[∆0]

E [∆0]
V.

Thus, the cost of using the C1 estimator rather than IOML is summarized by

Ω
(C1,1)
θ

Ω
(IOML,1)
θ

=
V ar[∆0]

E[V ar[∆0|χ21∆0]]
. (46)

As it should from from the Cramér-Rao lower bound, this quotient is always greater than 1. It also

depends only on the distribution of the sampling intervals, i.e., the law of ∆0. The size of the quantity

is explored in Section 5.4 (pp. 511-514) of Aït-Sahalia and Mykland (2003), where we showed in
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particular that

E
£
V ar

£
∆0|χ21∆0

¤¤
= E[∆20]−E

"µ
χ21∆0

m4(χ
2
1∆0)

m2(χ21∆0)

¶2#
. (47)

where χ21 and ∆0 are independent random variables and

mq(b) = EZ

∙
Z−qd0

µ
b

Z2

¶¸
, (48)

where Z is N(0, 1) and d0 is the density function of ∆0.

With those results in hand, it is easily seen that, for example, when ∆0 is exponentially distrib-

uted,
Ω
(C1,1)
θ

Ω
(IOML,1)
θ

=
8

3
.

If one wishes to compare to the FIML estimator rather than IOML, it is shown in Aït-Sahalia

and Mykland (2003) that the �-term in the expansion of the asymptotic variance is zero, so compared

to this both the C1 and IOML estimators are inefficient.

For the case of estimating γ for known θ, however, the test function efficiency in C1 does not

yield first order efficiency. Indeed, Ω(C1)γ is of order O(1) as � → 0, that is Ω(C1,0)γ > 0, while

the asymptotic variance of both the FIML and the IOML is or order O(�) (see Aït-Sahalia and

Mykland (2003)). This lack of efficiency is not surprising since volatility estimation is inherently

about (squared) changes or increments of the process, and the C1 set of moment conditions uses no

information about the increments. One could therefore expect that C2, which is able to utilize the

increments, will probably be better suited to estimating the set of γ parameters. As we will see,

however, this is not the case.

4.3. Efficiency of the C2 Estimator

Surprisingly, to first order, nothing is gained by using the C2 estimator rather than using C1.

Specifically, what we mean by this, is that when Ω(C2,0)θ is minimized over ψ0 and ψ1, one obtains

the same result as when Ω(C1,0)θ is minimized over ψ. And similarly for Ω(C2,0)γ .

To see this, let β = θ or = γ, and write the first order asymptotic variances as functionals
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Ω
(C1,0)
β [ψ] and Ω(C2,0)β [ψ0, ψ1]. One then sees that Ω

(C2,0)
β [ψ0, ψ1] = Ω

(C1,0)
β [ψ] for the choice

∂ψ(Y0, β0)

∂y
= − ∂ψ0(Y0, β0)

∂y
ψ1(Y0, β0) +

∂ψ1(Y0, β0)

∂y
ψ0(Y0, β0) (49)

In other words, for any choice of ψ0 and ψ1 in C2, there is an equally good choice of ψ for C1.

In the case of estimation of θ, it is also not to be expected that that C2 could improve on C1 in

the sense discussed above, as C1 is already comparable to likelihood to first order in �. For estimating

γ, however, the result is quite disappointing. Since C2 involves transition information where C1 does

not, one could have hoped that it would give better efficiency.

Is there improvement to higher order, at least? For this, we use the results in Theorem 2 above.

Before stating results, note (for comparison with the C1 case) that D(0)
β and S(0)β,0 are the same in the

C1 and C2 cases when one makes the identification (49). Thus, noting the form of T (C1,0)β,0

Ω
(C1,1)
β =

V ar [∆0]

E [∆0]

S
(0)
β,0

(D
(0)
β,0)

2
. (50)

Recall that above, we have shown that

Ω
(C2,1)
β = E [∆0] Ω̃

(1)
β +

V ar [∆0]

E [∆0]

S
(0)
β,0

(D
(0)
β,0)

2
(51)

This sets the stage for:

Theorem 4. For optimal choice (45) of ψ, and if ψ0 and ψ1 satisfy (49),

Ω̃
(1)
θ ≥ 0 (52)

Proof of Theorem 4 Using the notation from the previous subsection, since Ω(C2,0)θ = Ω
(IOML,0)
θ ,

and since Ω(C2)θ ≥ Ω(IOML)θ , it follows that Ω(C2,1)θ ≥ Ω(IOML,1)θ . Since, for the optimal choice of ψ,

V = S
(0)
β,0/(D

(0)
β,0)

2, the inequality becomes:

E [∆0] Ω̃
(1)
β +

V ar [∆0]

E [∆0]
V ≥ E[V ar[∆0|χ21∆0]]

E [∆0]
V. (53)

This must hold for any distribution of ∆0 so long as E [∆0] > 0, E
£
∆20
¤
< +∞, and V ar[∆0] > 0.

Having said that, one can then take a limit of a sequence of distributions of ∆0 so that V ar[∆0] = 0,

while the two other conditions remain. This proves the result.
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This would seem to suggest that if ψ is chosen optimally, one cannot to this order improve on the

C1 estimator by using a C2 estimator. There are a couple of caveats: the improvement may occur

to higher order, and we have not investigated this. We have no result on whether C2 can improve on

C1 for a non-optimal ψ, but with ψ0 and ψ1 satisfying (49). We also don’t know whether Ω̃
(1)
β > 0

is a possibility.

Since C1 is a special case of C2 (choose ψ0 = 1 and ψ1 = ψ, one can obviously make Ω̃(1)β = 0

with the correct choice of ψ0 and ψ1.

5. Example: The Ornstein-Uhlenbeck Process

We now apply the inference strategies of the previous section to a specific example, the stationary

(θ > 0) Ornstein-Uhlenbeck process

dXt = −θXtdt+ σdWt (54)

where γ = σ2 and specialize the expressions resulting from the general theorems that precede. We

also compare how the different estimation methods fare relative to MLE. The transition density

l(y1|y0, δ, β) = ln (p(y1|y0, δ, β)) is a Gaussian density with expected value e−δθy0 and variance¡
1− e−2δ θ

¢
γ/2θ. The stationary density π(y0, β) is also Gaussian with mean 0 and variance σ2/(2θ).

For this model, we have from Table III in Aït-Sahalia and Mykland (2003)

Ω
(FIML)
θ = 2θ0 + �2

Ã
2θ30E

£
∆30
¤

3E [∆0]

!
+O

¡
�3
¢
.

Ω
(IOML)
θ = 2θ0 + �

Ã
2θ20E

£
V ar

£
∆0|χ2∆0

¤¤
E [∆0]

!
+O

¡
�2
¢

and

Ω(FIML)γ = �
¡
2σ40E [∆0]

¢
Ω(IOML)γ = �

µ
4σ40E [∆0]

2−E [V ar [χ2|χ2∆0]]
¶
+O

¡
�2
¢
.

The C1 estimation method involves an element of choice, namely the selection of the test function

ψ. We presently give the expressions that follow from applying Theorem 1 to the Ornstein-Uhlenbeck
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process with ψ chosen to be proportional to ∂ log π/∂β. This is the choice advocated by Conley et al.

(1997): see their Sections 3.2-3.3 and Appendix C where they show that this choice is approximately

optimal among the restricted class of moment conditions they consider. In this case, π is the normal

density with mean 0 and variance κ2 = σ2/2θ, so one gets

ψ(y, β) =
y2 − κ2

2κ4
∂κ2

∂β

where β is either θ or σ2. One can estimate θ for given σ2, or vice versa. Note that Aβ · ψ(y, β) =
−2θψ(y, β).

For the estimation of θ, the quantities from Theorem 1 are as follows:

Dθ = �

µ
1

θ0

¶
Sθ,0 = �

µ
2

E [∆0] θ0

¶
− 2�2

Ã
E
£
∆20
¤

(E [∆0])2
+ 1

!
+O

¡
�3
¢

Tθ = 4�
2

Ã
E
£
∆20
¤

(E [∆0])2

!
+O

¡
�3
¢

Ωθ = 2θ0 + �

µ
2θ20V ar [∆0]

E [∆0]

¶
+O

¡
�2
¢
,

while for the estimation of σ2, one obtains

Dσ2 = �
θ

σ40

Sσ2,0 = �
θ0
σ40

µ
2

E [∆0]

¶
− 2�2 θ

2
0

σ40

Ã
E
£
∆20
¤

(E [∆0])2
+ 1

!
+O

¡
�3
¢

Tσ2 = 4�
2

Ã
θ20
σ40

E
£
∆20
¤

(E [∆0])2

!
+O

¡
�3
¢

Ωσ2 = 2
σ40
θ0
+ �

µ
2σ40V ar [∆0]

E [∆0]

¶
+O

¡
�2
¢

It is noteworthy that this is the only case where Ωσ2 is of order O(1) in � as opposed to order

O(�). While this follows from applying the general Theorem 1, a simple direct demonstration of this

in the Ornstein-Uhlenbeck case is as follows. Note that Aβ · ψ(y, β) for estimating θ is f(y, κ2)/κ2,
where f(y, κ2) = y2 − κ2, while Aβ · ψ(y, β) for estimating σ2 is −f(y, κ2)/2κ4. Hence, if one sets
κ̂2 = N−1

T

P
i Yi, and if one lets θ̂ denote the estimator of θ for σ

2 known, and similarly define σ̂2,

one gets θ̂ = σ2/2κ̂2 and σ̂2 = 2θκ̂2. It follows that

√
T (σ̂2 − σ2) = 2θ

√
T (κ̂2 − κ2) = −σ

2

θ

√
T (θ̂ − θ) + op(1), (55)
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whence Ωσ2 = (σ
4/θ2)Ωθ. Since Ωθ is O(1) in �, then so is Ωσ2 . This first-order efficiency loss is a

natural consequence of the absence of conditioning information in the C1 method.

In the case of the C2 estimator, suppose that one can write ψ0(y, β0) and ψ1(y, β0) as a series,

ψ0(y, β0) =
X
i≥0

aiy
i, ψ1(y, β0) =

X
i≥0

biy
i. (56)

Under the optimality constraint (49), with

ψ(y, β) =
y2 − κ2

2κ4
∂κ2

∂β
,

we obtain that

y

κ4
∂κ2

∂β
=

∂ψ(Y0, β0)

∂y

= −∂ψ0(Y0, β0)
∂y

ψ1(Y0, β0) +
∂ψ1(Y0, β0)

∂y
ψ0(Y0, β0)

= −
X
i,j≥0

(i+ 1)ai+1bjy
i+j +

X
i,j≥0

(j + 1)aibj+1y
i+j

=
X
n≥0

yn
X

i+j=n

[−(i+ 1)ai+1bj + (j + 1)aibj+1]. (57)

It follows that for ψ0 and ψ1 to be first order optimal, one needsX
i+j=n

[−(i+ 1)ai+1bj + (j + 1)aibj+1] = 0 (58)

for all n 6= 0.(The restriction for n = 1 is irrelevant, since inference is unaltered by multiplying ψ by
a constant).

6. Conclusions and Extensions

One can extend the theory to cover more general continuous-time Markov processes, such as jump-

diffusions. In that case, the standard infinitesimal generator of the process applied to a smooth f

takes the form

Jβ0 · f = Aβ0 · f +
Z
{f(y1 + z, y0, δ, β, �)− f(y1, y0, δ, β, �)} ν (dz, y0)

where Aβ0 , defined in (12), is the contribution coming from the diffusive part of the stochastic

differential equation and ν (dz, y0) is the Lévy jump measure specifying the number of jumps of size
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in (z, z + dz) per unit of time (see e.g., Protter (1992).) In that case, our generalized infinitesimal

generator becomes

Γβ0 · f ≡ ∆0 Jβ0 · f +
∂f

∂�
+

∂f

∂β

∂β

∂�

that is, the same expression as (14) except that Aβ0 is replaced by Jβ0 . Of course, the asymptotic

variance expressions we derived above, hence the efficiency comparisons, are dependent upon the

nature of the generator of the process.

Another extension concerns the generation of the sampling intervals. For example, if the ∆i’s

are random and i.i.d., then E [∆] has the usual meaning, but even if this is not the case, by E [∆]

we mean the limit (in probability, or just the limit if the ∆i’s are non-random) of
Pn

i=1∆i/n as

n tends to infinity. This permits the inclusion of the random non-i.i.d. and the nonrandom (but

possibly irregularly spaced) cases for the ∆i’s. At the cost of further complications, the theory can

be extended to allow for dependence in the sampling intervals, whereby ∆n is drawn conditionally

on (Yn−1,∆n−1).
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Appendix

This appendix contains the technical assumptions under which our general results in Aït-Sahalia

and Mykland (2004) hold (hence those of this paper), a summary of the asymptotic distribution

expansion for general moment conditions, as well as the proofs of Theorems 1 and 3.

A. Technical Assumptions

We make the following primitive assumptions on (µ, σ):

Assumption 1. For all values of the parameters (θ, γ) :

1. Differentiability: The functions µ(x; θ) and σ(x; γ) are infinitely differentiable in x.

2. Non-degeneracy of the Diffusion: If S = (−∞,+∞), there exists a constant c such that
σ (x; γ) > c > 0 for all x and γ. If S = (0,+∞), limx→0+ σ2(x; γ) = 0 is possible but

then there exist constants ξ0 > 0, ω > 0, ρ ≥ 0 such that σ2 (x; γ) ≥ ωxρ for all 0 < x ≤ ξ0

and γ. Whether or not limx→0+ σ2(x; γ) = 0, σ is non-degenerate in the interior of S, that is:
for each ξ > 0, there exists a constant cξ such that σ2 (x; γ) ≥ cξ > 0 for all x ∈ [ξ,+∞) and
γ.

3. Boundary Behavior: µ, σ2 and their derivatives have at most polynomial growth in x near the

boundaries, limx→x
¯
S (x;β) = −∞ and limx→x̄ S (x;β) = +∞,

lim
x→x
¯

inf µ̃ (x;β) > 0 and lim
x→x̄

sup µ̃ (x;β) < 0. (A.1)

and

lim
x→x
¯
or x→x̄

sup λ̃ (x;β) < +∞. (A.2)

4. Identification: µ(x; θ) = µ(x; θ̃) for π−almost all x in S implies θ = θ̃ and σ2(x; γ) = σ2(x; γ̃)

for π−almost all x in S implies γ = γ̃.

The assumptions made ensure that the stochastic differential equation (2) admits a weak solution

which is unique in probability law, has a regular transition density, exponentially decaying ρ−mixing
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coefficients and is stationary with stationary density

π(x, β) =
m (x;β)R x̄

x
¯
m (y;β)dy

(A.3)

provided that the initial value of the process, X0, has density π.

We assume the following regarding the data generating process for the sampling intervals:

Assumption 2. The sampling intervals ∆n = τn−τn−1 are independent and identically distributed.
Each ∆n is drawn from a common distribution which is independent of Yn−1 and of the parameter

β. Also, E[∆20] < +∞.

Finally, we assume the following regularity condition regarding the vector of moment functions

h selected to conduct inference:

Assumption 3. h(y1, y0, δ, β, �) ∈ DJ for some J ≥ 3, and is of the form

h(y1, y0, δ, β, �) = h̃(y1, y0, δ, β, �) +
H(y1, y0, δ, β, �)

δ
, (A.4)

where h̃ ∈ DJ and H ∈ DJ+1. When the function H is not identically zero, we add the requirements

that

H(y0, y0, 0, β0, 0) =
∂H(y1, y0, 0, β0, 0)

∂y1
= Ḣ(y0, y0, 0, β0, 0) = 0. (A.5)

B. Summary of Results for Generic Moment Functions h

In the following, we summarize the general expansions for the matrices Dβ, Sβ,0 and Tβ = Sβ −Sβ,0

from Aït-Sahalia and Mykland (2004). These expansions take the form

Dβ = D
(0)
β + �D

(1)
β + �2D

(2)
β +O(�3)

Sβ,0 = S
(0)
β,0 + �S

(1)
β,0 + �2S

(2)
β,0 +O(�3)

Tβ = �−1T (−1)β + T
(0)
β + �T

(1)
β + �2T

(2)
β +O(�3)

from which an expansion for the AVAR matrix of the form

Ωβ = Ω
(0)
β + �Ω

(1)
β + �2Ω

(2)
β +O

¡
�3
¢
. (B.6)
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B.1. The Dβ and Sβ,0 Matrices

Lemma 1 in Aït-Sahalia and Mykland (2004) states that for a vector of moment functions h =

(h1, ..., hr)
0 where h = h̃+∆−1H as described in (A.4)-(A.5) and h̃ ∈ D3, H ∈ D4, we have:

In the case where H is identically zero,

Dβ = EY0

h
ḣ
i
+ �E∆,Y0

h
(Γβ0 · ḣ)

i
+

�2

2
E∆,Y0

h
(Γ2β0 · ḣ)

i
+O(�3) (B.7)

and, with the notation h× h0(y1, y0, δ, β, �) ≡ h(y1, y0, δ, β, �)h(y1, y0, δ, β, �)
0, we have

Sβ,0 = EY0

£¡
h× h0

¢¤
+ �E∆,Y0

£
(Γβ0 · (h× h0))

¤
+

�2

2
E∆,Y0

h
(Γ2β0 · (h× h0))

i
+O(�3). (B.8)

In the case where H is not zero, (B.7) and (B.8) should be evaluated at h̃ rather than h, yielding

Dh̃
β and Sh̃

β,0 respectively. Then Dβ = Dh̃
β +DH

β and Sβ,0 = Sh̃
β,0 + SH

β,0 where

DH
β = E∆,Y0

h
∆−10 (Γβ0 · Ḣ)

i
+

�

2
E∆,Y0

h
∆−10 (Γ

2
β0
· Ḣ)

i
+O(�2), (B.9)

SH
β,0 = E∆,Y0

h
∆−10 (Γβ0 · (h̃×H0))

i
+

�

2
E∆,Y0

h
∆−10 (Γ

2
β0
· (h̃×H 0))

i
+E∆,Y0

h
∆−10 (Γβ0 · (H × h̃0))

i
+

�

2
E∆,Y0

h
∆−10 (Γ

2
β0
· (H × h̃0))

i
(B.10)

+
1

2
E∆,Y0

h
∆−20 (Γ

2
β0
· (H ×H 0))

i
+

�

6
E∆,Y0

h
∆−20 (Γ

3
β0
· (H ×H 0))

i
+O(�2).

B.2. The Tβ Matrix

The simplest case arises when the moment function is a martingale,

E∆,Y1 [h(Y1, Y0,∆, β0, �)|Y0] = 0. (B.11)

When (B.11) is satisfied, Sβ,j = 0 for all j 6= 0, and so Tβ = 0. Denote by hi the ith element of the

vector of moment functions h, and define qi and αi by

E∆,Y1

£
hi(Y1, Y0,∆, β̄, �)|Y0

¤ ≡ �αiqi(Y0, β0, �) (B.12)

= �αiqi(Y0, β0, 0) + �αi+1
∂qi(Y0, β0, 0)

∂�
+O(�αi+2)

where αi is an integer greater than or equal to zero for each moment function hi. αi is an index of

the order at which the moment component hi deviates from a martingale (note that in a vector h not
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all components hi need to have the same index αi). A martingale moment function corresponds to

the limiting case where αi = +∞, qi(Y0, β0, �) is identically zero, and Sβ = Sβ,0. When the moment

functions are not martingales, we show in that the difference Tβ ≡ Sβ − Sβ,0 is a matrix whose

element (i, j) has a leading term of order O
¡
�min(αi,αj)

¢
in � that depends on qi and qj .

Note that E∆,Y1,Y0

£
hi(Y1, Y0,∆, β̄, �)

¤
= 0 by definition of β̄, hence by the law of iterated expec-

tations we have that

EY0 [qi(Y0, β0, �)] = 0. (B.13)

and in particular EY0 [qi(Y0, β0, 0)] = 0. Equation (B.12) is obtained as a consequence of

E∆,Y1

£
hi(Y1, Y0,∆, β̄, �)|Y0

¤
= E∆

£
EY1

£
hi(Y1, Y0,∆, β̄, �)|Y0,∆

¤¤
=
PJ

j=0
�j

j!

n
E∆0

h³
Γjβ0

· h̃i
´i
+ 1

(j+1)E∆0

h
∆−10

³
Γj+1β0

·Hi

´io
+O

¡
�J+1

¢
= �αiqi(Y0, β0, 0) +O(�αi+1),

(B.14)

if we let αi denote an index j at which the sum in the right-hand-side of (B.14) is non-zero. αi is

an index of the order at which the moment component hi deviates from a martingale (note that in

a vector h not all components hi need to have the same index αi).

For instance, we have αi = 0 with

qi(Y0, β0, 0) = h̃i(Y0, Y0, 0, β0, 0) +E∆0

£
∆−10

¡
Γβ0 ·Hi

¢
(Y0, Y0, 0, β0, 0)|Y0

¤
(B.15)

if the right-hand-side of (B.15) is non-zero, or αi = 1 with

qi(Y0, β0, 0) ≡ E∆0

h
Γβ0 · h̃i(Y0, Y0, 0, β0, 0)|Y0

i
+ 1

2E∆0

h
∆−10

³
Γ2β0 ·Hi

´
(Y0, Y0, 0, β0, 0)|Y0

i
(B.16)

if the right-hand-side of (B.16) is non-zero, or αi = 2 and

qi(Y0, β0, 0) ≡ 1
2E∆0

h
Γ2β0 · h̃i(Y0, Y0, 0, β0, 0)|Y0

i
+ 1

6E∆0

h
∆−10

³
Γ2β0 ·Hi

´
(Y0, Y0, 0, β0, 0)|Y0

i
(B.17)

is that term is non-zero, and so on.

A martingale moment function corresponds to the limiting case where αi = +∞, qi(Y0, β0, �) is
identically zero, and Sβ = Sβ,0. When the moment functions are not martingales, the difference

Tβ ≡ Sβ − Sβ,0 is a matrix whose element (i, j) has a leading term of order O
¡
�min(αi,αj)

¢
in � that

depends on qi and qj. While the index αi and the function qi play a crucial role in determining the

27



order in � of the matrix Tβ, the function ri will play an important role in the determination of its

coefficients. We define ri as

ri(y0, β0, �) = −
Z ∞

0
Ut ·Aβ0 · qi(y0, β0, �)E[τN(t)+1]dt. (B.18)

where Uδ · f(y0, δ, β, �) ≡ EY1 [f(Y1, Y0,∆, β, �)|Y0 = y0,∆ = δ] is the conditional expectations oper-

ator.

We then showed that

ri(Y0, β0, �) = r̆i(Y0, β0, �) +
1

2
�
E[∆20]

E[∆0]
qi(Y0, β0, 0) + op(�), (B.19)

where the function r̆i(y, β0, �) is the solution of the differential equation

∂

∂y
[
∂r̆i(y, β0, �)

∂y

1

s(y;β0)
] = − 2 qi(y, β0, �)

σ2(y; γ0)s(y;β0)
(B.20)

with the side condition that EY0 [r̆i(Y0, β0, �)] = 0.

As �→ 0, we have ri(y, β0, 0) = r̆i(y, β0, 0) and

∂

∂y
[
∂ri(y, β0, 0)

∂y

1

s(y;β0)
] = − 2 qi(y, β0, 0)

σ2(y; γ0)s(y;β0)
(B.21)

With
∂ri
∂�
(y, β0, 0) =

∂r̆i
∂�
(y, β0, 0) +

1

2

E[∆20]

E[∆0]
qi(y, β0, 0) (B.22)

and
∂kri(Y0, β0, 0)

∂yk
≡ ∂kr̆i(Y0, β0, 0)

∂yk
(B.23)

for k = 1, 2, we have

ri(Y1, β0, �) = ri(Y0, β0, 0) + (Y1 − Y0)
∂ri(Y0, β0, 0)

∂y
(B.24)

+
1

2
(Y1 − Y0)

2∂
2ri(Y0, β0, 0)

∂y2
+ �

∂ri(Y0, β0, 0)

∂�
+ op(�).

The form (B.21) is convenient to compute the derivatives ∂kri/∂yk in applications, such as the

one in this paper. If σ2 = γ constant, dividing (B.21) by σ20 yields an equivalent form in terms of

the stationary density π :

∂

∂y
[
∂ri(y, β0, 0)

∂y
π(y;β0)] = −

2

σ20
qi(y, β0, 0)π(y;β0). (B.25)
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Lemma 3 of Aït-Sahalia and Mykland (2004) showed that:

If H is zero, the (i, j) term of the time series matrix Tβ = Sβ − Sβ,0 is [Tβ](i,j) , given by:

[Tβ](i,j) =
1

E [∆0]

µ
�αj−1EY0 [(hi × rj)] + �αjE∆0,Y0

£
Γβ0 · (hi × rj)

¤
+

�αj+1

2
E∆0,Y0

h
Γ2β0 · (hi × rj)

i
+ �αi−1EY0 [(hj × ri)] + �αiE∆0,Y0

£
(Γβ0 · (hj × ri))

¤
+

�αi+1

2
E∆0,Y0

h
(Γ2β0 · (hj × ri))

i¶
+O(�min(αi,αj)+2). (B.26)

If H is non-zero, then (B.26) should be evaluated at h̃ rather than h, yielding T h̃
β . And Tβ =

T h̃
β + TH

β where

£
TH
β

¤
(i,j)

=
1

E [∆0]

µ
�αj−1E∆,Y0

£
∆−10 (Γβ0 ·Hi)× rj

¤
+

�αj

2
E∆0,Y0

h
∆−10

³
Γ2β0 · (Hi × rj)

´i
+�αi−1E∆0,Y0

£
∆−10 (Γβ0 ·Hj)× ri

¤
+

�αi

2
E∆0,Y0

h
∆−10

³
Γ2β0 · (Hj × ri)

´i¶
+O(�min(αi,αj)+1). (B.27)

C. Proof of Theorem 1

To calculate Tβ, we start with a lemma:

Lemma 1. For any function φ(Y0, β0) suitably differentiable in y, such that the expected values below

exist, we have

EY0 [φqC1] = −1
2
EY0

∙
σ2

∂ψ

∂y

∂φ

∂y

¸
(C.28)

EY0

∙
σ2φ

∂rC1
∂y

¸
= −EY0

∙
σ2

∂ψ

∂y
φ

¸
(C.29)

EY0

∙
σ4φ

∂2rC1
∂y2

¸
= −EY0

∙
σ4

∂2ψ

∂y2
φ

¸
. (C.30)

where all the functions are evaluated at � = 0 and β = β0.
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Proof. From the form of qC1 given in (20), we have

EY0 [φqC1] = EY0

£
φ× ¡Bβ0 · ψ

¢¤
= EY0

∙µ
µ
∂ψ

∂y
+

σ2

2

∂2ψ

∂y2

¶
φ

¸
= EY0

∙
−σ

2

2

∂

∂y

µ
∂ψ

∂y
φ

¶
+

σ2

2

∂2ψ

∂y2
φ

¸
= −1

2
EY0

∙
σ2

∂ψ

∂y

∂φ

∂y

¸
which proves (C.28).

Next, recall (B.25) and, from (A.3), the fact that π(y;β0) = c/
¡
s(y, γ0)σ

2(y, γ0)
¢
where c is the

integration constant needed to ensure that
R
π(y;β0)dy = 1. Using integration by parts, we have

EY0

∙
σ2φ

∂rC1
∂y

¸
=

Z
∂rC1
∂y

σ2φπdy

= c

Z
∂rC1
∂y

1

s
φdy

= −c
Z

∂

∂y
[
∂rC1
∂y

1

s
]

µZ y

φdz0

¶
dy

= c

Z
2qC1
σ2s

µZ y

φdz0

¶
dy (C.31)

= 2

Z
qC1

µZ y

φdz0

¶
πdy

= 2EY0

∙µZ Y0

φdz0

¶
qC1

¸
= −EY0

∙
σ2

∂ψ

∂y
φ

¸
where in the second-to-last equality, the integration constant in

R Y0 φdz0 is irrelevant because
EY0 [qC1(Y0, β0, 0)] = 0. The last equality follows from (C.28).

Using again (B.21), that is
∂

∂y
[
∂rC1
∂y

1

s
] = −2qC1

σ2s

we have
∂2rC1
∂y2

1

s
=

∂rC1
∂y

∂s

∂y

1

s2
− 2qC1

σ2s
= −∂rC1

∂y

1

s

2µ

σ2
− 2qC1

σ2s

since
∂s

∂y
= −2µ

σ2
s
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hence
∂2rC1
∂y2

= −∂rC1
∂y

2µ

σ2
− 2qC1

σ2

With again π = c/
¡
sσ2
¢
, it follows that

EY0

∙
σ4φ

∂2rC1
∂y2

¸
= −2EY0

∙
σ2φµ

∂rC1
∂y

¸
− 2EY0

£
σ2φqC1

¤
(C.32)

= 2EY0

∙
σ2

∂ψ

∂y
φµ

¸
+EY0

"
σ2

∂ψ

∂y

∂
¡
σ2φ

¢
∂y

#

= 2EY0

∙
σ2

∂ψ

∂y
φµ

¸
+EY0

∙µ
σ4

∂φ

∂y
+ σ2

∂σ2

∂y
φ

¶
∂ψ

∂y

¸
by applying (C.28) and (C.29).

But recall now that

EY0 [φµ] = −
1

2
EY0

∙
σ2

∂φ

∂y

¸
so that

EY0

∙
σ4φ

∂2rC1
∂y2

¸
= −EY0

∙
σ2

∂

∂y

µ
σ2

∂ψ

∂y
φ

¶¸
+EY0

∙µ
σ4 + σ2

∂σ2

∂y

¶
∂ψ

∂y

∂φ

∂y

¸
= −EY0

∙
σ2
µ
∂σ2

∂y

∂ψ

∂y
φ+ σ2

∂2ψ

∂y2
φ+ σ2

∂ψ

∂y

∂φ

∂y

¶¸
+EY0

∙µ
σ4

∂φ

∂y
+ σ2

∂σ2

∂y
φ

¶
∂ψ

∂y

¸
= −EY0

∙
σ4

∂2ψ

∂y2
φ

¸
and the lemma is proved.

Returning to Tβ, we have from (B.26):

Tβ =
2

E [∆0]

¡
�−1EY0 [(hC1 × rC1)] +E∆0,Y0

£
(Γβ0 · (hC1 × rC1))

¤¢
+O(�)

≡ �−1T (−1)β + T
(0)
β +O(�) (C.33)

To compute T (−1)β , we therefore need to calculate

EY0 [(hC1 × rC1)] = EY0 [hC1(Y0, Y0, 0, β0, 0)× rC1(Y0, β0, 0)]

= EY0

£¡
Bβ0 · ψ(Y0, β0)

¢× rC1(Y0, β0, 0)
¤

= −1
2
EY0

∙
σ2(Y0, γ0)

∂ψ(Y0, β0)

∂y

∂rC1(Y0, β0, 0)

∂y

¸
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because of (C.28).

Next, we apply (C.29) to get

EY0

∙
σ2

∂ψ

∂y

∂rC1
∂y

¸
= −EY0

"
σ2
µ
∂ψ

∂y

¶2#

and thus

T
(−1)
β =

2

E [∆0]
EY0 [(hC1 × rC1)]

=
2

E [∆0]

µ
−1
2

¶Ã
−EY0

"
σ2(Y0, γ0)

µ
∂ψ(Y0, β0)

∂y

¶2#!

=
1

E [∆0]
EY0

"
σ2(Y0, γ0)

µ
∂ψ(Y0, β0)

∂y

¶2#
. (C.34)

Regarding the next order term in Tβ, we have

T
(0)
β =

2

E [∆0]
E∆0,Y0

£
(Γβ0 · (hC1 × rC1))

¤
=

2

E [∆0]
E∆0,Y0

£
hC1 × (Γβ0 · rC1)

¤
since by (18) and the independence of hC1 on y1, we have Γβ0 · hC1 = 0 and ∂hC1/∂y1 = 0 so that

Γβ0 · (hC1 × rC1) = (Γβ0 · hC1)× rC1 + hC1 × (Γβ0 · rC1) +∆0σ20
∂rC1
∂y1

∂hC1
∂y1

= hC1 × (Γβ0 · rC1).

Using the definition of the operator Γβ0, we have Γβ0 · rC1 = ∆0
¡
Aβ0 · rC1

¢
+ ∂rC1/∂� (since

∂β/∂� = 0 as the estimator is unbiased), with

∂rC1
∂�

(y, β0, 0) =
∂r̆C1
∂�

(y, β0, 0) +
1

2

E[∆20]

E[∆0]
qC1(y, β0, 0)

from (B.22). But qC1(y, β0, �) ≡ qC1(y, β0, 0) identically, i.e., qC1 does not depend on � and therefore

r̆C1 does not depend on � either. Hence (∂r̆C1/∂�) (y, β0, 0) = 0.

Therefore

E∆0,Y0

£
hC1 × (Γβ0 · rC1)

¤
= E∆0,Y0

∙
(Bβ0 · ψ)×

µ
∆0Aβ0 · rC1 +

1

2

E[∆20]

E[∆0]
qC1

¶¸
(C.35)

= E [∆0]EY0

£
(Bβ0 · ψ)(Aβ0 · rC1)

¤| {z }
≡ K1

+
1

2

E[∆20]

E[∆0]
EY0

£
(Bβ0 · ψ)qC1

¤| {z }
≡ K2
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Consider first the term K2 in (C.35). Applying (C.28), we have

K2 = EY0

£
(Bβ0 · ψ)qC1)

¤
= EY0

∙
−σ

2

2

∂ψ

∂y

∂(Bβ0 · ψ)
∂y

¸
= EY0

∙
−σ

2

2

∂ψ

∂y

∂

∂y

µ
µ
∂ψ

∂y
+

σ2

2

∂2ψ

∂y2

¶¸
= EY0

∙
−σ

2

2

∂ψ

∂y

µ
µ
∂2ψ

∂y2
+

∂µ

∂y

∂ψ

∂y
+
1

2

∂σ2

∂y

∂2ψ

∂y2
+

σ2

2

∂3ψ

∂y3

¶¸
= EY0

∙
σ2

2

∂

∂y

µ
σ2

2

∂ψ

∂y

∂2ψ

∂y2

¶
− σ2

2

∂ψ

∂y

µ
∂µ

∂y

∂ψ

∂y
+
1

2

∂σ2

∂y

∂2ψ

∂y2
+

σ2

2

∂3ψ

∂y3

¶¸
= EY0

"
σ2

4

∂σ2

∂y

∂ψ

∂y

∂2ψ

∂y2
+

σ4

4

Ãµ
∂2ψ

∂y2

¶2
+

∂ψ

∂y

∂3ψ

∂y3

!

−σ
2

2

∂ψ

∂y

µ
∂µ

∂y

∂ψ

∂y
+
1

2

∂σ2

∂y

∂2ψ

∂y2

¶
− σ4

4

∂ψ

∂y

∂3ψ

∂y3

¸
= EY0

"
σ4

4

µ
∂2ψ

∂y2

¶2
− σ2

2

∂µ

∂y

µ
∂ψ

∂y

¶2#
(C.36)

Regarding the term K1 in (C.35), we apply similarly (C.28) to obtain

K1 = EY0

£
(Bβ0 · ψ)(Aβ0 · rC1)

¤
= EY0

∙
−σ

2

2

∂ψ

∂y

∂(Aβ0 · rC1)
∂y

¸
= EY0

∙
−σ

2

2

∂ψ

∂y

∂

∂y

µ
µ
∂rC1
∂y

+
σ2

2

∂2rC1
∂y2

¶¸
= EY0

∙
−σ

2

2

∂ψ

∂y

µ
µ
∂2rC1
∂y2

+
∂µ

∂y

∂rC1
∂y

+
1

2

∂σ2

∂y

∂2rC1
∂y2

+
σ2

2

∂3rC1
∂y3

¶¸
= EY0

∙
σ2

2

∂

∂y

µ
σ2

2

∂ψ

∂y

∂2rC1
∂y2

¶
− σ2

2

∂ψ

∂y

µ
∂µ

∂y

∂rC1
∂y

+
1

2

∂σ2

∂y

∂2rC1
∂y2

+
σ2

2

∂3rC1
∂y3

¶¸
= EY0

∙
σ2

4

∂σ2

∂y

∂ψ

∂y

∂2rC1
∂y2

+
σ4

4

µ
∂2ψ

∂y2
∂2rC1
∂y2

+
∂ψ

∂y

∂3rC1
∂y3

¶
−σ

2

2

∂ψ

∂y

µ
∂µ

∂y

∂rC1
∂y

+
1

2

∂σ2

∂y

∂2rC1
∂y2

¶
− σ4

4

∂ψ

∂y

∂3rC1
∂y3

¸
= EY0

∙
σ4

4

∂2ψ

∂y2
∂2rC1
∂y2

− σ2

2

∂µ

∂y

∂ψ

∂y

∂rC1
∂y

¸

Next, we apply (C.29) to get

EY0

∙
σ2

∂µ

∂y

∂ψ

∂y

∂rC1
∂y

¸
= −EY0

"
σ2
µ
∂ψ

∂y

¶2 ∂µ
∂y

#

Then we apply (C.30) to obtain

EY0

∙
σ4

∂2ψ

∂y2
∂2rC1
∂y2

¸
= −EY0

∙
σ4

∂2ψ

∂y2
∂2ψ

∂y2

¸
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Therefore

K1 = EY0

£
(Bβ0 · ψ)(Aβ0 · rC1)

¤
= EY0

∙
σ4

4

∂2ψ

∂y2
∂2rC1
∂y2

− σ2

2

∂µ

∂y

∂ψ

∂y

∂rC1
∂y

¸
=

1

2
EY0

"
σ2
µ
∂ψ

∂y

¶2 ∂µ
∂y

#
− 1
4
EY0

∙
σ4

∂2ψ

∂y2
∂2ψ

∂y2

¸
(C.37)

Replacing (C.36) and (C.37) into (C.35), we therefore have:

T
(0)
β =

2

E [∆0]

©
E∆0,Y0

£
hC1 × (Γβ0 · rC1)

¤ª
= 2 K1 +

E[∆20]

E[∆0]2
K2

= EY0

"
σ2
µ
∂ψ

∂y

¶2 ∂µ
∂y

#
−EY0

∙
σ4

2

∂2ψ

∂y2
∂2ψ

∂y2

¸

+
E[∆20]

E[∆0]2
EY0

"
σ4

4

µ
∂2ψ

∂y2

¶2
− σ2

2

∂µ

∂y

µ
∂ψ

∂y

¶2#

=

¡
E[∆20]− 2E[∆0]2

¢
4E[∆0]2

(
EY0

"
σ4
µ
∂2ψ

∂y2

¶2#
− 2EY0

"
σ2
µ
∂ψ

∂y

¶2 ∂µ
∂y

#)
. (C.38)

We then put everything together: (C.34) and (C.38) give the expansion of Tβ in (C.33); (21)-(22)

for Dβ and Sβ,0; and from there follows the expansion for Ωβ given in (24).

D. Proof of Theorem 2

The moment function hC2 depends on (y1, y0, β), but not on (δ, �). Also, as above, β̄(β0, �) ≡ β0

identically. As in the hC1 case, the only difference between estimating θ and estimating σ2 appears

in Dβ. Recall that qC2 is defined by

E∆,Y1

£
hC2(Y1, Y0,∆, β̄, �)|Y0

¤ ≡ qC2(Y0, β0, �)

= q2(Y0, β0, 0) + �
∂q2(Y0, β0, 0)

∂�
+O(�2)

and note that, even though hC2 does not depend on �, qC2(y0, β0, �) does depend on � (unlike qC1):

the dependence of hC2 on y1 implies that qC2(y0, β0, �) does not reduce to qC2(y0, β0, 0). The specific
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expressions for qC2(y0, β0, 0) and ∂qC2(Y0, β0, 0)/∂� are

qC2(y0, β0, 0) = hC2(y0, y0, 0, β0, 0)

=
©
Aβ0 · ψ1(y0, β0)

ª× ψ0(y0, β0)−
©
Bβ0 · ψ0(y0, β0)

ª× ψ1(y0, β0) (D.39)

and

∂qC2(y0, β0, 0)

∂�
= E[∆0]

¡
Aβ0 · hC2

¢
(y0, y0, 0, β0, 0)

= E[∆0]
nn

A2β0 · ψ1(y0, β0)
o
× ψ0(y0, β0)

− ©Bβ0 · ψ0(y0, β0)
ª× ©Aβ0 · ψ1(y0, β0)

ª¢
. (D.40)

Next, we have Dβ = D
(0)
β +D

(1)
β �+O(�2) and Sβ,0 = S

(0)
β,0 +O(�) with

D
(0)
β =

⎧⎨⎩ D
(0)
θ = EY0

h
∂µ
∂θ

³
∂ψ1
∂y ψ0 − ψ1

∂ψ0
∂y

´i
when estimating θ

D
(0)
γ = 1

2EY0

h
∂σ2

∂γ

³
∂2ψ1
∂y2 ψ0 − ψ1

∂2ψ0
∂y2

´i
when estimating σ2

(D.41)

D
(1)
β =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D
(1)
θ = 1

2E[∆0]EY0

h
σ2 ∂µ∂θ

³
∂2ψ0
∂y2

∂ψ1
∂y − ∂ψ0

∂y
∂2ψ1
∂y2

´i
when estimating θ

D
(1)
γ = 1

4E[∆0]EY0

h
σ2 ∂σ

2

∂γ

³
∂3ψ0
∂y3

∂ψ1
∂y − ∂ψ0

∂y
∂3ψ1
∂y3

´
+ σ2 ∂

2σ2

∂y∂γ

³
∂2ψ0
∂y2

∂ψ1
∂y − ∂ψ0

∂y
∂2ψ1
∂y2

´i
when estimating σ2

(D.42)

S
(0)
β,0 = EY0

h¡©
Aβ0 · ψ1(Y0, β0)

ª× ψ0(Y0, β0)−
©
Bβ0 · ψ0(Y0, β0)

ª× ψ1(Y0, β0)
¢2i (D.43)

As for Tβ, we have from (B.26):

Tβ =
2

E [∆0]

¡
�−1EY0 [(hC2 × rC2)] +E∆0,Y0

£
(Γβ0 · (hC2 × rC2))

¤¢
+O(�)

≡ �−1T (−1)β + T
(0)
β +O(�) (D.44)

The first term is

T
(−1)
β =

2

E [∆0]
EY0 [hC2(Y0, Y0, 0, β0, 0)× rC2(Y0, β0, 0))]

=
2

E [∆0]
EY0 [qC2(Y0, β0, 0)× rC2(Y0, β0, 0)]

=
1

E [∆0]
EY0

∙
σ2
µ
ψ1

∂ψ0
∂y
− ψ0

∂ψ1
∂y

¶
∂rC2
∂y

¸
=

1

E [∆0]
EY0

"
σ2
µ
ψ1

∂ψ0
∂y
− ψ0

∂ψ1
∂y

¶2#
(D.45)
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with the second equality following from (D.39), the third from (D.50) and the last from (D.51).

Regarding the next order term in Tβ, we have

T
(0)
β =

2

E [∆0]
E∆0,Y0

£
Γβ0 · (hC2 × rC2)

¤
(D.46)

Since hC2 does not depend on �, and in view of (B.19),

T
(0)
β =

2

E [∆0]
E∆0,Y0

£
Γβ0 · (hC2 × r̆C2)

¤
+

E[∆20]

E [∆0]
2E∆0,Y0 [hC2q]

= 2EY0

£
Aβ0 · (hC2 × r̆C2)

¤
+

E[∆20]

E [∆0]
2S

(0)
β,0 (D.47)

since, by iterated conditional expectations,

E∆0,Y0 [hC2q] = E∆0,Y0

£
h2C2

¤
= S

(0)
β,0 (D.48)

Thus S(−1)β = T
(−1)
β , while

S
(0)
β = S

(0)
β,0 + T

(0)
β,0

= 2
³
EY0

£
Aβ0 · (hC2 × r̆C2)

¤
+ S

(0)
β,0

´
+

V ar [∆0]

E [∆0]
2 S

(0)
β,0 (D.49)

We then put together the expansions of Dβ, Sβ,0 and Tβ to obtain the expansion for Ωβ given in

(36). The terms of order �0 are given in the statement of the Theorem, while the terms of order �1

are:

Ω
(1)
θ =

E [∆0]
³
D
(0)
θ

³
S
(0)
β,0 + T

(0)
β

´
− 2D(1)

θ T
(−1)
β

´
³
D
(0)
θ

´3
Ω
(1)
σ2

=
E [∆0]

³
D
(0)
σ2

³
S
(0)
β,0 + T

(0)
β

´
− 2D(1)

σ2
T
(−1)
β

´
³
D
(0)
σ2

´3
when estimating θ or σ2 respectively.

We have used the following.
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Lemma 2. For any function φ(y1, y0, β0) suitably differentiable in y0, such that the expected values

below exist, we have

EY0 [φqC2] =
1

2
EY0

∙
σ2
µ
∂ψ0
∂y

ψ1 − ψ0
∂ψ1
∂y

¶µ
∂φ

∂y1
+

∂φ

∂y0

¶¸
(D.50)

EY0

∙
σ2φ

∂rC2
∂y

¸
= EY0

∙
σ2
µ
∂ψ0
∂y

ψ1 − ψ0
∂ψ1
∂y

¶
φ

¸
(D.51)

EY0

∙
σ4φ

∂2rC2
∂y2

¸
= EY0

∙
σ4
µ
∂ψ0
∂y

ψ1 − ψ0
∂ψ1
∂y

¶
φ

¸
. (D.52)

where all the functions are evaluated at y1 = y0, � = 0 and β = β0.

Proof. From the form of qC2 given in (D.39), we have

EY0 [φqC2] = EY0

£
φ× ¡©Aβ0 · ψ1(y0, β0)

ª× ψ0(y0, β0)−
©
Bβ0 · ψ0(y0, β0)

ª× ψ1(y0, β0)
¢¤

= EY0

∙
φ×

µ½
µ
∂ψ1
∂y

+
σ2

2

∂2ψ1
∂y2

¾
ψ0 −

½
µ
∂ψ0
∂y

+
σ2

2

∂2ψ0
∂y2

¾
× ψ1

¶¸
= EY0

∙
µφ

½
∂ψ1
∂y

ψ0 −
∂ψ0
∂y

ψ1

¾
ψ0 +

σ2

2
φ
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∂2ψ1
∂y2
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∂2ψ0
∂y2

ψ1

¾¸
= −EY0

∙
σ2

2

d

dy0

µ
φ

½
∂ψ1
∂y

ψ0 −
∂ψ0
∂y

ψ1

¾¶¸
+EY0

∙
σ2

2
φ
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∂2ψ1
∂y2
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∂2ψ0
∂y2

ψ1

¾¸
= −EY0

∙
σ2

2
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∂ψ1
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ψ0 −
∂ψ0
∂y

ψ1

¾
dφ

dy0

¸
−EY0

∙
σ2

2

½
∂2ψ1
∂y2

ψ0 −
∂2ψ0
∂y2

ψ1

¾
φ

¸
+EY0

∙
σ2

2
φ

½
∂2ψ1
∂y2

ψ0 −
∂2ψ0
∂y2

ψ1

¾¸
=

1

2
EY0

∙
σ2
½
∂ψ1
∂y

ψ0 −
∂ψ0
∂y

ψ1

¾
dφ

dy0

¸
with the fourth equality following from

EY0 [µ(Y0, θ0)f(Y0)] = −EY0

∙
σ2(Y0, γ0)

2

df(Y0)

dy0

¸
. (D.53)

Then we have
dφ

dy0
=

dφ (y0, y0, β0)

dy0
=

∂φ

∂y1
+

∂φ

∂y0
.

Next, as in the development (C.31) in Lemma 1, we have

EY0

∙
σ2φ

∂rC2
∂y

¸
=

Z
∂rC2
∂y

σ2φπdy

= 2EY0

∙µZ Y0

φdz0

¶
qC2

¸
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from which it follows that

EY0

∙
σ2φ

∂rC2
∂y

¸
= EY0

∙
σ2
µ
∂ψ0
∂y

ψ1 − ψ0
∂ψ1
∂y

¶
φ

¸
.

by applying (D.50).

Next, the same development as (C.32) in Lemma 1 now gives
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= −2EY0
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¸
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¤
and we apply (D.50) and (D.51) to obtain:
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#

But from (D.53) it follows that
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+EY0
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¶¶¸
and therefore
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¶¸
which completes the proof of the lemma.
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