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We would like to congratulate Jianqing Fan with an excellent and well written survey of some

of the literature in this area. We will here focus on some of the issues which are at the reserach

frontiers in financial econometrics but are not covered in the survey. Most importantly, we consider

the estimation of actual volatility. Related to this is the realization that financial data is actually

observed with error (typically called market microstructure), and that one needs to consider a

hidden semimartingale model. This has implications for the Markov models discussed above.

For reasons of space, we have not included references to all the relevant work by the authors

that are cited, but we have tried to include at least one reference to each of the main contributors

to the realized volatility area.

THE ESTIMATION OF ACTUAL VOLATILITY: THE IDEAL CASE

The paper discusses the estimation of Markovian systems, models where the drift and volatility

coefficients are a function of time t or state x. There is, however, scope for considering more

complicated systems. An important tool in this respect is the direct estimation of volatility based

on high frequency data. One considers a system of, say, log securities prices, which follows

dXt = µtdt + σtdBt , (1)

where Bt is a standard Brownian motion. Typically, µt, the drift coefficient, and σ2
t , the instan-

taneous variance (or volatility) of the returns process Xt, will be stochastic processes, but these

processes can depend on the past in ways that need not be specified, and can be substantially more

complex than a Markov model. This is known as an Itô process.
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A main quantity of econmetric interest is to obtain time series of the form Ξi =
∫ T+

i

T−

i

σ2
t dt,

i = 1, 2, .... Here T−
i and T+

i can, for example, be the beginning and the end of day number i. Ξi

is variously known as the integrated variance (or volatility) or quadratic variation of the process X.

The reason why one can hope to obtain this series is as follows. If T −
i = t0 < t1 < ... < tn = T+

i

spans day number i, define the realized volatility by

Ξ̂i =
n−1∑

j=0

(Xtj+1
− Xtj )

2. (2)

Then stochastic calculus tells us that

Ξi = lim
max |tj+1−tj |→0

Ξ̂i. (3)

In the presence of high frequency financial data, in many cases with transactions as often as every

few seconds, one can, therefore, hope to almost observe Ξi. One can then either fit a model to the

series of Ξ̂i, or one can use it directly for portfolio management (as in Fleming, Kirby and Ostdiek

(2001)), options hedging (as in Mykland (2003)), or to test goodness of fit (Mykland and Zhang

(2002)).

There are too many references to the relationship (3) to name them all, but some excellent

treatments can be found in Karatzas and Shreve (1991) (Section 1.5), Jacod and Shiryaev (2003)

(Theorem I.4.47 on page 52), and Protter (2004) (Theorem II-22 on page 66). An early econometric

discussion of this relationship can be found in Andersen, Bollerslev, Diebold and Labys (2000).

To make it even more intriguing, recent work both from the probablistic and econometric

side give the mixed normal distribution of the error in the approximation in (3). References

include Jacod and Protter (1998), Barndorff-Nielsen and Shephard (2002) and Mykland and Zhang

(2002). The random variance of the normal error is 2
T+

i
−T−

i

n

∫ T+

i

T−

i

σ4
t dH(t), where H is the quadratic

variation of time. H(t) = t in the case where the ti are equidistant.

Further econometric literature includes, in particular, Gallant, Hsu and Tauchen (1999), Cher-

nov and Ghysels (2000), Andersen, Bollerslev, Diebold and Labys (2001, 2003), Dacorogna, Gençay,

Müller, Olsen and Pictet (2001), Oomen (2004) and Goncalves and Meddahi (2005). Problems that

are attached to the estimation of covariations between two processes are discussed in Hayashi and

Yoshida (2005). Estimating σ2
t at each point t goes back to Foster and Nelson (1996), see also Myk-

land and Zhang (2001), but this has not caught on quite as much in the econometric application.

THE PRESENCE OF MEASUREMENT ERROR

The theory described above runs into a problem in real data. For illustration, consider how the

realized volatility depends on sampling frequency for the stock (and day) considered in Figure 1.

The estimator does not converge as the observation points ti become dense in the interval of this

one day, but rather seems to take off to infinity. This phenomenon was originally documented in
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Figure 1: Plot of realized volatility for Alcoa Aluminum for January 4, 2001. The data is from

the TAQ database. There are 2011 transactions on that day, on average one every 13.365 seconds.

The most frequently sampled volatility uses all the data, and this is denoted as “frequency= 1”.

“Frequency=2” corresponds to taking every second sampling point. Because this gives rise to two

estimators of volatility, we have averaged the two. And so on for “frequency= k” up to 20. The plot

corresponds to the average realized volatility discussed in Zhang, Mykland and Aı̈t-Sahalia (2002).

Volatilities are given on an annualized and square root scale.

Andersen, Bollerslev, Diebold and Labys (2000). For transaction data, this picture is repeated for

most liquid securities. (Hansen and Lunde (2006), Zhang, Mykland and Aı̈t-Sahalia (2002)).

In other words, the model (1) is wrong. What can one do about this? A lot of people immedi-

ately think that the problem is due to jumps, but that is not the case. The limit in (3) exists even

when there are jumps. The requirement for (3) to exist is that the process X be a semimartingale

(we again cite Theorem I.4.47 of Jacod and Shiryaev (2003)), which includes both Itô processes

and jumps.

The inconsistence between the empirical results where the realized volatility diverges with finer

sampling, and the semimartingale theory which dictates the convergence of the realized volatility,
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poses a problem, since financial processes are usually assumed to be semimartingales. Otherwise,

slightly loosely speaking, there would be arbitrage opportunities in the financial markets. For

rigorous statements, see, in particular, Delbaen and Schachermayer (1995). The semimartingaleness

of financial processes, therefore, is almost a matter of theology in most of finance, and yet, because

of Figure 1 and similar graphs for other stocks, we have to abandon it.

Our alternative model is that there is measurement error in the observation. At transaction

number i, instead of seeing Xti from model (1), or, more generally, from a semimartingale, one

observes

Yti = Xti + εi, (4)

We call this the hidden semimaringale model. The rationale is (depending on your subject matter)

either that a transaction is a measurement of the underlying price Xti , and of course there is

error, or that it is due to market microstructure, as documented by, among others, Roll (1984),

Glosten (1987), Glosten and Harris (1988), Brown (1990), Harris (1990), and Hasbrouck (1993).

See Aı̈t-Sahalia, Mykland and Zhang (2005) for a discussion of this.

A natural model for the error is that it is either iid or a stationary process, as considered by

Zhou (1996), Gloter and Jacod (2000), Zhang, Mykland and Aı̈t-Sahalia (2002), Bandi and Russell

(2003), Zhang (2004), Aı̈t-Sahalia, Mykland and Zhang (2005), and Hansen and Lunde (2006).

Under quite loose conditions, this alternative model is consistent with the plot in Figure 1.

Instead of (3), one gets that the realized volatility becomes nE(ε1 − ε0)
2 + Op(n

−1/2). In the early

literature (as cited in the previous section), the problem is usually taken care of by (sic) reducing n.

A variety of approaches that improve on this are documented in Zhang, Mykland and Aı̈t-Sahalia

(2002), to which we refer for an in depth discussion. As demonstrated by Zhang (2004), the true

volatility Ξi can be consistently estimated at rate Op(n
−1/4), as opposed to Op(n

−1/2) when there

is no error. This is not as slow as it seems, since n is quite large for liquid securities.

An alternative description of the error is that it arises due to rounding (financial instruments

are, after all, traded on a price grid). Research in this direction has been done by Delattre and

Jacod (1997) and by Zeng (2003). To first order, the rounding and additive error models are similar,

as documented by Delattre and Jacod (1997), see also Kolassa and McCullagh (1990).

It is awkward that these models imply the existence of arbitrage. The size of the error, however,

is so small that it is hard to take economic advantage of them, and this, presumably, is why such

deviations can persist.

IMPLICATIONS FOR MARKOV MODELS

We now return to the subject to Jianqing Fan’s overview, namely the Markov case. It is clear

that the model without observation error is not consistent with the data. This may not be a

problem when working with, say, daily data, but would pose problems when using high frequency

(intraday) observations. It is presumably quite straightforward to extend the methods discussed in
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the paper to the case of observation error, and it would be interesting to see the results. The same

applies to similar studies on Markov models by the “French school”, such as Hoffman (1999) and

Jacod (2000).
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