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SUMMARY

When the classical χ2 goodness-of-fit test for Hardy-Weinberg (HW) equilibrium is used

on samples with related individuals, the type I error can be greatly inflated. In particular

the test is inappropriate in population isolates where the individuals are related through

multiple lines of descent. In this paper, we propose a new test for HW (the QL-HW test)

suitable for any sample with related individuals, including large inbred pedigrees, provided

that their genealogy is known. Performed conditional on the pedigree structure, the QL-HW

test detects departures from HW that are not due to the genealogy. Because the computation

of the QL-HW test becomes intractable for very polymorphic loci in large inbred pedigrees,

a simpler alternative, the GCC-HW test, is also proposed. The statistical properties of the

QL-HW and GCC-HW tests are studied through simulations considering a sample of inde-

pendent nuclear families, a sample of extended outbred genealogies and samples from the

Hutterite population, a North American highly inbred isolate. Finally, the method is used

to test a set of 143 bi-allelic markers spanning 82 genes in this latter population.
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INTRODUCTION

When there are no disturbing forces such as selection, mutation or migration that would

change allele frequencies over time and when there is random mating in a very large popu-

lation, the 2 alleles of an individual are known not to be associated. As a consequence, the

genotype frequencies are given by the product of the allele frequencies and the population

is said to be in Hardy-Weinberg equilibrium (HWE). Although it is one of the most basic

and oldest tests in genetics, HWE testing has lately regained serious attention from human

geneticists. In 1999, Nielsen et al. proposed to use it to fine map susceptibility loci. Indeed,

as shown by these authors, when considering case only samples and thus conditioning on

phenotypes, departure from HW is expected at susceptibility loci acting in a non multiplica-

tive manner. More recently, Lee (2003) proposed to use the test as a genome-wide screening

tool for association. As outlined by Weinberg and Morris (2003), this latter strategy should

be considered very carefully. It has important caveats that include little power to detect

some plausible genetic models and non negligible probability of detecting departures from

HW (HWD) due to other reasons which include selection not driven by the phenotype under

study, population stratification and genotyping errors. In the present context of intensive use

of SNP markers, for which the proportion of genotyping errors that are not detectable by

routine Mendelian incompatibility checks is fairly significant, as outlined by Douglas et al.

(2002), testing for HWE is an additional tool to identify genotyping errors. Xu et al. (2002)

have shown how systematic use of HW testing in case samples and in control samples may

help to avoid false detection of association signals driven by genotyping errors in only one

of the two samples (either cases or controls).
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Classical approaches to test for HWE include the Pearson’s χ2 goodness-of-fit test (Gof-

HW) and the corresponding likelihood ratio test for unrelated individuals. However, these

tests are not suitable for use in samples containing related individuals as they assume inde-

pendence among the observations. Neglecting these correlations may lead to spurious con-

clusions (as we demonstrate in the Results section). Further, permutation-based tests where

alleles are randomly reassigned to genotypes to get null distributions, are not suitable. In-

deed, for such tests to be valid, the alleles must be exchangeable under the null hypothesis

which is not generally the case when considering related individuals. In the present paper,

we propose a method to solve the problem of testing for HWE in a sample with any kind

of related individuals provided that their relationship is known. The method is designed

to be suitable for large inbred pedigrees in which the relatedness among individuals may

be considerable with many or all individuals related through multiple lines of descent. In

addition to requiring correction for non independence among the individuals, testing for

HWE in large inbred pedigrees also requires precise specification of the hypothesis to be

tested. This is because, by definition, in an inbred individual i, a correlation exists between

i’s two alleles, which is measured by the inbreeding coefficient hi. When the genealogy of

the population is available, the inbreeding coefficient can be computed for any individual so

that the correlation between the two alleles of any individual due to the pedigree structure

can be measured. We propose a test performed conditional on the relationship among the

genotyped individuals specified by the pedigree. In this case, the null hypothesis of the test

is : conditional on the pedigree information, the random variable representing assignment

of genotypes to genotyped individuals follows the distribution that would be obtained if the
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founders’ alleles were i.i.d. draws from a distribution (p1, . . . , pa) where pi is the frequency

of allele i, pi > 0 and
∑

pi = 1 and if, at each meiosis in the pedigree, one of the two

parental alleles was passed on with chance 1/2 each. Deviation from this hypothesis could

arise if, within the population, conditional on relationship, mate choice further depended

on the genotypes at a given locus. It could also arise due to genotyping errors, selection,

mutation or, at a susceptibility locus, due to conditioning on phenotype information.

We have recently proposed (Bourgain et al., 2003) a valid test for case-control associa-

tion studies in samples with related individuals, that is suitable for large inbred pedigrees

too complex for exact likelihood computations. Inference is based on the quasi-likelihood

score function proposed by McPeek et al. (2004) and a quasi-likelihood score (QLS) statistic

for case-control association is constructed. Under certain model assumptions and regularity

conditions, this test is asymptotically the locally most powerful test of a general class of lin-

ear tests which includes the χ2 test for case-control association corrected for the correlation

within and between the individuals. Here, we use a similar idea to construct a quasi-likelihood

score test for HWE (QL-HW test). Because it is based on genotypes rather than on alleles,

the QL-HW statistic is more complex than the QLS. Allele frequencies do not factor out of

the mean and derivative vectors and out of the covariance matrix, as they do in the QLS.

Further, whereas the QLS requires only the inbreeding and kinship coefficients to summa-

rize the correlation within an individual and between any pair of individuals, the QL-HW

requires the values of the 9 condensed identity coefficients for any pair of individuals. We use

the efficient algorithm of Abney et al. (2000) to compute these coefficients in complex inbred

pedigrees. Because the computation of the QL-HW test may become intractable for very
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polymorphic loci in large inbred pedigrees, we propose a simpler alternative, the Generalized

Corrected Chi-squared test for Hardy-Weinberg (GCC-HW test). In the case of an outbred

sample with a bi-allelic locus, the GCC-HW test is equivalent to the Gof-HW test with a

variance correction that appropriately accounts for inter-individual correlations. In the case

of an inbred sample or when considering loci with more than 2 alleles, the GCC-HW test

is a generalization of the corrected χ2 test. GCC-HW is also performed conditional on the

pedigree structure.

In what follows we shall first describe the QL-HW and GCC-HW statistics. Type I error

of the two tests is assessed in samples of outbred nuclear or extended families and in samples

of Hutterites from South Dakota, a North American religious and highly inbred isolate with

known genealogy. The inflated type I error introduced in the classical Gof-HW test by the

presence of related individuals, using either the χ2 distribution or a permutation procedure

to get significance, is illustrated in the outbred samples. Power of the QL-HW and GCC-

HW tests to detect deviations from HWE in samples of inbred and outbred individuals is

evaluated. Finally, the QL-HW test is applied to a set of 143 intragenic bi-allelic markers

typed in samples of Hutterites.
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METHODS

Model

Consider a sample of N individuals and a locus with a different alleles. Define M = a(a+1)
2

, the

number of possible distinct genotypes. Let Y = (Y1, . . . , YN)T be a vector of length N(M−1)

(a [N(M − 1)]-vector) with Yi = (Yi1, . . . , Yi(M−1))
T a (M − 1)-vector of indicators where Yig

equals 1 if individual i has genotype g and 0 otherwise. Define E(Y ) = µ = (µ1, . . . , µN)T

with µi = (µi1, . . . , µig, . . . µi(M−1))
T . As recognized by Weir (1996), departures from HWE

can be characterized in several ways, including use of fixation indices (correlations between

any pair of alleles within individuals) and disequilibrium coefficients (difference between a

frequency and its value expected when there is no association between alleles). We propose to

consider a model based on a fixation index, the model of heterozygote excess and deficiency

(the HED model) studied by Rousset and Raymond (1995), and we extend it to explicitly

include N different inbreeding coefficients (hi) for the N individuals. Table 1 gives the

corresponding expression of µi, the ith component of µ. This model has a distinct parameters:

the (a − 1) independent allele frequencies p = (p1, . . . pk, . . . , pa−1) and the fixation index r

with the following constraints on these parameters :

0 < pk ,
a−1∑

k=1

pk < 1 (1)

1−min
i

hi − 1

1−mink pk

≤ r ≤ 1−max
i

hi (2)

where the constraints on r are derived from the constraint that each genotype frequency

lie between 0 and 1. Under the null hypothesis, r = 0 while r 6= 0 under the alternative

hypothesis. p is a nuisance parameter to be estimated.
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In the simple case of outbred individuals and a bi-allelic marker, where there are three

possible genotypes whose frequencies must sum to 1, our model for µ is equivalent to the fully

parameterized model that has any two of the three genotype frequencies as free parameters.

With a bi-allelic marker and inbred individuals, there is not a unique two-parameter model

for µ that takes into account inbreeding. Either the HED model or the model based on a

disequilibrium coefficient could be a natural choice. However, it turns out that in the bi-allelic

case with inbreeding, these two models result in strictly equivalent score tests, so there is no

need to choose between them. Thus, in the context of SNP studies where most deviations

from HWE are likely to result from genotyping errors, our model is very general in allowing

for deviation from HWE.

For multi-allelic markers, our choice of model for µ narrows the alternative hypothesis to:

excess of all kinds of homozygous genotypes and lack of all kinds of heterozygous genotypes

when r > 0 or the contrary when r < 0. A primary reason for choosing such a model

is that it is relatively parsimonious in that it has only a free parameters. Furthermore,

it is motivated by previous findings using microsatellites in which excess of all kinds of

heterozygotes has been observed, in particular in the HLA region (Ober et al. 1997, Robertson

et al. 1999). Testing for an excess or a deficit of homozygosity is also of interest for detection

of genotyping errors (Sobel et al. 2002; see Discussion). We believe that the HED model,

in which the departure from HWE for homozygous genotypes depends on the frequency of

the corresponding allele, is better-suited to detection of genotyping errors than is the model

based on a disequilibrium coefficient, in which the departure from HWE is the same for all

homozygous genotypes. More complex models involving more than a parameters may be
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chosen when evidence for such alternative models is available. Otherwise, the increase in

degrees of freedom of the test will reduce its power when the true alternative is indeed in

the direction specified in our model.

Covariance matrix

For a pair of individuals in an inbred pedigree there are 15 possible ways in which the 4

alleles of the pair at a particular locus can be identical by descent (IBD, see Figure 1, see

also Lange, 1997, chapter 5). When the paternal and the maternal allele of an individual

do not need to be distinguished, these 15 configurations reduce to 9, referred to as identity

states. Following Jacquard (1974), for a pair of individuals (i, j), we let ∆ij
k , k = 1, . . . , 9

denote the conditional probability of identity state k given the relationship between the indi-

viduals i and j. These ∆k’s are called condensed identity coefficients. In outbred individuals,

∆ij
7 , ∆ij

8 and ∆ij
9 , are respectively the probability of sharing 2, 1 or 0 alleles IBD given the

pedigree and all other ∆ij
k = 0. Abney et al. (2000) have implemented an efficient algorithm

to compute the condensed identity coefficients in large complex pedigrees. Note that the

inbreeding coefficients of individuals i and j can be obtained from the identity coefficients

: hi = ∆ij
1 + ∆ij

2 + ∆ij
3 + ∆ij

4 and hj = ∆ij
1 + ∆ij

2 + ∆ij
5 + ∆ij

6 . Let Σ = var0(Y ) be the

[N(M−1)×N(M−1)] covariance matrix of Y under the null hypothesis when r = 0. Table

2 gives the entries of Σ as a function of p and the 9 condensed identity coefficients. Define

Ω to be the covariance matrix of Y under the alternative hypothesis, where Ω may depend

on both p and r. In order to derive a test statistic, we require only that Ω be differentiable

and invertible and that, under the null hypothesis, Ω = Σ.
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Quasi-score test for Hardy-Weinberg Equilibrium (QL-HW test)

We propose to base inference on the quasi-score function U (see e.g. McCullagh and Nelder,

1989, chapter 9) :

U(r, p) =




Ur(r, p)

Up(r, p)


 =




DT
r Ω−1(Y − µ)

DT
p Ω−1(Y − µ)


 where Dr =

∂µ

∂r
and Dp =

∂µ

∂p
.

Here Dr is a [N(M − 1)]-vector and Dp is a [(N(M − 1))× (a− 1)]-matrix with kth column

equal to ( ∂µ
∂pk

). Table 3 gives the expressions for (∂µig

∂r
) and (∂µig

∂pk
). To construct our Hardy-

Weinberg test statistic, we use a similar idea to that used in Bourgain et al. (2003) for the

problem of case-control association testing. In analogy with the classical likelihood score

statistic when there is a nuisance parameter (see e.g. Cox and Hinkley (1974) chapter 9), we

use U to build a quasi-score statistic WQL−HW :

WQL−HW = UT
r (r0, p̂0)I

rr(r0, p̂0)Ur(r0, p̂0) .

Here Irr is the (r, r) component of [E(UUT )]−1, where E(UUT ) is analogous to the infor-

mation matrix. In our case, the value of r under the null hypothesis is r0 = 0. p̂0 is the

quasi-likelihood estimate of the nuisance parameter p when r = r0. In other words, p = p̂0 is

the solution of

Up(r0, p) = [DT
p Σ−1(Y − µ)]r=r0 = 0 (3)

subject to constraints (1), assuming that there is exactly one such solution. Because we

cannot derive a closed-form solution for equation (3), we obtain p̂0 by use of the Newton-

Raphson method with Fisher scoring as presented by McCullagh and Nelder (1989) for the

quasi-likelihood framework. p̂0 is obtained by iterating

p̂i+1
0 = p̂i

0 + [(D̂T
p Σ̂−1D̂p)

−1D̂T
p Σ̂−1(Y − µ̂0)]p=p̂i

0
(4)
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until convergence occurs. Here, p̂i
0 is the approximation to p̂0 at step i, Σ̂ , D̂p and µ̂0 are

computed at r = 0 and p = p̂i
0. To reduce the number of iterations before convergence, we

start the iteration procedure with p̂1
0 equal to the best linear unbiased estimator (BLUE) of

p proposed by McPeek et al. (2004). This estimator is based on allele information and does

not make use of the additional information of genotypes, i.e. which alleles are paired within

the individuals. Finally,

WQL−HW = (Y − µ̂0)
T Σ̂−1D̂r

[
D̂T

r Σ̂−1D̂r

−D̂T
r Σ̂−1D̂p(D̂

T
p Σ̂−1D̂p)

−1D̂T
p Σ̂−1D̂r

]−1
D̂T

r Σ̂−1(Y − µ̂0) (5)

where Σ̂ , D̂p , D̂r and µ̂0 are evaluated at r = 0 and p = p̂0. As demonstrated in Heyde

(1997), under the null hypothesis, the quasi-score statistic should follow a χ2 distribution

with 1 df provided that Var0(U)−1/2U ∼ MVN (0, I) under the null hypothesis. We tested

the accuracy of the χ2 approximation to the null distribution of WQL−HW (see the Null

distribution section).

To efficiently perform the calculations required in equation (4), at each step, we take the

Cholesky decomposition of Σ̂, i.e. we find an upper triangular matrix B such that BTB = Σ̂,

using an algorithm that simultaneously computes b0 = B−T D̂p and b1 = B−T (Y − µ̂0) at

little extra cost (Graybill 1976). Then equation (4) becomes p̂i+1
0 = p̂i

0 + (bT
0 b0)

−1bT
0 b1, where

bT
0 b0 is an [(a−1)×(a−1)] matrix, also inverted using its Cholesky decomposition. WQL−HW

is computed with a similar technique in equation (5).

We conclude this section by describing the form of the QL-HW test statistic in the case

of N individuals belonging to F independent families. For each f , 1 ≤ f ≤ F , let Nf

be the number of sampled individuals in family f , and let Yf , µf , Dpf , Drf and Σf be the
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vectors or matrices previously described but restricted to the Nf members of family f . Allele

frequencies are then computed using equation (4) where D̂T
p Σ̂−1D̂p =

∑F
f=1 D̂T

pfΣ̂
−1
f D̂pf and

D̂T
p Σ̂−1(Y − µ̂0) =

∑F
f=1 D̂T

pfΣ̂
−1
f (Yf − µ̂0f ). Similarly WQL−HW is computed using equation

(5) where all terms of the form XT Σ̂−1B (where X and B are either vectors or matrices) in

the formula are computed as XT Σ̂−1B =
∑F

f=1 XT
f Σ̂−1

f Bf .

Generalized corrected χ2 test for HW (GCC-HW test)

As the number of alleles per locus and the number of individuals in a family increase, the

calculations of the Cholesky decompositions required in (4) and (5) become much more com-

putationally intensive. In practice, with this method, we were not able to analyze Hutterite

samples of 400 individuals for loci with more than 5 alleles. To overcome this limitation,

we developed an alternative test, the Generalized Corrected Chi-squared test for Hardy-

Weinberg (GCC-HW test), which is computationally simpler than the QL-HW test and

therefore suitable for an even wider set of situations (larger samples, larger number of alleles

per locus). For outbred samples in the bi-allelic case, the GCC-HW test is the Pearson’s

goodness-of-fit χ2 test for HW (Gof-HW) corrected using the variance that appropriately ac-

counts for inter-individual correlations. In inbred samples or when considering multi-allelic

loci, the GCC-HW test is a generalization of this approach. We start by presenting this

alternative test in the case of a bi-allelic locus in an outbred sample with related individuals

and present its general expression in a second step. We then clarify how it differs from the

QL-HW test.
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Special case : Corrected χ2 test for HW for bi-allelic loci in outbred samples

with related individuals

Let us first consider a bi-allelic locus genotyped in an outbred sample with independent

individuals. In this case, the QL-HW test is the same as the Gof-HW test which can be

written as : Gof-HW = 1
N

[Np̂2
n−N11

p̂n(1−p̂n)
]2 where Nij is the observed count for genotype ij and p̂n

is the allele frequency estimate of allele 1 obtained by naive counting (p̂n = 2N11+N12

2N
).

We next give an equivalent form for Gof-HW in terms of a vector-valued function

S(r, p) =




Sr(r, p)

Sp(r, p)




which can be left unspecified except that is has the property that

S(r0, p) =




DT
r K−1(Y − µ0)

DT
p K−1(Y − µ0)




where r0 = 0. Here Dr, Dp, Y and µ0 are the vectors and matrix described in the section

Quasi-score test for Hardy-Weinberg Equilibrium. K is the [(M−1)N×(M−1)N ] covariance

matrix of Y . Because all the individuals are outbred and independent, K is a block-diagonal

matrix with K = IN ⊗Kind where Kind is a 2×2 matrix whose entries depend only on p and

are given in the first part of Table 2. It turns out that the Gof-HW test is equal to Wχ2
HW

where

Wχ2
HW

= (ŜT
r [v̂ar0(S)−1]rrŜr) (6)

Here, Ŝr is computed at (r, p) = (r0, p̂0). p = p̂0 is the solution of Sp(r0, p) = 0 and is actually

equal to p̂n. [v̂ar0(S)−1]rr denotes the (r, r) entry of var(S)−1 computed at (r, p) = (r0, p̂0).

It is actually equal to 1/N .
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One way to extend (6) so that it is valid when the individuals are related, is to consider the

same S(r, p) function (with K = IN ⊗Kind, thus neglecting the inter-individual correlations)

and to recompute [v̂ar0(S)−1]rr to take the inter-individual correlations into account. We have

var0(Y ) = Σ, with elements given in Table 2, where all hi = 0 in this case. Using v̂ar0(S) =

Ê0(SST ) and noting that DT
r K−1Dp = 0 for outbred individuals, we get [v̂ar0(S)−1]rr =

[D̂T
r K̂−1Σ̂K̂−1D̂r]

−1, where Σ̂, K̂ and D̂r are computed at (r, p) = (r0, p̂0) (here again,

p̂0 = p̂n). We assess the accuracy of the χ2 approximation to the null distribution of this

corrected chi-squared statistic (WCC−HW ) statistic in the Null distribution section.

General form of GCC-HW test

There does not appear to be a Pearson’s χ2 test corresponding to the HED model for multi-

allelic loci. Furthermore, in the case of inbreeding, while one can extend the Gof-HW test to

allow for a mean level of inbreeding, it does not take into account the different inbreeding

coefficients for different individuals. To generalize the WCC−HW statistic, we consider the

following framework. Let C(r, p) =
(

Cr

Cp

)
and define

(
r̂
p̂

)
to be the solution of C(r, p) = 0

subject to constraints (1) and (2), assuming that there is exactly one such solution. Though

the framework is more general, we consider here C of the form

Ci = DT
i L−1(Y − µ) with i = r, p , µ = E(Y ) and Di = ∂µ/∂i , (7)

for some invertible matrix L that may depend on r and p, with Di, L and µ not depend-

ing on Y . Assume that
(

r̂
p̂

)
is consistent for the parameters

(
r
p

)
of the HED model and is

asymptotically normal. Following the arguments used by Cox and Hinkley (1974, chapter

9) to derive the score test, under certain regularity conditions, we consider the expansion of
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C(r, p) in a Taylor series about
(

r̂
p̂

)
:

C(r, p) ≈ C(r̂, p̂) + C ′(r̂, p̂)

(
r − r̂

p− p̂

)
≈ −E(C ′(r, p))

(
r̂ − r

p̂− p

)

where C ′(r, p) =




∂Cr

∂r
∂Cr

∂p

∂Cp

∂r
∂Cp

∂p


. Then,

(
r̂ − r

p̂− p

)
≈ −E(C ′(r, p))−1C(r, p) and (8)

var

(
r̂ − r

p̂− p

)
≈ E(C ′(r, p))−1var[C(r, p)]E(C ′(r, p))−1 (9)

Under the assumptions made on
(

r̂
p̂

)
,

W = (r̂ − r)T [var[

(
r̂ − r

p̂− p

)
]rr]

−1(r̂ − r) (10)

should have an asymptotic χ2 distribution with dim(r) degrees of freedom. Here var[
(

r̂−r
p̂−p

)
]rr

is the (r, r) entry of var
(

r̂−r
p̂−p

)
. To test the null hypothesis r = r0, we plug in r = r0 in (10). p

is a nuisance parameter and we use its restricted estimator p̂0, where p = p̂0 is the solution

of Cp(r0, p) = 0, subject to constraints (1), assuming that there is exactly one such solution.

Under certain regularity conditions, this is asymptotically equivalent to the case when the

true p is used.

The WGCC−HW statistic has the general form defined in (10) where C(r, p) is given by (7)

with L set to K, the matrix defined in the subsection Special case: Corrected χ2 test for HW

for bi-allelic loci in outbred samples with related individuals. (r̂ − r) and [var[
(

r̂−r
p̂−p

)
]rr]

−1 are

approximated with, respectively, equations (8) and (9). Doing so, we can consider the same

HED model as the one used in the QL-HW test which allows a distinct hi for each individual,

by simply using for µ the model described in Table 1. To test for HW, we use r0 = 0. The K
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matrix used in C(r, p) is the covariance matrix of Y where the intra-individual correlations

are taken into account but where the inter-individuals correlations are neglected. Thus, K is

still a block diagonal matrix but with distinct matrix elements Ki of size (M − 1)× (M − 1)

whose entries depend on p and hi, and K−1 is a block-diagonal matrix with matrix element

K−1
i . We show in the Appendix that WGCC−HW reduces to WGCC−HW = Ĉ2

r

denGCC
where

Ĉr = Cr(r0, p̂0) and

denGCC =
[
D̂T

r K̂−1Σ̂K̂−1D̂r − 2D̂T
r K̂−1D̂p(D̂

T
p K̂−1D̂p)

−1D̂T
p K̂−1Σ̂K̂−1D̂r

+D̂T
r K̂−1D̂p(D̂

T
p K̂−1D̂p)

−1D̂T
p K̂−1Σ̂K̂−1D̂p(D̂

T
p K̂−1D̂p)

−1D̂T
p K̂−1D̂r

]
.(11)

computed at (r, p) = (r0, p̂0). In outbred samples, p̂0 corresponds to the naive counting

estimator in which allele frequencies are estimated by their observed proportions. In inbred

samples, Cp(r0, p) = 0 may not have a closed-form solution in which case, as we did for

the QL-HW test, we use the Newton-Raphson method: p̂0 is obtained by iteration using

equation (4) where Σ is replaced by K. We start the iteration procedure with p̂1
0 equal to

the BLUE (McPeek et al., 2004) computed under the pretense that all the individuals have

their correct inbreeding coefficients but are independent. Note that, because DT
r K−1Dp =

0 when considering a bi-allelic locus in an outbred sample, WCC−HW is a special case of

WGCC−HW . Whereas the computation of WQL−HW requires the Cholesky decomposition of

Σ, a covariance matrix of size [(M − 1)N × (M − 1)N ], the computation of WGCC−HW only

requires the Cholesky decompositions of the N Ki matrices of size [(M − 1)× (M − 1)]. It

is thus much less computationally intensive. Similarly to the WQL−HW quasi-score statistic,

we assess the accuracy of the χ2 approximation to the null distribution of WGCC−HW in the

Results section.
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When the N individuals belong to F independent families, WGCC−HW and p̂0 are com-

puted using the same formulas as in the 1-family case presented above but with all the terms

of the form XT K̂−1Σ̂K̂−1B computed as XT K̂−1Σ̂K̂−1B =
∑F

f=1 XT
f K̂−1

f Σ̂fK̂
−1
f Bf .

Explanation of the difference between QL-HW and GCC-HW

Because both have an appropriate variance correction, both the QL-HW and GCC-HW are

valid tests that are approximately χ2 distributed in sufficiently large samples under regularity

conditions. The difference is that, in the definition of GCC-HW, the matrix K is plugged in

for L in equation (7) while in the definition of QL-HW, the matrix Σ is plugged in for L.

This difference potentially affects the power of the statistics. For instance, by an argument

similar to that given in Bourgain et al. (2003), the QL-HW should be asymptotically more

powerful than GCC-HW for local alternatives (i.e. alternatives close to the null hypothesis)

under certain regularity conditions, assuming the HED model holds, and in fact, should be

asymptotically locally most powerful of all statistics of the type defined by equation (7). We

compare actual power of GCC-HW and QL-HW under simulated scenarios in the Results

section.

Null distribution and power study of the WQL−HW and WGCC−HW statistics

To test the accuracy of the χ2 approximation to the null distributions of the WQL−HW and

WGCC−HW statistics, we assessed their distributions under the null hypothesis using (i) a

sample of 30 outbred independent nuclear families with 2 parents and 2 sibs typed (sample

nuc), (ii) a sample of 456 individuals from 10 extended outbred genealogies (sample gaw)

and (iii) two samples of 611 (sample H1) and 306 (sample H2) Hutterites. The 10 extended

genealogies were simulated for the Genetic Analysis Workshop 12 (Almasy et al, 2001). The
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different genealogies are independent but the mean within-genealogy kinship coefficient is

0.0415 ([0.030-0.054]). The Hutterites are a North American religious isolate originating from

Tyrol whose entire population can be traced back to 90 ancestors in the 1700s/1800s. The

complete genealogy of the sample could be constructed from a ≥ 12, 000-person Hutterite

pedigree. This yielded a 1623-person pedigree that included all known ancestors of the indi-

viduals in samples H1 and H2. The 9 identity coefficients for all pairs of individuals, from

which the inbreeding coefficients can also be obtained, were computed using the efficient

algorithm implemented by Abney et al. (2000). Genotype information for a marker was sim-

ulated by randomly drawing alleles independently from the same allele frequency distribution

for (i) the parents of the nuclear families or for (ii) the founders of the 10 genealogies or

for (iii) the founders of the 1623-person pedigree. Mendelian transmission of these alleles

was then simulated in (i) the nuclear families, (ii) the 10 genealogies or (iii) throughout the

1623-person pedigree. The validity of the χ2 null distribution for WQL−HW and WGCC−HW

was assessed by comparing the proportion of simulations showing a statistic whose value is

greater than the χ2 threshold for a nominal type I error and the value of this nominal type

I error. For the outbred nuc and gaw samples, the empirical type I error of the classical

Gof-HW test was also assessed, using either the χ2 distribution or a permutation procedure

(where alleles are randomly reassigned to genotypes 5000 times) to obtain significance.

For the Hutterite samples, in addition to the χ2 approximation, we also had to develop

a parametric bootstrap procedure to assess significance, as follows : for a given data set, we

estimated the allele frequencies (p̂data) using equation (4) (with Σ̂ for WQL−HW and K̂ for

WGCC−HW ) and computed the value of the statistic Wdata (either WQL−HW or WGCC−HW ).
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p̂data was then used to simulate 5000 replicates of the original data set under the null hy-

pothesis (following the procedure described in the previous paragraph). The statistic was

computed in each replicate. The empirical significance was assessed as the proportion of

simulated statistic values greater than Wdata. In principle one could double-check the type

I error of this parametric bootstrap procedure by doing a nested set of simulations, but we

did not attempt this for computational reasons.

Simulations were also used to assess power. Even though HW testing is mostly used to

identify potential genotyping errors in SNP studies, generating a genotyping error model

would also have created Mendelian incompatibilities. As Mendelian incompatibilities are

routinely checked before any other test, considering such a genotyping error model would

have implied evaluation of a combined Mendelian checking/HW testing approach, whereas

we wanted to focus solely on HW testing. Thus, we chose to consider a model without

Mendelian incompatibilities. Further, we required this model to be suitable for samples

with fixed genealogy. We simulated a selection pattern where the allele transmission from

parent to offspring is not equally likely for the two parental alleles (we retain independence

of children’s genotypes conditional on parents’ genotypes). For a bi-allelic marker a single

parameter 0 < s < 1 is required to describe our model. Table 4 gives the corresponding

transmission probabilities from parents to offspring as a function of s. Here, we considered

the situation where, for parental couples who are compatible with both homozygous and

heterozygous children, the probability that any given child is heterozygous is greater than

would be expected under Mendelian inheritance: s > 1
2
. Power was assessed in the samples

nuc, H1 and H2 using 5000 replicates. For the Hutterite samples, founders’ alleles were
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simulated assuming HWE in the founding population, with founding allele frequency taken

to be 0.5, 0.7 or 0.85. In the case of nuc, we assume that the families are sampled from a

population that is in a steady state for our selection model. We give in Table 5 the population

genotype frequencies corresponding to this steady state in an infinite-size population under

random mating. When s > 1
2
, the genotype frequency distribution only depends on s and

not on p (whatever the initial allele frequency, p = 0.5 in the steady state). The parental

genotypes of the nuc families were sampled independently from the steady state genotype

distribution for various choices of s > 0.5. In such a nuclear family sampling scheme, the

classical Gof-HW test would only consider the 60 independent parents. To measure the gain

in power obtained while using QL-HW on the global sample instead of the Gof-HW test on

the parent sample, we derived analytically the power of the Gof-HW test using a non-central

χ2 distribution.

Analysis of bi-allelic markers

We used the WQL−HW statistic to test for HW in a set of 143 bi-allelic markers in 82 genes

that were genotyped in samples of Hutterites. A variety of genotyping methods were used

: multiplex PCR and immobilized probe linear array system (LAS) (Mirel et al., 2002) for

48 markers (34%), single base extension with fluorescent polarization (SBE-FP) (Chen et

al. 1999) for 44 markers (31%), dot blot with allele-specific oligos (Ober et al. 2000) for 26

markers (18%), restriction fragment length polymorphism analysis (RFLP) for 13 markers

(9%), size separation on acrylamide gel for 9 insertion/deletion (in/del) polymorphisms (6%),

allele-specific (AS) PCR for 1 marker (0.7%), SSCP (Gonen et al. 1999) for 1 marker (0.7%),

and denaturing high performance liquid chromatography (DHPLC) (Oefner and Underhill
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1995) for 1 marker (0.7%). All markers were checked for Mendelian incompatibilities in the

general pedigree using PEDCHECK (O’Connell and Weeks 1998).

RESULTS

Null Distribution of the WQL−HW and WGCC−HW statistics

Table 6 presents the empirical type I error of the classical Gof-HW, WQL−HW and WGCC−HW

statistics in the outbred samples of nuclear families and in the extended outbred genealogies.

The classical Gof-HW test, whatever the significance procedure used, either the χ2 distribu-

tion or the permutation test, is anti-conservative. While the inflation in the type I error is

moderate in the nuclear families (type I error of 7% instead of 5%), it becomes substantial

in the extended GAW12 genealogies (type I error of 10%). In contrast, when the χ2 distri-

bution is used to assess significance of the WQL−HW or WGCC−HW statistics, the empirical

type I error lies within the 95% confidence interval of the nominal type I error (5%) for all 3

allelic distributions considered in the founders. In the two Hutterite samples (results shown

in Table 7), the empirical type I error for both the WQL−HW and WGCC−HW is smaller

than the nominal one. Use of the χ2 approximations to the null distributions of the statis-

tics would thus lead to conservative tests in the Hutterite sample. We note however that

when simulating a sample consisting of 10 independent copies of the 1623-person Hutterite

pedigree and running the two statistics on a sample of 6110 Hutterites (10 times sample

H1), the empirical type I error for a bi-allelic locus with frequency 0.5 in the founders is not

statistically different from the nominal one when assuming a χ2 distribution. Similarly, when

considering only 2 outbred genealogies out of the 10 from the gaw sample (corresponding to
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106 individuals deriving from 41 founders), the χ2 distribution provides valid type I errors

for both the WQL−HW and the WGCC−HW tests. The asymptotic conditions required for the

WQL−HW and WGCC−HW to have a χ2 distribution under the null hypothesis should thus

be met in most samples, except in the extreme case where all the individuals belong to a

single inbred pedigree. In this case, the central limit theorem either may not apply or may

require a larger sample size to be a good approximation, and the test may be conservative.

We give in Table 7 the thresholds corresponding to a 5% nominal type I error, for 3 different

allelic distributions, in the two Hutterite samples. These thresholds vary with sample sizes

and allele frequencies. We would thus recommend use of empirical p-values obtained by the

parametric bootstrap (as described in the Methods section), for samples in which all the

individuals come from a single inbred pedigree.

Power of the WQL−HW and WGCC−HW statistics

Figure 2 displays the power of WQL−HW in the nuc sample (30 nuclear families) for values

of s varying between 0.5 and 0.75, where power was computed using the χ2 approximation.

Figure 2 also displays the power of the Gof-HW test in the sample of 60 independent

parents that can be extracted from the nuclear families. The gain in power obtained while

using WQL−HW instead of Gof-HW can be substantial: when s = 0.65, the power of WQL−HW

is 79% instead of 55% for the Gof-HW test. There is still a noticeable increase in power at

more realistic values of s close to 0.5. The power of WGCC−HW was also computed for the

nuc sample, but it is not shown in the plot as the results were almost indistinguishable from

those for WQL−HW . Thus, the simpler WGCC−HW appears to be approximately as powerful

as the WQL−HW in this sampling scheme. Because they allow one to use all the information
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available in the families and thus to increase the sample size, the QL-HW and GCC-HW

tests may significantly enhance the power to detect HWD when familial data are available.

In the Hutterite sample, founder genotypes are not available, so the Gof-HW test in founders

cannot be performed. Thus, we compare power only for the WQL−HW and WGCC−HW tests.

In order to see a power difference between the two tests, we set s = 0.6, even though this

value is probably unrealistically high for selection in a human population. Table 8 displays

the results, where significance is assessed using a correct 5% nominal threshold obtained by

simulation under the true model (the thresholds are shown in Table 7). For the purpose of

simulation studies, this method of assessing significance was used because it is much faster

than the parametric bootstrap that we use in the real data examples. Because the same

method is used with both statistics, we expect this to have a negligible impact on the power

comparison. The WQL−HW performs slightly better than the WGCC−HW in the Hutterite

samples, however the power difference between the two tests is quite small. Thus, use of

WGCC−HW instead of WQL−HW in situations in which WQL−HW cannot be computed (e.g.

a highly polymorphic marker in a pedigree with many individuals typed) should not have

too strong an impact on power. Conversely, WQL−HW should be preferred when computable.

Note that the power of both methods in the Hutterite samples is expected to increase when

the allele frequency gets closer to 0.5. Indeed, as can be seen from Table 4, our model is

such that selection only acts when there is at least one heterozygous parent. When the allele

frequency gets closer to 0.5, the proportion of heterozygous parents increases and the impact

of selection increases as a result.
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Marker testing for HWE in the Hutterites

The results for the 14 markers, out of the 143 bi-allelic markers tested, that showed an

associated p-value smaller than 5% by the WQL−HW are shown in Table 8. Four of these

markers (HLA-G 689, LTA 26, OR12D2 2, OR2H3 587) are located within the HLA region,

which has been associated with homozygous deficiencies in this population (Robertson et

al. 1999). The genotyping methods used to type the 14 markers in Table 8 were not very

different than those used to type the 143 markers except that the only marker typed with

allele-specific PCR was among the 14 markers with a p-value ≤ 0.05, markers typed by

LAS were underrepresented (34% of all markers but only 14% of the markers with a p-

value ≤ 0.05) and markers typed by dot blot were overrepresented (18% of all markers but

28% of the markers with a p-value ≤ 0.05) (see Figure 2). Thus, it is unlikely that any

particular genotyping method was more error-prone or contributing disproportionately. We

further investigated the genotyping history of these 14 markers. Two markers, HLA-G 689

and OR12D2 2 produced an excess of Mendelian errors and had already been either discarded

(for OR12D2 2) or retyped using another method (for HLA-G 689). Two additional markers,

PSG4 1 and PLAUR 210 had a high rate of ambiguous genotypes. Overall, it is likely that

the deviations from HWE for these 4 markers were due to genotyping errors, although only

two were previously identified as problematic by Mendelian error checking.

Finally, the remaining 10 markers with a p-value ≤ 0.05 out of 143 (6.9%) represent

slightly more than what is expected just by chance (but the observed proportion is not sig-

nificantly different from 5% at the 5% level). Given that the p-values associated with each

of these 10 markers are not dramatically small and that we had at least one other marker
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typed in 9 of these genes that was not significant, we believe that the small deviations from

expectation in these 9 genes might be due to chance. We can not rule out however, that

these departures reflect the real action of evolutionary forces.

DISCUSSION

We demonstrated in this paper that the classical Gof-HW test has inflated type I error in

samples with related individuals when significance is assessed either with a χ2 approximation

or with a permutation test. Sing et al. (1975) previously discussed the problem of testing for

HWE in small human populations with non-negligible correlations among the individuals.

Whereas they proposed to correct the expectation of the χ2 in a very particular case of

correlation among the observations, we propose in this paper a general approach suitable for

any sample with related individuals provided that their genealogy is known. Our QL-HW test

models the correlation between the two alleles of each individual due to the pedigree structure

and, by making use of the quasi-likelihood framework, takes into account the correlations

among the individuals in the construction of the test.

We chose to base our test on the model of heterozygote excess or deficiency studied by

Rousset and Raymond (1995), and we extended it to allow a different inbreeding coefficient

for each individual in the sample. In the context of SNP studies, where deviations from

HWE are likely to result from genotyping errors, our model is very general in allowing for

deviations from HWE. For multi-allelic markers, our model specifically tests for an excess

or a deficiency of homozygosity. A primary reason for choosing such a model is parsimony.

Furthermore, it is motivated by previous findings using microsatellites in which excess of
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all kinds of heterozygotes has been observed, in particular in the HLA region (Ober et al.

1997, Robertson et al. 1999). This model is also relevant for detection of genotyping errors.

Indeed, as noted by Sobel et al. (2002), when automated software or trained technicians

genotype by scoring bands on a gel, the most common error is false homozygosity. An error

occurs in this case when an allele amplifies insufficiently or a band falls outside a prescribed

range. In addition, these authors also discuss the possibility of false heterozygosity when a

stutter band is misinterpreted as a second allele. Thus, we expect our model to be useful for

detecting genotype errors in the cases of both SNPs and multi-allelic markers. Alternatively,

a model involving more parameters could be incorporated into our quasi-likelihood score test

framework, if the available evidence favored such a model.

We also propose a simpler alternative test, the GCC-HW test, to be used when the QL-

HW test might not be computationally feasible, for instance in the case of highly polymorphic

loci in large inbred pedigrees. We found that for a variety of study designs, ranging from

many nuclear families to two or more extended genealogies, the χ2 approximation to the

null distributions of both the QL-HW and the GCC-HW were very accurate. It was only in

the extreme case of a single large inbred pedigree that the tests were rather conservative.

In that case, we recommend to use parametric bootstrap to assess significance. Further, we

showed that the use of the GCC-HW test in place of the QL-HW test has only a very minor

effect on the power to detect deviation from HWE. Finally, we illustrated on nuclear family

data how the QL-HW test can improve the power to detect departure from HWE over the

classical Gof-HW test.

We believe that, by making the HWE test available for a larger variety of samples and
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by increasing sample sizes through the inclusion of related individuals that are typically

discarded, both the QL-HW and GCC-HW tests are of crucial interest in several relevant

situations for geneticists. In particular, as illustrated by the data analysis presented here,

HWE testing is an additional tool for genotyping error detection. Indeed, of the 4 markers

with HWD and strong suspicion of typing errors after scrupulous checking, only 2 had been

previously detected by regular Mendelian error checking. We would thus strongly recommend

that HW tests be routinely performed for detecting genotyping errors, particularly while

working with SNPs. Finally, used very cautiously, the QL-HW and GCC-HW tests could

also be considered as possible tools to detect association in samples with related individuals.
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31

APPENDIX

Expression of WGCC−HW

To derive WGCC−HW , we need to evaluate (r̂ − r) and [var
(

r̂−r
p̂−p

)
rr

]−1 at (r, p) = (r0, p̂0)

using respectively approximations (8) and (9), which require the computation of A ≡

Ê[C ′(r, p)]−1
(r0,p̂0) and B ≡ v̂ar[C(r, p)](r0,p̂0). We use the notation A = −

(
αrr,αrp

αT
rp,αpp

)
, A−1 =

−
(

αrr,αrp

αrpT ,αpp

)
and B =

(
βrr,βrp

βT
rp,βpp

)
. It follows from (7) with L = K, that αrr = D̂T

r K̂−1D̂r,

αrp = D̂T
r K̂−1D̂p, αpp = D̂T

p K̂−1D̂p, βrr = D̂T
r K̂−1Σ̂K̂−1D̂r, βrp = D̂T

r K̂−1Σ̂K̂−1D̂p and

βpp = D̂T
p K̂−1Σ̂K̂−1D̂p. Because Cp(r0, p̂0) = 0 and letting Ĉr = Cr(r0, p̂0), then (8) im-

plies that (r̂ − r)|(r0,p̂0) ≈ αrrĈr. Similarly, (9) implies v̂ar[
(

r̂−r
p̂−p

)
]rr|(r0,p̂0) = αrrβrrα

rr +

2αrpβT
rpα

rr + αrpβppα
rpT . Note that αrr = α−1

rr [1 + αrpJαT
rpα

−1
rr ] and αrp = −α−1

rr αrpJ where

J = [αpp − αT
rpα

−1
rr αrp]

−1. Plugging these expressions in (10) gives, after some algebra, the

final expression of denGCC given in (11).
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Notations

N : number of individuals in the sample
a : number of distinct alleles at the locus
M : number of possible distinct genotypes
hi : inbreeding coefficient of individual i

∆ij
k : kth identity coefficient between individuals i and j

pk : frequency of allele k
r : fixation index
Y = (Y1, . . . , YN) : N(M − 1) vector of genotype indicators
µ = (µ1, . . . , µN) : N(M − 1) vector of genotype indicator expectations

Dp : [N(M − 1)× (a− 1)] matrix with kth column equal to ∂µ
∂pk

Dr : N(M − 1) vector equal to ∂µ
∂r

p = (p1, . . . , p(a−1)) : vector of the (a− 1) independent allele frequencies
Σ : [N(M − 1)×N(M − 1)] covariance matrix of Y when r = 0
K : Σ in the absence of inter-individual correlations
p̂0 : estimate of p when r = 0

D̂p, D̂r, µ̂0, Σ̂, K̂ : Dp, Dr, µ, Σ, K computed at r = 0 and p = p̂0
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Table 1 Definition of the model chosen for E(Y ) = µ in the case of a locus with a different
alleles. hi is the inbreeding coefficient of individual i, pk is the frequency of allele k, r is the
fixation index.

Genotype E(Yi,g) = µig

k/k (1− hi − r)p2
k + (hi + r)pk

a/a (1− hi − r)(1−∑a−1
j=1 pj)

2 + (hi + r)(1−∑a−1
j=1 pj)

k/l 2(1− hi − r)pkpl

a/l 2(1− hi − r)pl(1−∑a−1
j=1 pj)
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Table 2 Expressions for the covariances among the genotype indicators Yi,g

Covariances between indicators of genotypes g1 and g2 in individual i

Genotypes cov(Yi,g1 , Yi,g2)

g1 g2 = g1 µ0
i,g1

(1− µ0
i,g1

)∗

g1 g2 6= g1 −µ0
i,g1

µ0
i,g2

Covariances between indicators of genotype g1 in individual i and genotype g2 in individual j

g1 g2 cov(Yi,g1 , Yj,g2)

k/k k/k pk∆
ij
1 + p2

k(∆
ij
2 + ∆ij

3 + ∆ij
5 + ∆ij

7 ) + p3
k(∆

ij
4 + ∆ij

6 + ∆ij
8 ) + p4

k∆
ij
9 − µ0

i,k/kµ
0
j,k/k

k/k l/l pkpl∆
ij
2 + pkp

2
l ∆

ij
4 + p2

kpl∆
ij
6 + p2

kp
2
l ∆

ij
9 − µ0

i,k/kµ
0
j,l/l

k/k k/l ∆ij
3 pkpl + 2∆ij

4 p2
kpl + ∆ij

8 p2
kpl + 2∆ij

9 p3
kpl − µ0

i,k/kµ
0
j,k/l

k/k l/m 2∆ij
4 pkplpm + 2∆ij

9 p2
kplpm − µ0

i,k/kµ
0
j,l/m

k/l l/l ∆ij
5 pkpl + 2∆ij

6 pkp
2
l + ∆ij

8 pkp
2
l + 2∆ij

9 pkp
3
l − µ0

i,k/lµ
0
j,l/l

k/m l/l 2∆ij
6 pkpmpl + 2∆ij

9 pkpmp2
l − µ0

i,k/mµ0
j,l/l

k/m k/m 2∆ij
7 pkpm + ∆ij

8 (p2
kpm + pkp

2
m) + 4∆ij

9 p2
kp

2
m − µ0

i,k/mµ0
j,k/m

k/m k/l ∆ij
8 pkpmpl + 4∆ij

9 p2
kpmpl − µ0

i,k/mµ0
j,k/l

k/m b/l 4∆ij
9 pkpmpbpl − µ0

i,k/mµ0
j,b/l

*: The expressions for µ0
i,g, expectation of Yi,g under the null, are given in Table 1 setting r = 0.
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Table 3 Expressions for ( ∂µ
∂pk

) and for (∂µ
∂r

) in the case of a locus with a different alleles.

Genotype ∂µig/∂pk ∂µig/∂r

k/k hi + r + 2(1− hi − r)pk pk(1− pk)

l/l 0 pl(1− pl)

a/a −2(1− hi − r)(1−∑a−1
j=1 pj)− hi − r (1−∑a−1

j=1 pj)
∑a−1

j=1 pj

k/l 2(1− hi − r)pl −2pkpl

m/l 0 −2pmpl

a/l −2(1− hi − r)pl −2pl(1−∑a−1
j=1 pj)

a/k 2(1− hi − r)(1−∑a−1
j=1 pj − pk) −2pk(1−∑a−1

j=1 pj)
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Table 4 Parent/offspring transmission model used to mimic selection in the power compu-
tations

Parental genotypes (Gp) Offspring genotype (Go) Pr(Go|Gp)*

ii x ii ii 1
ii x jj ij 1
ii x ij ii 1-s

ij s
ij x ij ii (1-s)/2

jj (1-s)/2
ij s

*:probability of offspring genotype conditional on parental genotypes
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Table 5 Steady state genotype frequencies for the selection model presented in Table 4 un-
der random mating, for a bi-allelic locus, as a function of s and of the initial allele frequency
p.

genotypes 11 12 22

s = 1/2 p2 2p(1− p)2 (1− p)2

s > 1/2
− 1

2
+ 1

2
a

1−2s
2(1−s)−a

1−2s

− 1
2
+ 1

2
a

1−2s

s < 1/2

p = 1/2
− 1

2
+ 1

2
a

1−2s
2(1−s)−a

1−2s

− 1
2
+ 1

2
a

1−2s

p < 1/2 0 0 1
p > 1/2 1 0 0

with a =
√

4s2 − 6s + 3.
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Table 6 Empirical type I error of the classical χ2 goodness-of-fit test for HWE (Gof-HW)
with significance assessed using either the χ2 distribution or a permutation procedure, and of
the WQL−HW and WGCC−HW statistics with significance assessed using the χ2 distribution,
for a 5% nominal type I error. Estimates based on 5,000 simulations in a sample of 30 out-
bred nuclear families (nuc) and in a sample of 456 individuals from 10 extended genealogies
of the GAW12.

Statistic Gof-HW WQL−HW WGCC−HW

Significance with χ2-distribution permutation χ2-distribution

Nuclear families
Allele frequency

0.50 0.073 0.075 0.051 0.052
0.70 0.072 0.074 0.053 0.053
0.85 0.070 0.073 0.046 0.044

GAW12 genealogies

0.50 0.103 0.102 0.050 0.049
0.70 0.099 0.102 0.052 0.049
0.85 0.086 0.094 0.047 0.042
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Table 7 Empirical type I error of the WQL−HW and WGCC−HW statistics for a 5% nominal
type I error and 5% corrected threshold, in 2 different Hutterite samples : H1 (611 individ-
uals) and H2 (306 individuals). Estimates based on 5,000 simulations .

Allele frequency∗ Empirical type I error 5% corrected threshold∗∗

statistic WQL−HW WGCC−HW WQL−HW WGCC−HW

sample H1 H2 H1 H2 H1 H2 H1 H2

0.50 0.017 0.029 0.020 0.026 2.61 3.00 2.83 3.00
0.70 0.017 0.015 0.014 0.024 2.55 2.71 2.58 2.85
0.85 0.008 0.018 0.003 0.009 2.21 2.59 1.88 2.18

*: allele frequency distribution from which the alleles of the pedigree founders are drawn
**:uncorrected threshold is 3.84
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Table 8 Power of the WQL−HW and WGCC−HW statistics for different allele frequency dis-
tributions in two Hutterite samples (H1 and H2) with s = 0.60. Nominal type I error of 5%.
Estimates based on 5,000 simulations.

sample H1 H2
allele frequency∗ 0.5 0.7 0.85 0.5 0.7 0.85

WQL−HW 0.92 0.88 0.76 0.78 0.76 0.63
WGCC−HW 0.90 0.88 0.76 0.78 0.73 0.62

*: allele frequency distribution from which the alleles of the pedigree founders are drawn
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Table 9 Results of the WQL−HW test in the Hutterites for the 14 bi-allelic markers with an
associated empirical p-value ≤ 0.05. Genotyping methods and dbSNP rs numbers are shown.

marker genotyping rs sample allele WQL−HW

name method number size frequency p-value

PLAUR 210∗ dot blot1 RS2302524 604 0.85 0.0002
PON1 55 LAS2 RS85460 646 0.74 0.003
PSG4 1∗ dot blot1 RS4028448 306 0.52 0.015
C5 802 SBE-FP3 RS17611 394 0.51 0.015
ZFR 1 SBE-FP3 RS714932 758 0.67 0.023
IL4R -3223 AS PCR4 RS2057768 413 0.68 0.027
LTA 26+ LAS2 RS1041981 671 0.83 0.028
NIDDM1 43 dot blot1 RS3792267 675 0.68 0.034
ESE-3 50834 in/del5 RS4987414 504 0.51 0.036
IL4R 1597 dot blot1 RS15987825 410 0.56 0.036
OR12D2 2∗+ SBE-FP3 — 632 0.52 0.039
HLA-G 689∗+ SBE-FP3 RS2735022 679 0.56 0.041
ZFR 3 RFLP6 RS889318 681 0.66 0.042
OR2H3 587+ SBE-FP3 RS3129034 672 0.71 0.043

* indicates markers for which genotyping errors are suspected; + indicates markers in the HLA region. Exact
p-values are computed with 5000 simulations. 1: multiplex PCR and immobilized probe linear array system,
2: dot blot with allele-specific oligos, 3: single base extension with fluorescent polarization, 4: allele-specific
PCR, 5: size separation on acrylamide gel, 6: restriction fragment length polymorphism analysis
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Figure Legend

Figure 1 : 15 possible identity states for individuals A and B, grouped according to their
nine condensed states. Lines indicate alleles that are IBD (from Abney et al., 2000).

Figure 2 : Power of the QL-HW test in 30 nuclear families (plain line) and power of the
Gof-HW test in the corresponding parent sample (dotted line), as a function of s, for a 5%
type I error.

Figure 3 : Proportion of markers typed with the 8 different genotyping methods for the
set of 143 SNPs tested (plain bars) and for the 14 SNPs with an associated p-value ≤ 0.05
(white bars)
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Figure 1:
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Figure 2:
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Figure 3:
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