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Abstract

We investigate asymptotic properties of partial sums and sample covariances for lin-

ear processes whose innovations are dependent. Central limit theorems and invariance

principles are established under fairly mild conditions. Our results go beyond earlier ones

by allowing a quite wide class of innovations which includes many important non-linear

time series models. Applications to linear processes with GARCH innovations and other

non-linear time series models are discussed.

1 Introduction

Let {εt}t∈Z be independent and identically distributed (iid) random elements and F be a

measurable function such that

at = F (. . . , εt−1, εt) (1)

is a well-defined random variable. Then {at}t∈Z is a stationary and ergodic infinite-order

nonlinear moving average process. Assume that at has mean 0, finite variance and that

{ψi}i≥0 is a sequence of real numbers such that
∑∞

i,j=0 |ψiψjE(a0ai−j)| < ∞. Then the

linear process

Xt =
∞∑
i=0

ψiat−i (2)

exists and E(X2
t ) < ∞. In this paper we consider asymptotic distributions of the prop-

erly normalized partial sum process Sn =
∑n

i=1 Xi and the sample covariances γ̂h =∑n
t=1 XtXt+h/n, h ≥ 0. We will establish an invariance principle for the former and a

central limit theorem (CLT) for γ̂h. Such results are important and useful in statistical

inference of stationary processes.

1E-mail address: wbwu,wmin@galton.uchicago.edu
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In the classical time series analysis, the innovations {at}t∈Z in the linear process Xt are

often assumed to be iid; see for example Brockwell and Davis (1991) and Box and Jenkins

(1976). In this case asymptotic behaviors of the sample means and partial sum processes

have been extensively studied in the literature. It would be hard to compile a complete

list. Here we only mention some representatives: Davydov (1970), Gorodetskii (1977),

Hall and Heyde (1980), Phillips and Solo (1992), Yokoyama (1995) and Hosking (1996).

See references therein for further background. There are basically two types of results. If

the coefficients ψt are absolutely summable, then the covariances of Xt are summable and

we say that Xt is short-range dependent (SRD). Under SRD, the normalizing constant for

the sum
∑n

i=1 Xi is
√

n, which is of the same order as that in the classical CLT for iid

observations. When the coefficients ψt are not summable, then Xt is long-range dependent

(LRD) and the normalizing constant for
∑n

i=1 Xi is typically larger than
√

n. Fractional

ARIMA model (Hosking, 1981) is an important class which may exhibit LRD. Asymptotic

normality for sample covariances has also been widely discussed; see for example, Box

and Jenkins (1976), Hannan (1976), Hall and Heyde (1980), Giraitis and Surgailis (1990),

Brockwell and Davis (1991), Phillips and Solo (1992) and Hosking (1996).

The asymptotic problem of partial sums and sample covariances becomes more difficult

if dependence among at is allowed. Recently, fractional ARIMA (FARIMA) processes with

GARCH innovations have been proposed to model some econometric time series. The

former feature allows LRD and the latter one allows that the conditional variance can

change over time, namely heteroscedasticity. Financial time series often exhibit these two

features. Hence FARIMA models with GARCH innovations provide a natural vehicle for

modelling processes with such features; see Baillie, Chung and Tieslau (1995), Hauser and

Kunst (2001) and Lien and Tse (1999).

Romano and Thombs (1996) point out that the traditional large sample inference on

autocorrelations under the assumption of iid innovations is misleading if the underlying

{at} are actually dependent. Results so far obtained in this direction require that at are

m-dependent (Dianana, 1953) or martingale differences (Hannan and Heyde, 1972). Re-

cently, Wang, Lin and Gulati (2002) consider invariance principles for iid or martingale

differences at. However, the proof in the latter paper contains a serious error [cf Re-

mark 1]. Chung (2002) considers long-memory processes under the assumption that at are

martingale differences with a prohibitively strong restriction [cf. (18)] that exclude the
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widely-used ARCH models.

In this paper, we shall apply the central limit theory and the idea of martingale ap-

proximations developed in Woodroofe (1992) and Wu and Woodroofe (2003) to obtain

asymptotic distributions of the sample means and covariances of (2) under sufficiently

mild conditions. Our results go beyond earlier ones by allowing a large class of important

nonlinear process at, which substantially weakens the iid or martingale differences assump-

tions. In particular, our conditions are satisfied if at are the GARCH, random coefficient

AR, bilinear AR and threshold AR models etc.

The goal of the paper is twofold: the first one is to obtain asymptotic distributions of X̄n

and γ̂h which are certainly needed for statistical inferences of such processes. The second

major goal is to introduce another type of dependence structure as well as to provide a

unified methodology for asymptotic problems in econometrics models based on martingale

approximations. With our dependence structure, martingales can be constructed which

efficiently approximate the original sequences. Based on such martingale approximations,

we can apply celebrated results in martingale theory such as martingale central limit

theorems (MCLT) and martingale inequalities. The proposed dependence structure only

involves the computation of conditional moments and it is easily verifiable. This feature is

quite different from strong mixing conditions which might be too restrictive and hard to

be verified. On the other hand, our condition is sufficiently mild as well. Recently Wu and

Mielniczuk (2002), Hsing and Wu (2003), Wu (2003a, 2003b) apply the idea of martingale

approximations and solve certain open asymptotic problems.

The paper is organized as follows. Main theorems are stated in Section 2 and compar-

isons with earlier results are elaborated. Proofs are given in the Section 4. In Section 3 we

present applications to some nonlinear processes.

2 Results

Let Xt be the linear process defined by (2) and recall E(an) = 0; let Ft = (. . . , εt−1, εt)

be the shift process. Then Ft is a Markov Chain. For a random variable ξ define the

projections Ptξ = E(ξ|Ft)−E(ξ|Ft−1) and its Lp (p ≥ 1) norm by ‖ξ‖p = [E(|ξ|p)]1/p. Let

‖·‖ = ‖·‖2 and write ξ ∈ Lp if ‖ξ‖p < ∞. We say cn ∼ dn for two sequences {cn} and {dn}
if limn→∞ cn/dn = 1. For n ≥ 0 write An =

∑∞
i=n ψ2

i , Ψn =
∑n

i=0 ψi and B2
n =

∑n−1
i=0 Ψ2

i .
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Let Ψn = 0 for n < 0 and define

σ2
n =

∞∑
i=−n

(Ψn+i −Ψi)
2. (3)

Before we state our main results, we now introduce the basic concept of Lp weakly

dependence (cf Definition 1), which unlike strong mixing conditions, only involves the

estimation of the decay rate of conditional moments. On the other hand, it appears to

be very mild. In Section 3 we argue that many nonlinear time series models satisfy this

condition. More importantly, it provides a natural vehicle for the central limit theory

for stationary processes; see Woodroofe (1992) and Lemma 3 (Lemma 1 below) in Wu

(2003a). An interesting observation of Lemma 1 is that there is a close form for the

asymptotic variance in the limiting normal distribution.

Definition 1. The process Yn = g(Fn), where g is a measurable function, is said to be Lp

weakly dependent with order r (p ≥ 1 and r ≥ 0) if E(|Yn|p) < ∞ and

∞∑
n=1

nr‖P1Yn‖p < ∞. (4)

If (4) holds with r = 0, then Yn is said to be Lp weakly dependent.

Lemma 1. (Wu (2003a)) Let Yn = g(Fn) be L2 weakly dependent. Then
∑n

i=1(Yi −
EY1)/

√
n ⇒ N(0, ‖ξ‖2), where ξ =

∑∞
j=1P1Yj ∈ L2 and ⇒ denotes convergence in distri-

bution.

The intuition of the definition weakly dependence is that the projection of the “future”

Yn to the space M1 ªM0 = {Z ∈ Lp : Z is F1 measurable and E(Z|F0) = 0} has a

small magnitude. So the future depends weakly on the current states. If Yn are martingale

differences, then (4) is automatically satisfied for all r ≥ 0 if Y0 ∈ Lp.

Lemma 1 readily entails the following corollary for the process (2).

Corollary 1. Assume that an is L2 weakly dependent and

∞∑
i=0

|ψi| < ∞. (5)

Then
∑∞

t=1 ‖P1Xt‖ < ∞ and
∑n

t=1 Xt/
√

n ⇒ N(0, ‖ξ‖2), where ξ =
∑∞

t=1P1Xt.
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2.1 Invariance Principles

Let Wn(t), 0 ≤ t ≤ 1 be a continuous, piece-wise linear function such that Wn(t) =

Sk/‖Sn‖ at t = k/n, k = 0, . . . , n, and Wn(t) = Sk/‖Sn‖ + (nt − k)Xk+1/‖Sn‖ when

k/n ≤ t ≤ (k +1)/n. Let space C[0, 1] be the collection of all continuous function on [0, 1];

let the distance between two functions f, g ∈ C[0, 1] be ρ(f, g) = sup0≤t≤1 |f(t) − g(t)|.
Billingsley (1968) contains an extensive treatment of the convergence theory on C[0, 1].

Recall Ψn =
∑n

i=0 ψi for n ≥ 0, Ψn = 0 for n < 0 and B2
n =

∑n−1
i=0 Ψ2

i .

Theorem 1 asserts that the limiting distribution is the standard Brownian motion under

(6). The norming sequence has the form ‖Sn‖ = `∗(n)
√

n for some slowly varying function

`∗(n). If ψn decays sufficiently slowly, then (6) is violated and we may have fractional

Brownian motions (Mandelbrot and Van Ness, 1969) as limits. In Theorem 2 we assume

that the coefficients have the form ψn = `(n)/nβ for n ≥ 1, where 1/2 < β < 1 and ` is

a slowly varying function. Then ψn is not summable and norming sequences for Sn are

different.

Theorem 1. Assume that for some α > 2, {an} is Lα weakly dependent with order 1,

∞∑
i=0

(Ψn+i −Ψi)
2 = o(B2

n) (6)

and Bn → ∞. Then `∗(n) := ‖Sn‖/
√

n is a slowly varying function, Bn/
√

n ∼ `∗(n) ∼
|∑n−1

i=0 Ψi|/n and {Wn(t), 0 ≤ t ≤ 1} converges in C[0, 1] to the standard Brownian motion

W (t) on [0, 1].

Theorem 2. Let ψn = `(n)/nβ for n ≥ 1, where 1/2 < β < 1. Assume that an is

L2 weakly dependent with order 1. Then {Wn(t), 0 ≤ t ≤ 1} converges in C[0, 1] to the

standard fractional Brownian motion {WH(t), 0 ≤ t ≤ 1] with Hurst index H = 3/2− β,

and ‖Sn‖ ∼ σn‖η‖, with η =
∑∞

t=1P1at and σn defined in Lemma 3.

Invariance principle is a powerful tool in statistical inference of econometric time series

such as unit root testing problems, and it enables one to obtain limiting distributions

for many statistics. This problem has a substantial history. The celebrated Donsker’s

theorem asserts invariance principles for iid sequence of Xn. For dependent sequences, see

the survey by Bradley (1986) and Peligrad (1986) for strong mixing processes, McLeish

(1975, 1977) for mixingale sequences, Billingsley (1968) and Hall and Heyde (1980).
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In classical theory of invariance principles for linear processes, it is often assumed that

innovations {an} are iid or martingale differences; see Davydov (1970), Gorodetskii (1977),

Hall and Heyde (HH, pp. 146, 1980) and the recent work by Wang, Lin and Gulati (WLG,

2002) among others. We believe that even for the special case that {an} are martingale

differences, Theorem 1 imposes the weakest sufficient conditions on the coefficients {ψn}.

Remark 1. WLG (2002) attempted to generalize previous results on invariance principle

and wanted to establish {Skn(t)/σn, 0 ≤ t ≤ 1} ⇒ {W (t), 0 ≤ t ≤ 1} in D[0, 1], where Xn

is defined by (2) with iid ats, D[0, 1] is the collection of all right continuous functions with

left limits on [0, 1] and kn(t) = sup{m : B2
m ≤ tB2

n} (cf Theorem 2.1 in the latter paper).

However, there is a serious error in their argument. A key step in their paper is to use

their equation (36), namely the distributional identity

kn(t)∑

k=1

akΨkn(t)−k =D

kn(t)∑

k=1

akΨk−1, 0 ≤ t ≤ 1, (7)

to establish the invariance principle

{Skn(t)/Bn, 0 ≤ t ≤ 1} ⇒ {W (t), 0 ≤ t ≤ 1} (8)

via

{B−1
n

kn(t)∑

k=1

akΨk−1, 0 ≤ t ≤ 1} ⇒ {W (t), 0 ≤ t ≤ 1}. (9)

The claim (7) holds only for a single t and it fails to be valid jointly for 0 ≤ t ≤ 1. To see

this, choose t1 and t2 such that kn(t1) = 1 and kn(t2) = 2. In this case it is easily seen that

(7) fails since the random vectors (a1ψ0, a1(ψ0 +ψ1)+a2ψ0) and (a1ψ0, a1ψ0 +a2(ψ0 +ψ1))

generally have different distributions (even though the marginal distributions are the same).

The invariance principle certainly requires the joint behavior over 0 ≤ t ≤ 1.

Remark 2. It would be interesting to compare our result with previous ones including

WLG even though the latter paper contains an error.

Our Theorem 1 differs from HH (pp. 146, 1980) and WLG (2002) in several important

aspects. First, we allow a fairly general class of an which includes many nonlinear time

series models. If an are iid or martingale differences, then an are automatically Lα weakly
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dependent with any order provided a0 ∈ Lα. Our moment conditions is slightly stronger

since α > 2 is required. In HH (1980) and WLG (2002), an are assumed to iid or martingale

differences and the existence of E(a2
n) is required.

Second, in WLG (2002), the conditions on ψk

1

Bn

max
1≤j≤n

|Ψj| → 0 and
n∑

j=0

A
1/2
j = o(Bn) (10)

are imposed, which are stronger than (6). To see this, assume that {an} are stationary

martingale differences with ‖an‖ = 1. Then ‖E(Sn|F0)‖ =
∑∞

i=0(Ψn+i−Ψi)
2, and for j ≥ 0,

‖E(Xj|F0)‖ = A
1/2
j . Observe that ‖E(Sn|F0)‖ ≤

∑n
j=1 ‖E(Xj|F0)‖. Thus (10) implies

(6). In HH (1980), two sufficient conditions for the invariance principle are presented.

WLG’s (2002) assumption (10) weakens one sufficient condition (cf Inequality (5.38) of

HH’s (1980))
∞∑

j=1

A
1/2
j < ∞ (11)

when one-sided linear processes is considered. However, the other sufficient condition

(5.37) in HH (1980)
∞∑

n=1

(
∞∑

l=n

ψl)
2 < ∞ (12)

cannot be derived from WLG’s (10). For example, let ψn = (−1)nn−2/3, n ≥ 1 and ψ0 = 1.

Then |∑∞
l=n ψl| = O(n−2/3) and (12) holds. However, WLG’s (10) does not hold since

An =
∑∞

m=n ψ2
n ∼ 3n−1/3 and

∑n
j=0 A

1/2
j ∼ 1.2

√
3n5/6. Interestingly, (12) does imply our

condition (6) by noting that Ψn+i −Ψi =
∑∞

l=i+1 ψl −
∑∞

l=i+1+n ψl. Thus (6) unifies (10),

(11) and (12).

Third, WLG (2002) posed the open problem whether Bn can be replaced by σn. The-

orem 1 provides an affirmative answer to this problem. Let {an} be martingale differences

with ‖an‖ = 1. Since E(Sn|F0) and Sn − E(Sn|F0) are orthogonal,

‖Sn‖2 = ‖E(Sn|F0)‖2 + ‖Sn − E(Sn|F0)‖2,

which implies that σ2
n =

∑∞
i=0(Ψn+i − Ψi)

2 + B2
n ∼ B2

n by (6). Moreover, our Theorem 1

asserts that σn necessarily has the form `∗(n)
√

n and reveals the inner relations Bn/
√

n ∼
`∗(n) ∼ |∑n−1

i=0 Ψi|/n.
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Finally, the form of our result {Wn(t), 0 ≤ t ≤ 1} ⇒ {W (t), 0 ≤ t ≤ 1} in C[0, 1]

is a typical one for invariance principles. It is slightly different from the one in WLG’s

(8). Our form seems more convenient for application and it actually implies the latter. To

see this, let Ŵn(t) and Ŵ (t) be defined on a (possibly richer) probability space such that

Ŵn
D
= Wn, Ŵ

D
= W and sup0≤t≤1 |Ŵn(t)− Ŵ (t)| P−→ 0. Here η1

D
= η2 denotes that η1 and

η2 have the same distribution and
P−→ means convergence in probability. Since B2

n/n is a

slowly varying function, by Lemma 4 with γ = 1,

lim
n→∞

max
1≤k≤n

∣∣∣∣
B2

k

B2
n

− k

n

∣∣∣∣ = 0, (13)

and since Ŵ has a version with continuous path, max1≤k≤n |Ŵ (B2
k/B

2
n)− Ŵ (k/n)| P−→ 0.

Hence max1≤k≤n |Ŵn(k/n) − Ŵ (B2
k/B

2
n)| P−→ 0, which implies the invariance principle of

WLG (2002).

Example 1. Let ψk = `(k)/k, k ≥ 1, where ` is a slowly varying function such that∑∞
k=1 |ψk| = ∞. By Lemma 3, Ψn is slowly varying, |Ψn| ∼

∑n
k=0 |ψk|, σ2

n ∼ nΨ2
n and

limn→∞(1/σ2
n)

∑∞
j=n(Ψj −Ψj−n)2 = 0. Hence (6) is satisfied.

2.2 Sample Covariances

Covariances play a fundamental role in the study of stationary processes. In this section

we present asymptotic results for sample covariances.

Theorem 3. Assume that {an} is L4 weakly dependent,

∞∑
i=0

|ψi|
√

Ai+1 < ∞ (14)

and ∞∑
i,j=0

‖P1(aiaj)‖ < ∞. (15)

Then
∑∞

t=1 ‖P1X
2
t ‖ < ∞; namely X2

t is L2 weakly dependent.

Theorem 3 is useful in proving Corollary 2 concerning asymptotic normality of sample

covariances.
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Proposition 1. A sufficient condition for (14) is

∞∑
t=1

√
tψ2

t < ∞. (16)

Corollary 2. Let the conditions of Theorem 3 be satisfied. For a fixed integer h ≥ 0

let the column random vector Xt,h = (Xt−h, . . . , Xt)
T , where T stands for transpose and

Γ(h) = E(X0Xh,h). Then

1√
n

n∑
t=1

[XtXt+h,h − Γ(h)] ⇒ N(0, Σh) (17)

where Σh = E(ξhξ
T
h ) and ξh =

∑∞
t=−∞P1(XtXt+h,h) ∈ L2.

In Section 3.1, we will illustrate how to apply Theorem 3 and Corollary 2 to the GARCH

models. Notice that (14) and (16) allow some non-summable sequences ψk. Consider the

Fractional ARIMA(0, d, 0) model (1 − B)dXn = an, where B is the back-shift operator

(BXn = Xn−1) and −1/2 < d < 1/2. Then Xn = (1 − B)−dan =
∑∞

i=0 ψian−i and

as j → ∞, ψj = Γ(j + d)/[Γ(j)Γ(d)] ∼ jd−1/Γ(d). If 1/4 > d > 0, then (16) holds.

Asymptotic distribution for sample correlations can be easily obtained from Corollary 2.

Remark 3. In Theorem 6.7 of HH (pp 188, 1980), a CLT for sample correlations is derived

under the condition (16), {at}t∈Z are martingale differences and

E(a2
t |Ft−1) = a positive constant. (18)

Relation (18) generalizes the case in which {an} are iid. Chung (2002) recently derives

various limit theorems for martingale differences {at}t∈Z satisfying (18). Unfortunately the

latter assumption appears too restrictive and it excludes many important models. One of

the most interesting case is the ARCH model. To see this, let at = εt

√
θ2
1 + θ2

2a
2
t−1 be

the ARCH(1) model, where {εt}t∈Z are iid with mean 0 and variance 1 and θ1 and θ2 are

parameters. Then E(a2
t |Ft−1) = θ2

1 + θ2
2a

2
t−1, which cannot be almost surely constant unless

θ2 = 0. Thus limit theorems by Chung (2002) and HH (1980) can not be directly applied

to linear processes with ARCH innovations. Our results avoids this severe limitation.

Remark 4. If an are martingale differences, then the Lp weakly dependence condition

trivially holds if an ∈ Lp. Since P1aiaj = 0 for i > j ≥ 1, condition (15) is reduced to

∞∑
i=1

‖P1a
2
i ‖ < ∞.
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On the other hand, if (18) holds, then for i ≥ 2, E(a2
i |F1) = E[E(a2

i |Fi−1)|F1] is almost

surely a constant and hence P1a
2
i = 0 almost surely.

3 Applications

The class of non-linear time series models that (1) represents is clearly huge. For example,

it includes threshold autoregressive model (TAR, Tong, 1990), bilinear model (Meyn and

Tweedie, 1994), generalized autoregressive conditional heteroscedastic model (GARCH,

Bollerslev, 1986), random coefficient autoregressive model (RCA) (Nicholls and Quinn,

1982) etc. Here we argue that those widely used non-linear time series models are Lp

weakly dependent, and moreover, ‖P1an‖p decays to 0 exponentially fast. Namely there

exists C > 0 and ρ ∈ (0, 1) such that ‖P1an‖p ≤ Cρn for all n ≥ 0. In this section C > 0

and ρ ∈ (0, 1) stand for constants which may vary from line to line.

Let {ε′t}t∈Z be an iid copy of {εt}t∈Z and a′n = F (. . . , ε′−1, ε
′
0, ε1, . . . , εn) be a coupled

version of an. We say that {at} is geometrically moment contracting (GMC) if there exists

α > 0 such that for all n ≥ 0,

E(|an − a′n|α) ≤ Cρn. (19)

The GMC condition (19) implies that the process {at} forgets the past F0 at an exponential

rate by measuring the distance between an and its coupled version a′n. Recently Hsing and

Wu (2003) obtains asymptotic theory for U -statistics of processing satisfying (19).

Proposition 2. (i) If (19) holds with some α ≥ 1, then ‖E(an|F0)‖α ≤ Cρn and hence

‖P1an‖α ≤ Cρn. (ii) Assume that {an} satisfies (19) for some α0 > 0 and an ∈ Lq for

some q > 1. Then (19) holds for all α ∈ (0, q).

Proposition 3. Assume that {at} ∈ L4 and (19) holds with α = 4. Then there exist

C > 0 and ρ ∈ (0, 1) such that for all t, k ≥ 0,

‖P1(atat+k)‖ ≤ Cρt+k. (20)

Hence {at} satisfies (15).

Propositions 2 and 3 make Theorems 1, 2, and Corollary 2 applicable by providing

easily verifiable and mild conditions. An important special class of (1) is the so-called
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iterated random functions. Let G(·, ·) be a bivariate measurable function with Lipschitz

constant Lε = supx′ 6=x |G(x, ε)−G(x′, ε)|/|x− x′| and Zn be defined recursively by

Zn = G(Zn−1, εn). (21)

Diaconis and Freedman (1999) show that {Zn} has a unique stationary distribution if

E(log Lε) < 0, E(Lα
ε ) < ∞ and E[|z0 −G(z0, ε)|α] < ∞ (22)

hold for some α > 0 and z0. The same set of conditions actually also imply the GMC (19)

(cf Lemma 3 in Wu and Woodroofe, 2000).

Example 2. Let the TAR(1) an = φ1 max(an−1, 0) + φ2 max(−an−1, 0) + εn, the condition

(22) is satisfied when Lε = max(|φ1|, |φ2|) < 1 and E(|ε0|α) < ∞ for some α > 0. For

the bilinear model an = (α1 + β1εn)an−1 + εn, where α1 and β1 are real parameters and

E(|ε0|α) < ∞ for some α > 0, we have a close form of the Lipschitz constant Lε = |α1+β1ε|
and (22) holds if E(Lα

ε ) < 1. Similarly for the RCA model an = (φ1 + ηn)an−1 + εn, where

ηn are iid, then the Lipschitz constant Lε = |φ1 + ηn|.

3.1 GARCH Models

Let εt, t ∈ Z be iid random variables with mean 0 and variance 1; let

at =
√

htεt and ht = α0 + α1a
2
t−1 + · · ·+ αqa

2
t−q + β1ht−1 + · · ·+ βpht−p (23)

be the generalized autoregressive conditional heteroscedastic model GARCH(p, q), where

α0 > 0, αj ≥ 0 for 1 ≤ j ≤ q and βi ≥ 0 for 1 ≤ i ≤ p. Chen and An (1998) show that if

q∑
j=1

αj +

p∑
i=1

βi < 1, (24)

then at is strictly stationary. Notice that at form martingale differences. Hence P1at = 0

for t ≥ 2, P1a1 = a1 and (4) holds for any r ≥ 0 if a1 ∈ Lp. The existence of moments for

GARCH models has been widely studied; see He and Teräsvirta (1999), Ling (1999), and

Ling and McAleer (2002) and references therein.
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Let Yt = (a2
t , . . . , a

2
t−q+1, ht, . . . , ht−p+1)

T and bt = (α0ε
2
t , 0, . . . , 0, α0, 0, . . . , 0)T . It is

well known that GARCH models admits the following representation (see for example

Theorem 3.2.14 in Taniguchi and Kakizawa (2000)):

Yt = MtYt−1 + bt, where Mt =




α1ε
2
t . . . αq−1ε

2
t αqε

2
t β1ε

2
t . . . βp−1ε

2
t βpε

2
t

1 . . . 0 0 0 . . . 0 0
...

. . .
...

...
...

. . .
...

...

0 . . . 1 0 0 . . . 0 0

α1 . . . αq−1 αq β1 . . . βp−1 βp

0 . . . 0 0 1 . . . 0 0
...

. . .
...

...
...

. . .
...

...

0 . . . 0 0 0 . . . 1 0




(25)

For a square matrix M let ρ(M) be its largest eigenvalue. Let ⊗ be the usual Kronecker

product; let |Y | be the Euclidean length of the vector Y . Assume E(ε4
t ) < ∞. Ling (1999)

shows that if ρ[E(M⊗2
t )] < 1, then at has a stationary distribution and E(a4

t ) < ∞.

Ling and McAleer (2002) argue that the condition ρ[E(M⊗2
t )] < 1 is also necessary for the

finiteness of the fourth moment. Our Proposition 4 states that the same condition actually

implies (19) as well.

Proposition 4. Assume that εt are iid with mean 0 and variance 1, E(ε4
t ) < ∞ and

ρ[E(M⊗2
t )] < 1. Then E(|an − a′n|4) ≤ Cρn for some C < ∞ and ρ ∈ (0, 1). Namely (19)

holds.

Under the conditions of Proposition 4, it is clear that Proposition 3 and hence Theo-

rem 3 are applicable since ‖Paiaj‖ and ‖Pai‖ decays to zero exponentially fast. To derive

asymptotic distributions related to stationary processes, traditional approaches normally

require strong mixing conditions. However, it is a challenging problem to obtain strong

mixing conditions of GARCH models; see Carrasco and Chen (2002) for an recent attempt.

Our approach, however, provides a framework that completely avoids strong mixing con-

ditions.
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4 Proofs

We assume E(an) = 0 throughout. Recall An =
∑∞

i=n ψ2
i , Ψn =

∑n
i=0 ψi and B2

n =∑n−1
i=0 Ψ2

i and (3) for σ2
n.

Lemma 2. Let {Di, i ∈ N} be a martingale difference sequence in Lp for some p ≥ 2.

Then ‖∑∞
i=1 Di‖p ≤ Cp[

∑∞
i=1 ‖Di‖2

p]
1/2, where Cp = 18p3/2/(p− 1)1/2.

Proof of Lemma 2. It is a straightforward consequence of Burkholder’s inequality (cf

Theorem 11.2.1 in Chow and Teicher (1978)) and Minkowski’s inequality

‖
∞∑
i=1

Di‖p
p ≤ Cp

pE

( ∞∑
i=1

D2
i

)p/2

≤ Cp
p

[ ∞∑
i=1

‖D2
i ‖p/2

]p/2

since ‖ · ‖p/2 becomes a norm when p/2 ≥ 1. ♦

Part (i) of Lemma 3 is also used in WLG (2002). For the sake of completeness, we

provide a proof here. Part (ii) is well-known and it is an easy consequence of Karamata’s

theorem.

Lemma 3. (i) Let ψk = `(k)/k, k ≥ 1 and assume that
∑∞

k=1 |ψk| = ∞. Then Ψn is

slowly varying, `(n)/Ψn → 0, |Ψn| ∼
∑n

k=0 |ψk|, σ2
n ∼ nΨ2

n and limn→∞(1/σ2
n)

∑∞
j=n(Ψj −

Ψj−n)2 = 0. (ii) Let ψk = `(k)/kβ, k ≥ 1 and 1/2 < β < 1. Then Ψn ∼ n1−β`(n)/(1− β)

and σn ∼ n3/2−β`(n)cβ, where c2
β =

∫∞
0

[x1−β −max(x− 1, 0)1−β]2dx/(1− β)2.

Proof of Lemma 3. (i) Since ` is slowly varying, there exists N0 ∈ N such that either

`(n) > 0 for all n ≥ N0 or `(n) < 0 for all n ≥ N0. Without loss of generality we

assume the former. So
∑∞

k=1 |ψk| = ∞ implies that limn→∞ |Ψn|/
∑n

k=0 |ψk| = 1. For any

0 < δ < 1 and G > 1,

0 ≤ lim sup
n→∞

Ψn

Ψδn

− 1 ≤ lim sup
n→∞

∑n
k=δn |ψk|∑δn−1

k=δn/G |ψk|
= lim sup

n→∞

|`(n)|∑n
k=δn 1/k

|`(δn)|∑δn−1
k=δn/G 1/k

=
log δ−1

log G

which approaches 0 as G → ∞. Thus by definition Ψn is a slowly varying function. The

same argument also implies that limn→∞ `(n)/Ψn = 0.

By Karamata’s theorem, σ2
n ≥

∑n−1
j=0 Ψ2

n ∼ nΨ2
n since Ψn is slowly varying. For any

fixed δ > 0,

lim sup
n→∞

1

nΨ2
n

∞∑

j=(1+δ)n

(Ψj −Ψj−n)2 = lim sup
n→∞

1

nΨ2
n

∞∑

j=(1+δ)n

O(nψj)
2 = 0

13



since `(n)/Ψn → 0 and both `(n) and Ψn are slowly varying. Thus

lim sup
n→∞

1

nΨ2
n

∞∑
j=n

(Ψj −Ψj−n)2 = lim sup
n→∞

1

nΨ2
n

(1+δ)n∑
j=n

(Ψj −Ψj−n)2

≤ lim sup
n→∞

1

nΨ2
n

(1+δ)n∑
j=n

2(Ψ2
j + Ψ2

j−n) ≤ 4δ

which completes the proof of (i) since δ > 0 is arbitrarily chosen. ♦

Lemma 4. Let γ > 0 and `(n) be a slowly varying function. Then

lim
n→∞

max
1≤k≤n

(k/n)γ|`(k)/`(n)− 1| = 0. (26)

In particular, limn→∞ max1≤k≤n(k/n)γ`(k)/`(n) = 1.

Proof of Lemma 4. Let `(m) have the representation `(m) = cme
∫ m
1 η(u)/udu (Bingham,

Goldie and Teugels, 1987) with cm → c > 0. Choose K0 ∈ N be sufficiently large such that

i−γ/4 ≤ `(i) ≤ iγ/4 holds for all i ≥ K0. Then

lim sup
n→∞

max
1≤k≤K0

(k/n)γ|`(k)/`(n)− 1| = 0, (27)

lim sup
n→∞

max
K0≤k≤√n

(
k

n
)γ|`(k)

`(n)
− 1| = lim sup

n→∞
max

K0≤k≤√n
(
k

n
)γkγ/4nγ/4 = 0, (28)

and for any δ ∈ (0, 1),

lim sup
n→∞

max
nδ≤k≤n

(
k

n
)γ|`(k)

`(n)
− 1| ≤ lim sup

n→∞
max

nδ≤k≤n
|`(k)

`(n)
− 1| = 0. (29)

By (27), (28) and (29), for sufficiently large n,

lim sup
n→∞

max
1≤k≤n

(k/n)γ|`(k)/`(n)− 1| ≤ lim sup
n→∞

max√
n≤k≤δn

(k/n)γ|`(k)/`(n)− 1|

≤ δγ + lim sup
n→∞

max√
n≤k≤δn

(k/n)γck/cne
∫ n

k η(u)/udu

≤ δγ + lim sup
n→∞

max√
n≤k≤δn

(k/n)γemax√n≤u≤δn η(u)
∫ n

k 1/udu ≤ δγ + δγ/2.

Thus the lemma follows since max√n≤u≤δn η(u) ≤ γ/2 for sufficiently large n and δ is

arbitrarily chosen. ♦
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Lemma 5. Let {ηk, k ∈ Z} be a stationary and ergodic process with mean 0 and define

∆n =
∑∞

j=0(1/σ
2
n)(Ψj − Ψj−n)2ηj, where {ψk, k ≥ 0} satisfies conditions in (ii) of Theo-

rem 2. Then limn→∞ E|∆n| = 0.

Proof of Lemma 5. Let Tn =
∑n−1

k=0 ηk and δk = supn≥k E|Tn|/n. By the ergodic theorem,

δk ↓ 0. We first consider the case 1
2

< β < 1. For any fixed M > 1 write

∆n = [
n−1∑
j=0

+

(1+M)n∑
j=n

+
∞∑

j=(1+M)n+1

]
1

σ2
n

(Ψj −Ψj−n)2ηj =: ∆n,1 + Ωn,M + Ξn,M . (30)

In the sequel we will show that limn→∞ E|∆n,1| = 0 and limn→∞ E|Ωn,M | = 0. Using the

Abelian summation technique, ∆n,1 = Ψ2
n−1Tn/σ

2
n +

∑n−1
j=1 (1/σ2

n)(Ψ2
j −Ψ2

j−1)Tj. Thus

lim sup
n→∞

E|∆n,1| ≤ lim sup
n→∞

Ψ2
n−1E|Tn|

σ2
n

+ lim sup
n→∞

n−1∑
j=1

|Ψ2
j −Ψ2

j−1|E|Tj|
σ2

n

(31)

Since E|Tn| = o(n) and nΨ2
n−1/σ

2
n = O(1) by Lemma 3, the first term in the proceeding

display vanishes. For the second one, let K ≥ 1 be a fixed integer. Then

lim sup
n→∞

E|∆n,1| ≤ lim sup
n→∞

K−1∑
j=1

|Ψ2
j −Ψ2

j−1|E|Tj|
σ2

n

+ δK lim sup
n→∞

n−1∑
j=K

j|Ψ2
j −Ψ2

j−1|
σ2

n

. (32)

Observe that as j →∞, |Ψ2
j −Ψ2

j−1| = |ψj||2Ψj−1 + ψj| ∼ 2j1−2β`2(j)/(1− β). Hence

lim sup
n→∞

n−1∑
j=1

j|Ψ2
j −Ψ2

j−1|
σ2

n

= lim sup
n→∞

n−1∑
j=1

O[j2−2β`2(j)]

σ2
n

= lim sup
n→∞

O[n3−2β`2(n)]

σ2
n

= O(1)

(33)

by Karamata’s theorem. So (32) implies that lim supn→∞ E|∆n,1| = 0 since K is arbitrarily

chosen and δK ↓ 0 as K → ∞. The claim limn→∞ E|Ωn,M | = 0 can be similarly proved.

Actually, by the same arguments in (31) and (32), it suffices to show the analogy of (33):

lim sup
n→∞

1

σ2
n

nM∑
j=1

j|(Ψn+j−1 −Ψj−1)
2 − (Ψn+j −Ψj)

2| < ∞. (34)

Simple algebra gives

|(Ψn+j−1 −Ψj−1)
2 − (Ψn+j −Ψj)

2| ≤ 2|ψn+j − ψj||Ψn+j−1 −Ψj−1|+ |ψn+j − ψj|2. (35)
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Since |ψn+j − ψj| = O[j−β`(j)] and |Ψn+j−1 − Ψj−1| = O[n1−β`(n)] for 1 ≤ j ≤ nM , (34)

follows from
∑nM

j=1 jj−β`(j) = O[n2−2β`2(n)] = O(σ2
n/n) and

lim sup
n→∞

nM∑
j=1

j

σ2
n

|ψn+j − ψj||Ψn+j−1 −Ψj−1| =
nM∑
j=1

O[j1−β`(j)n1−β`(n)]

σ2
n

=
O[n3−2β`2(n)]

σ2
n

by Karamata’s theorem. Let M ≥ 1. Since ` is slowly varying, there exists a constant

c∗ > 0 such that for all sufficiently large n, |Ψj−Ψj−n| ≤ c∗nj−β`(j) holds for all j ≥ jn =

(1 + M)n + 1. Therefore by (30) and Karamata’s theorem,

lim sup
n→∞

E|∆n| ≤ lim sup
n→∞

E|∆n,1|+ lim sup
n→∞

E|Ωn,M |+ lim sup
n→∞

E|Ξn,M |

≤ lim sup
n→∞

∞∑

j=(1+M)n+1

1

σ2
n

[c∗nj−β`(j)]2E|η1| = lim sup
n→∞

j1−2β
n `2(jn)

(2β − 1)σ2
n

c2
∗E|η1| = c1M

1−2β

for some c1 < ∞. Hence limn→∞ E|∆n| = 0 by letting M →∞.

For the case β = 1, by (ii) of Lemma 3 and (30), it follows as in the the proof of the

case 1/2 < β < 1 from

lim sup
n→∞

n−1∑
j=1

j|Ψ2
j −Ψ2

j−1|
σ2

n

= lim sup
n→∞

n−1∑
j=1

O(j|ψjΨj|)
σ2

n

= lim sup
n→∞

n−1∑
j=1

O(|`(j)Ψj|)
σ2

n

= 0

since `(j)Ψj is also a slowly varying function and n`(n)Ψn/σ2
n = 0 by Lemma 3. ♦

Lemma 6. Assume that {an} is Lp (p ≥ 2) weakly dependent with order 1. Then for

Sn =
∑n

i=1 Xi, there exists a constant C, independent of n, such that for all n ∈ N,

‖Sn‖p ≤ Cσn. (36)

Proof of Lemma 6. Observe that E(at|F0) =
∑0

k=−∞Pkat. Then

∞∑
t=0

‖E(at|F0)‖p ≤
∞∑

t=0

0∑

k=−∞
‖Pkat‖p =

∞∑
t=0

∞∑
j=t+1

‖P1aj‖p =
∞∑

t=1

t‖P1at‖p < ∞. (37)

Hence bk :=
∑∞

t=k E(at|Fk) ∈ Lp and the Poisson equation bk = ak +E(bk+1|Fk) holds. Let

dk = bk−E(bk|Fk−1), which by definition are stationary and ergodic martingale differences.

Let X∗
t =

∑∞
j=0 ψjdt−j, X#

t = Xt −X∗
t , S∗n =

∑n
i=1 X∗

t and S#
n =

∑n
i=1 X#

t . Then

S∗n =
∞∑

j=0

(Ψj −Ψj−n)dn−j and S#
n =

∞∑
j=0

ψj[E(b1−j|F−j)− E(bn+1−j|Fn−j)]. (38)
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The essence of our approach is to approximate Sn by S∗n, which admits martingale

structures.

By Lemma 2, ‖S∗n‖p ≤ Cpσn‖d0‖p. Inequality (37) implies that ‖d0‖p ≤ 2‖b0‖p < ∞.

To establish (36), it then remains to verify that
∑∞

j=0 ψjE(b1−j|F−j) ∈ Lp, which en-

tails ‖S#
n ‖p = O(1). To this end, for k ≥ 0 let Vk =

∑0
i=−∞ ψ−iPi−kb1+i. Then∑∞

j=0 ψjE(b1−j|F−j) =
∑∞

k=0 Vk. Since Pi−kb1+i forms martingale differences in i, by

Lemma 2,

‖Vk‖2
p ≤ C2

p

0∑
i=−∞

‖ψ−iPi−kb1+i‖2
p = C2

p(
∞∑

j=0

ψ2
j )‖P1b1+k‖2

p.

Therefore,

‖
∞∑

j=0

ψjE(b1−j|F−j)‖p ≤
∞∑

k=0

‖Vk‖p ≤ CpA
1/2
0

∞∑

k=0

‖P1b1+k‖p

which is finite in view of

∞∑

k=0

‖P1b1+k‖p ≤
∞∑

k=0

∞∑

t=k+1

‖P1E(at|Fk+1)‖p =
∞∑

k=0

∞∑

t=k+1

‖P1at‖p =
∞∑

t=1

t‖P1at‖p < ∞.

Here we have applied P1E(at|Fk+1) = P1at for t ≥ k + 1 ≥ 1. Thus ‖S#
n ‖p = O(1). ♦

Proof of Corollary 1. It follows from Lemma 1 in view of

∞∑
t=1

‖P1Xt‖ ≤
∞∑

t=1

∞∑
i=0

|ψi|‖P1at−i‖ =
∞∑
i=0

∞∑
t=i+1

|ψi|‖P1at−i‖ =
∞∑
i=0

|ψi|
∞∑

k=1

‖P1ak‖ < ∞.

since P1ak = 0 for k ≤ 0.

Proof of Theorem 1. By the weak convergence theory of random functions, it suffices

to establish (i) finite dimensional convergence and (ii) tightness of the random function

sequence Wn(t).

To show the finite dimensional convergence, let bk =
∑∞

t=k E(at|Fk) ∈ L2 and dk =

bk − E(bk|Fk−1), which are in L2 from the proof of Lemma 6. Recall (38) for S#
n and S∗n.

Then (6) implies that ‖E(S∗n|F0)‖ = o(‖S∗n‖) and ‖Sn‖ ∼ Bn‖d1‖ → ∞. By Theorem 1 in
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Wu and Woodroofe (2003), `1(n) = ‖S∗n‖/
√

n is a slowly varying function, and moreover

for Hni = Ψ̄ndi, where Ψ̄n =
∑n−1

j=0 Ψj/n, we have

max
1≤k≤n

‖S∗k −
k∑

i=1

Hni‖ = o(‖S∗n‖). (39)

Then ‖S∗n‖2 ∼ ‖∑k
i=1 Hni‖2 = n‖Hn1‖2 and since ‖S#

n ‖ = O(1),

`∗(n) :=
‖Sn‖√

n
∼ ‖S∗n‖√

n
= `1(n) ∼ |Ψ̄n|.

Therefore, the finite dimensional convergence trivially follows from (39) since for 0 < t < 1,

S∗nt√
nΨ̄n

=

∑nt
i=1 Hni√
nΨ̄n

+ oP (1) =

∑nt
i=1 di√

n
+ oP (1) ⇒ N(0, t‖d1‖2).

For the tightness, by Theorem 12.3 in Billingsley (1968), we need to show that there

exists a constant C < ∞ and τ > 1 such that for all 1 ≤ k ≤ n,

E[|Wn(k/n)|α] ≤ C(k/n)τ . (40)

We claim that (40) holds for τ = (2 + α)/4 > 1. By Lemma 6, (40) is reduced to

lim sup
n→∞

max
1≤k≤n

(
n

k
)

2+α
4α
‖Sk‖
‖Sn‖ = lim sup

n→∞
max
1≤k≤n

(
n

k
)

2+α
4α

√
k`∗(k)√
n`∗(n)

< ∞.

By Lemma 4, the limit in the proceeding display is actually 1. ♦

Proof of Theorem 2. As in the proof of Theorem 1, we need to verify the finite dimensional

convergence and the tightness.

Since {an} are L2 weakly dependent with order 1, from the proof of Lemma 6, we

can define bk =
∑∞

t=k E(at|Fk) ∈ L2 and dk = bk − E(bk|Fk−1). Recall (38) for S#
n and

S∗n. Note that ‖S#
n ‖ = O(1), it suffices to show that S∗n/σn ⇒ N(0, ‖d1‖2). To this end,

we shall apply the martingale central limit theorem. Let ζn,i = (Ψi − Ψi−n)/σn. Then∑n
t=1 X∗

t /σn =
∑∞

i=0 ζn,idn−i and
∑∞

i=0 ζ2
n,i = 1 for each n. The Lindeberg condition is

obvious in view of

sup
i≥0

|ζn,i| ≤ sup
i>2n

|ζn,i|+ sup
0≤i≤2n

|ζn,i| = O(nsup
j≥n

|ψj|/σn) +O(n1−β`(n)/σn) = O(1/
√

n).
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Let ηn,i = E(d2
n−i|Fi−1) − E(d2

n−i). Then the convergence of conditional variance easily

follows from Lemma 6, which asserts that limn→∞ E|∑∞
i=0 ζ2

n,iηn,i| = 0.

For the tightness, we shall show that (40) holds with α = 2 and τ = H + 1/2. By (ii)

of Lemma 3, `∗(n) = σn/nH is slowly varying. Then (40) is equivalent to

lim sup
n→∞

max
1≤k≤n

(
n

k
)H−1/2[

`∗(k)

`∗(n)
]2 < ∞,

which is an easy consequence of Lemma 4. ♦

Proof of Theorem 3. Let zt,1 =
∑t−1

i=0 ψiat−i and zt,0 =
∑∞

i=t ψiat−i. Then Xt = zt,1 + zt,0.

Since zt,0 is measurable with respect to F0, P1z
2
t,0 = 0, and by the triangle inequality,

‖P1X
2
t ‖ ≤ ‖P1z

2
t,1‖+ 2‖zt,0P1zt,1‖ ≤ ‖P1z

2
t,1‖+ 2‖zt,0‖4‖P1zt,1‖4.

We will show
∑∞

t=1 ‖P1z
2
t,1‖ < ∞ and

∑∞
t=1 ‖zt,0‖4.‖P1zt,1‖4 < ∞. For the former,

∞∑
t=1

1

2
‖P1z

2
t,1‖ ≤

∞∑
t=1

∑

0≤i′≤i<t

|ψiψi′ |‖P1at−iat−i′‖ ≤
∞∑

i′=0

∞∑

i=i′

∞∑
t=i+1

|ψiψi′|‖P1at−iat−i′‖

=
∞∑

k=1

∞∑
j=0

∞∑
i=0

|ψiψi+j|‖P1akak+j‖ ≤
∞∑

k=1

∞∑
j=0

A0‖P1akak+j‖,

where the last inequality is due to
∑∞

i=0 |ψiψj| ≤
∑∞

i=0 ψ2
i . Hence (15) entails the former

inequality. By (14), the latter one holds if we can show that ‖zt,0‖4 ≤ C
√

At for some

constant C > 0 in view of

∞∑
t=1

‖zt,0‖4‖P1zt,1‖4 ≤
∞∑

t=1

C
√

At

t−1∑
j=0

|ψj|‖P1at−j‖4 = C

∞∑
j=0

∞∑
t=j+1

√
At|ψj|‖P1at−j‖4

≤ C

∞∑
j=0

|ψj|
√

Aj+1(
∞∑

t=j+1

‖P1at−j‖4) < ∞.

To prove ‖zt,0‖4 ≤ C
√

At, define Uk =
∑∞

j=t ψjE(at−j|Ft−j−k), k ≥ 0. Then U0 = zt,0

and Uk−Uk+1 =
∑∞

j=t ψjPt−j−kat−j =
∑−t

i=−∞ ψ−iPt+i−kat+i. Observe that the summands

ψ−iPt+i−kat+i of Uk − Uk+1 form martingale differences in i. By Lemma 2,

‖Uk − Uk+1‖4 ≤ C4

{ −t∑
i=−∞

‖ψ−iPt+i−kat+i‖2
4

}1/2

= C4A
1/2
t ‖P0ak‖4,
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which implies that

‖zt,0‖4 = ‖
∞∑

k=0

(Uk − Uk+1)‖4 ≤
∞∑

k=0

‖Uk − Uk+1‖4 = O(A
1/2
t )

since {ak} are L4 weakly dependent, namely
∑∞

k=1 ‖P0ak‖4 < ∞. ♦

Proof of Proposition 1. By the Cauchy inequality, the proposition follows from

[ ∞∑
t=1

|ψt|
√

At+1

]2

≤
[ ∞∑

t=1

√
tψ2

t

][ ∞∑
t=1

At+1t
−1/2

]
≤

[ ∞∑
t=1

√
tψ2

t

][ ∞∑
i=2

i−1∑
t=1

ψ2
i t
−1/2

]

in view of
∑i−1

t=1 t−1/2 ≤ 2
√

i for i ≥ 2. ♦

Proof of Corollary 2. We first consider h = 1. Let ψ′0 = ψ0, ψ′k = ψk + ψk−1 for k ≥ 1

and A′
k =

∑∞
i=k |ψ′i|2. Since ψk are square summable, it is easily seen that (14) implies∑∞

i=0 |ψ′i|
√

A′
i+1 < ∞, which by Theorem 3 entails

∑∞
t=1 ‖P1(Xt +Xt+1)

2‖ < ∞ in view of

Xt+Xt+1 =
∑∞

k=0 ψ′kat+1−k. Similarly,
∑∞

t=1 ‖P1(Xt−Xt+1)
2‖ < ∞. Hence by the elemen-

tary identity XtXt+1 = [(Xt +Xt+1)
2− (Xt−Xt+1)

2]/4, we have
∑∞

t=1 ‖P1(XtXt+1)‖ < ∞
by the triangle inequality. Therefore,

∑∞
t=1 ‖P1(XtXt+h,h)‖ < ∞ easily follows and (17)

holds by the Cramer-Wold device. ♦

Proof of Proposition 3. We shall show that ‖P1atat+k‖ ≤ Cρk and ‖P1atat+k‖ ≤ Cρt

hold respectively, which imply that ‖P1atat+k‖ ≤ C min(ρk, ρt) ≤ Cρ(k+t)/2. In this proof

constants C > 0 and ρ ∈ (0, 1) may change from line to line. For the former, for t, k ≥ 0,

by Cauchy’s inequality,

‖E(atat+k|F0)‖ = ‖E(E(atat+k|Ft)|F0)‖ ≤ ‖E(atat+k|Ft)‖
= ‖E(a0ak|F0)‖ = ‖E(a0(ak − a′k)|F0)‖ ≤ ‖a0‖4‖ak − a′k‖4 ≤ Cρk.

Thus ‖P1atat+k‖ ≤ ‖E(atat+k|F1)‖ + ‖E(atat+k|F0)‖ ≤ Cρk. For the latter, observe that

γk = E(atat+k) = E(a′ta
′
t+k|F0),

‖E(atat+k|F0)− γk‖ = ‖E(atat+k − a′ta
′
t+k)|F0‖ ≤ ‖atat+k − a′ta

′
t+k‖

≤ ‖at(at+k − a′t+k)‖+ ‖(at − a′t)a
′
t+k‖

≤ ‖at‖4‖at+k − a′t+k‖4 + ‖at − a′t‖4‖a′t+k‖4

≤ Cρt+k + Cρt ≤ Cρt,
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which, combined with a similar inequality ‖E(atat+k|F1)−γk‖ ≤ Cρt, yields ‖P1atat+k‖ ≤
Cρt via triangle inequality. ♦

Proof of Proposition 2. (i) Since E(a′n|F0) = 0, it easily follows from ‖E(an − a′n|F0)‖α ≤
‖an−a′n‖α. (ii) Let λn = ρn/(2α). By Markov’s inequality, (19) implies P (|an−a′n| ≥ λn) ≤
Cλα

n. By Hölder’s inequality,

E[|an − a′n|p(1|an−a′n|≥λn + 1|an−a′n|<λn)] ≤ ‖an − a′n‖p
q [E(1|an−a′n|≥λn)]1−p/q + λp

n,

which entails E(|an − a′n|p) ≤ Cρn since an ∈ Lq. Observe that E(a′n|F0) = 0. Again by

Hölder’s inequality, ‖E(an|F0)‖p = ‖E(an − a′n|F0)‖p ≤ ‖an − a′n‖p. Finally, ‖E(an|F1)−
E(an|F0)‖p ≤ ‖E(an−1|F0)‖p + ‖E(an|F0)‖p implies ‖P1an‖p ≤ Cρn. ♦

Proof of Proposition 4. Let Y ′
0 , independent of {εt, t ∈ Z} be an iid copy of Y0 and define

recursively Y ′
t = MtY

′
t−1 + bt, t ≥ 1; let Y ∗

n = Yn − Y ′
n. Then Y ∗

n = MnY
∗
n−1. Using

(AB)⊗ (CD) = (A⊗ C)(B ⊗D), we have

Y ∗
n
⊗2 = M⊗2

n Y ∗⊗2
n−1 = . . . = M⊗2

n . . .M⊗2
1 Y ∗⊗2

0 .

Hence E(Y ∗
n
⊗2) = [E(M⊗2

1 )]nE(Y ∗
0
⊗2) and (19) easily follows since ρ[E(M⊗2

t )] < 1. ♦
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