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Abstract. We consider the kernel density and regression estimation problem for a wide

class of causal processes. Asymptotic normality of the kernel estimators is established

under minimal regularity conditions on bandwidths. Optimal uniform error bounds are

obtained without imposing strong mixing conditions. The proposed method is based on

martingale approximations and provides a unified framework for nonparametric time series

analysis, and enables one to launch a systematic study for dependent observations.

Keywords: Kernel estimation; Nonlinear time series; Regression; Central limit theorem;

Martingale; Markov chains; Linear processes.

1 Introduction

Let {εn}n∈Z be a sequence of independent and identically distributed (iid) random elements.

Consider the process

Xn = F (. . . , εn−1, εn), (1)

where F is a measurable function. Clearly {Xn}n∈Z is a stationary and causal process

and represents a huge class of time series models. For example, if F has the linear form

F (. . . , εn−1, εn) =
∑∞

i=0 aiεn−i, where {ai}∞i=0 is a square summable sequence and εn has

mean 0 and finite variance, then Xn is well-defined and corresponds to the widely used lin-

ear process which includes as special cases the important in practice ARMA and fractional

ARIMA models. As another example, consider the class of nonlinear time series defined

by the recursion

Xn = Rεn(Xn−1), (2)

where R is a bivariate measurable function. Under suitable conditions on R, the recursion

(2) has a unique and stationary initial distribution (Barnsley and Elton (1988) and Diaconis

and Freedman (1999)). By iterating (2), Xn is also of the form (1). For different forms

of R in (2), one can get threshold autoregressive models (TAR, Tong (1990)), AR models
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with conditionally heteroscedastic errors (ARCH, Engle (1982)), random coefficient models

(Nicholls and Quinn, 1982) and exponential autoregressive models (EAR, Haggan and

Ozaki (1981)) among others.

In this paper, we consider the kernel density and regression estimation problem of the

class defined by (1). For p ∈ N let πp be the joint distribution function of (Xn−1, . . . , Xn−p).

The density of πp usually does not have a closed form and hence it is preferably estimated

by nonparametric methods. Let K be a probability density function on R. Following

Rosenblatt (1956), we have that given the data sequence X1−p, . . . , Xn, the kernel density

estimator of the joint density of (Xn−1, . . . , Xn−p) at x = (x−1, . . . , x−p) is given by

fn(x) =
1

n

n∑
t=1

p∏
i=1

Kbn(x−i −Xt−i), (3)

where Kb(x) = K(x/b)/b and bandwidths {bn} satisfy the natural condition

bn → 0 and nbp
n →∞. (4)

Under mild conditions on f , we show that (4) suffices to guarantee the asymptotic normal-

ity of
√

nbp
n[fn(x)−Efn(x)]. In addition, we obtain an optimal error bound of supx |fn(x)−

f(x)|. The optimality here is in the sense that the bound is as sharp as the one in the iid

case, which further supports Hart’s (1996) whitening by windowing principle.

To formulate the regression problem, we consider the model

Yn = G(Xn−1, . . . , Xn−p, θn), (5)

where {θn}n∈Z are also iid error terms and θn is independent of (. . . , εn−2, εn−1). Then for

x = (x−1, . . . , x−p) ∈ Rp, the Nadaraya-Watson estimator of the regression function

g(x) = E[Yn|(Xn−1, . . . , Xn−p) = x] = EG(x, θn) (6)

has the form

gn(x) =
Sn(G;x)

fn(x)
, where Sn(G;x) =

1

n

n∑
t=1

Yt

p∏
i=1

Kbn(x−i −Xt−i). (7)

Asymptotic normality of gn(x) is established under (4) and some regularity conditions on

G and f .
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There is an extensive literature concerning limiting properties of (3), (7) and other

related issues such as optimal bandwidth selection for the case in which {Xt} are iid

(see for example, Silverman (1986) and Devroye and Györfi (1984)). For dependent ran-

dom variables, Rosenblatt (1970) considered Markov sequences with geometric ergodicity

and showed asymptotic normality of the kernel density estimators. Asymptotic issues for

strongly mixing processes have been discussed by Robinson (1983), Singh and Ullah (1985),

Castellana and Leadbetter (1986), Györfi, Härdle, Sarda and Vieu (1989) and Bosq (1996)

among others. The recent work by Yu (1993), Neumann (1998) and Kreiss and Neumann

(1998) deal with β-mixing processes. Further references are given in the excellent review

by Härdle, Lütkepohl and Chen (1997) and Tjostheim (1994). However, in many practical

situations the required strong mixing conditions are usually unverifiable and might also

be too restrictive. The strong mixing properties of linear processes have been discussed

by many people including Gorodetskii (1977), Withers (1981), Pham and Tran (1985) and

Doukhan (1994) among others, where it is shown that fast decay rates of an are needed.

One of the main contributions at the technical level of this paper is the introduction of

a martingale-based technique that enables us to study large sample properties in nonpara-

metric time series analysis and more specifically derive central limit theorems and obtain

estimates of the uniform error bound. As an alternative to strong mixing conditions, our

assumption appears sufficiently mild, and more importantly, is easily verifiable in practice.

In addition, the proposed approach enables one to obtain optimal results which are as

sharp as those in the iid setting. We believe that our approach can be extended to the

testing, model selection, minimax theory and other problems in the statistical inference

for linear and nonlinear processes.

The rest of the paper is structured as follows. Main results are presented in Section 2

and their proofs are given in Section 4. Section 3 contains applications to nonlinear au-

toregressive time series and linear processes.

2 Main Results

Throughout the paper it is assumed that the kernel K is a nonnegative function on

R,
∫
RK(u)du = 1, supu∈RK(u) ≤ K0 < ∞ and K has a bounded support; namely,

there exists an M < ∞ such that K(x) = 0 if |x| ≥ M . Write κ =
∫
RK2(u)du and
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K(u) = K(u1) . . . K(up) for the vector u = (u1, . . . , up). Let Xn = (. . . , εn−1, εn) be the

shift process. For a p dimensional vector x = (x−1, . . . , x−p), denote by f(x|Xn−p−1) the

conditional density of (Xn−1, . . . , Xn−p) at x given Xn−p−1 = (. . . , εn−p−2, εn−p−1). Assume

that there exists a f∗ < ∞ such that

sup
y∈Rp

f(y|X0) ≤ f∗ (8)

holds with probability 1. Define the projection operator Pkξ = E(ξ|Xk)− E(ξ|Xk−1).

2.1 Asymptotic normality

To state the central limit theorem concerning the Nadaraya-Watson estimator (7), we need

the following regularity condition.

Condition 1. Let V2(y) := EG2(y, θn) and g(y) be continuous at y = x. There exists a

δ > 0 such that V2+δ(y) = E[|G(y, θn)|2+δ] is bounded at a neighborhood of x.

Theorem 1. Assume Condition 1, (4), (8) and

sup
y

∞∑
t=1

‖P0f(y|Xt)‖ < ∞. (9)

Then √
nbp

n{Sn(G;x)− E[Sn(G;x)]} ⇒ N [0, V2(x)f(x)κp]. (10)

Condition (9) is used instead of the strong mixing conditions. It holds for linear as well

as many nonlinear processes; see Section 3 for some examples.

By letting G ≡ 1 in Theorem 1, we have the following central limit theorem for the

joint density estimator (3).

Corollary 1. Assume (4), (8) and (9). Then for all x ∈ Rp,

√
nbp

n{fn(x)− E[fn(x)]} ⇒ N [0, f(x)κp]. (11)

Corollary 2. If f(x) > 0 at a given x ∈ Rp, then under the conditions of Theorem 1, we

have √
nbp

n

{
Sn(G;x)

Sn(x)
− ESn(G;x)

ESn(x)

}
⇒ N{0, [V2(x)− g2(x)]κp/f(x)}. (12)

4



In kernel estimation theory it is routine to compute the bias ESn(G;x)/ESn(x)− g(x).

If g is twice differentiable, K is symmetric and f is differentiable at x, then it is easily

seen that the bias is of order O(b2
n).

Proof of Corollary 2. Let νn(x) = ESn(G;x) and µn(x) = ESn(x). Since f(x) > 0, K has

bounded support and g is continuous at x, we have νn(x)/µn(x) → g(x). Observe that

Sn(G;x)− Sn(x)
νn(x)

µn(x)
= {Sn(G;x)− Sn(x)g(x)− n[νn(x)− µn(x)g(x)]}

+[Sn(x)− nµn(x)][g(x)− νn(x)/µn(x)] =: An + Bn.

By Corollary 1, Bn = oP(1/
√

nbd
n) and Sn(x)

P−→ f(x). Hence by Theorem 1,
√

nbp
nAn ⇒

N{0, [V2(x)− g2(x)]κpf(x)}, which by the Slutsky theorem yields (12). ♦

2.2 An optimal uniform bound

Corollary 1 indicates that fn(x)−E[fn(x)] has a magnitude of the order 1/
√

nbp
n. Theorem 2

below provides a uniform error bound. For α = (α1, . . . , αp), where αi are nonnegative

integers, let the partial derivative g(α)(u) = ∂α1+...+αpg(u)/∂uα1
1 . . . ∂u

αp
p . For n ≥ 0 define

∆n =
1∑

α1=0

. . .

1∑
αp=0

∫

Rp

‖P0f
(α)(u|Xn)‖2du.

A function h is said to be Lipschitz continuous with index η > 0 if there exists Lh < ∞
such that for all x and y, |h(x)− h(y)| ≤ Lh|x− y|η.

Theorem 2. Let K be Lipschitz continuous with index η > 0 and E(|X1|α) < ∞ for some

α > 0. Assume (4), (8) and
∞∑

t=0

√
∆t < ∞. (13)

Then √
nbp

n sup
y∈Rp

|fn(y)− E[fn(y)]| = O(log n) almost surely. (14)

Furthermore, the bound in (14) is reduced to O(
√

log n) if log2 n = o(nbp
n).

Corollary 3. Let conditions of Theorem 2 be satisfied; let f be differentiable and for some

C > 0, |f(y + z) − f(y) − zf ′(y)| ≤ C|z|2 for all y and z in Rp. In addition assume
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∫
R sK(s)ds = 0 and bn = (n−1 log n)1/(p+4). Then

sup
y∈Rp

|fn(y)− f(y)| = O[(n−1 log n)2/(p+4)] almost surely. (15)

Let d = 1. For iid random variables {Yt} with density function fY , let fY,n(x) =

n−1
∑n

i=1 Kbn(x − Yi) be the kernel density estimator. Bickel and Rosenblatt (1973) ob-

tained a distributional limit of the uniform error bound. Their result suggests that the

uniform error bound supx |fY,n(x)− fY (x)| has magnitude OP [
√

(log n)/(nbn)] if bn = n−δ

for 0 < δ < 1/2. Stute (1982) showed that

(
n

log n

)2/5

sup
|x|≤λ

∣∣∣∣
fY,n(x)− fY (x)

fY (x)

∣∣∣∣

converges almost surely to a non-zero constant for all λ > 0 such that fY (x) > 0 if |x| ≤ λ.

Therefore, the optimal uniform error bound for sup|x|≤λ |fY,n(x)− fY (x)| is of the order

O[(n−1 log n)2/5]. In this sense, Corollary 3 seems interesting in that the optimal uniform

bound is obtained for dependent data without any α (strong) mixing assumptions. For

strong mixing processes with exponentially decaying strong mixing coefficients, one can

obtain uniform bounds which are close to optimal; see Theorem 2.2 in Bosq (1998) where

a bound of the form (n−1 log n)2/(p+4) log . . . log n is obtained. If the process is β-mixing (or

absolutely regular) with suitable mixing rate, Yu (1993) obtains optimal manimax rates;

see also Neumann (1998).

Proof of Corollary 3. The argument to establish the result is standard. Under the condi-

tions of the corollary, it is easily seen that the bias is

|Efn(y)− f(y)| =
∣∣∣∣
∫

Rp

K(v)[f(y − bnv)− f(y) + bnvf ′(y)]dv

∣∣∣∣ = O(b2
n).

Hence for bn = (n−1 log n)1/(p+4), we have

sup
y∈Rp

|fn(y)− f(y)| ≤ sup
y∈R

|fn(y)− E[fn(y)]|+O(b2
n)

=
O(
√

log n)√
nbp

n

+O(b2
n) = O(b2

n)

almost surely by Theorem 2. ♦
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3 Applications

In this section we present two important applications and show that the crucial conditions

(9) in Theorem 1 and (13) in Theorem 2 are satisfied. A very general nonlinear autoregres-

sive model is considered in Section 3.1 and the commonly used linear process is discussed

in Section 3.2.

3.1 Nonlinear time series

Let q ≥ 1 be a fixed integer. Consider the nonlinear AR(q) model

Xn = Rεn(Xn−1, . . . , Xn−q), (16)

where R is a measurable function such that {Xn} adopts a stationary distribution. We

shall mention the important special case, the nonlinear autoregressive conditional het-

eroscedastic model which assumes the form

Xn = m(Xn−1, . . . , Xn−q) + σ(Xn−1, . . . , Xn−q)εn,

where m and σ2 are the conditional mean and variance functions, respectively. It is easily

seen that Xn can be expressed in terms of (1) by iterating R in (16). Let {ε′j} be an iid

copy of {εj} and X ′
n = F (. . . , ε′−1, ε

′
0, ε1, . . . , εn) be the coupled version of Xn. Assume

that there exists C,α > 0 and 0 < r(α) < 1 such that

E{|F (. . . , ε−1, ε0, ε1, . . . , εn)− F (. . . , ε′−1, ε
′
0, ε1, . . . , εn)|α} ≤ Crn(α) (17)

holds for all n ∈ N. Without loss of generality let α < 1; otherwise, Hölder’s inequality

could be employed. Condition (17) is actually very mild. In the special case in which q = 1

(namely (2)), (2) admits a unique stationary distribution if

E(log Lε) < 0, E(Lα
ε ) + E[|x0 −Rε(x0)|α] < ∞, where Lε = sup

x′ 6=x

|Rε(x)−Rε(x
′)|

|x− x′| (18)

holds for some α > 0 and x0 (Diaconis and Freedman (1999)). It is easily verified that

these conditions are satisfied for many popular nonlinear time series models such as TAR,

RCA, ARCH and EAR under suitable conditions on model parameters. Condition (18)

actually also implies (17) (cf Lemma 3 in Wu and Woodroofe (2000)).
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An important issue of (16) is to estimate the conditional mean

Qh(x) = E[h(Xn)|(Xn−1, . . . , Xn−q) = x],

where h satisfies E[h2(Xn)] < ∞ and x = (x−1, . . . , x−q) ∈ Rq. In the case q = 1, Qh corre-

sponds to the transition kernel of the Markov chain Xn, which plays the central role in the

Markov chain theory. Let G(x, εn) = h(Rεn(x)) and as in (5), Yn = G(Xn−1, . . . , Xn−q, εn).

Then g(x) = Qh(x) and then asymptotic normality, as developed in Section 2.1, holds.

Let u be a p-dimensional vector. By the structure of process Xn defined in (16), f(u|Xn)

is equal to the conditional density of (Xn+p, . . . , Xn+1) at u given (Xn, . . . , Xn−q+1). Thus

we can also write f(u|Xn, . . . , Xn−q+1) for f(u|Xn). Theorem 3 states that a Lipschitz

continuity condition on f(·|z) (z ∈ Rq) suffices to ensure (9). Since such a condition is

directly related to the data-generating mechanism of the process Xn, it seems tractable;

see Example 1 for an illustration.

Theorem 3. Assume (8), (17), and that there exists C and β > 0 such that for all z and

z′ in Rq,

sup
u∈Rp

|f(u|z)− f(u|z′)| ≤ C|z− z′|β. (19)

Then, supu∈Rp ‖P0f(u|Xn)‖ = O(ρn) for some ρ ∈ (0, 1) and hence (9) holds.

Proof. Let n > q. Since (X ′
n, . . . , X ′

n−q+1) is independent of X0 and has the same distri-

bution as (Xn, . . . , Xn−q+1),

E[f(y|X ′
n, . . . , X ′

n−q+1)|X0] = E[f(y|X ′
n, . . . , X ′

n−q+1)]

= E[f(y|Xn, . . . , Xn−q+1)].

By (19) and (8),

‖P0f(y|Xn)‖ ≤ ‖E[f(y|Xn, . . . , Xn−p+1)|X0]− E[f(y|Xn, . . . , Xn−p+1)]‖
= ‖E[f(y|Xn, . . . , Xn−p+1)|X0]− E[f(y|X ′

n, . . . , X
′
n−p+1)|X0]‖

≤ ‖f(y|Xn, . . . , Xn−p+1)− f(y|X ′
n, . . . , X ′

n−p+1)‖

≤ C

n∑
j=n−q+1

‖min(1, |Xj −X ′
j|β)‖.
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By (17) and Hölder’s inequality we obtain

E[min(1, |Xn −X ′
n|2β)] ≤ E[|Xn −X ′

n|min(α,2β)]

≤ [E(|Xn −X ′
n|α)]min(1, 2β/α) = O(ρ2n),

where ρ = r(α)min(1/2, β/α). Thus, supy∈Rp ‖P0f(y|Xn)‖ = O(ρn). ♦

Example 1. Let p = q = 1 and consider the AR(1) model with ARCH errors

Xn = Rεn(Xn−1) = θ1Xn−1 + εn

√
θ2
2 + θ2

3X
2
n−1, (20)

where θ1, θ2, θ3 are real-valued parameters and ε, εn are iid random variables. Observe

that Lε = supx |∂Rε(x)/∂x| ≤ |θ1| + |θ3ε|. By (18), a simple sufficient condition for the

existence of a stationary distribution is E[log(|θ1| + |θ3ε|)] < 0 and E(|ε|α) < ∞ for some

α > 0. Here we allow the case in which ε does not have a mean, namely E(|ε|) = ∞.

By Doukhan (1994, p. 106), the process is geometrical β-mixing if E(|ε|) < ∞, ε has a

nowhere vanishing density and limn→∞ E|Rε(x)|/|x| < 1. Notice that none of the above

conditions imply another condition, and they have different applicability ranges. On the

other hand, our conditions ensure (17), which is the basis of our approach. The classical

treatment of dependent data usually imposes strong mixing conditions as the underlying

assumptions.

Let Fε be the distribution function of ε; let fε and f ′ε be the density function and its

derivative. Then the conditional density f(z|x) = fε[(z − θ1x)/
√

θ2
2 + θ2

3x
2]/

√
θ2
2 + θ2

3x
2.

Assume that

sup
u∈R

[|uf ′ε(u)|+ fε(u)] < ∞. (21)

Now we claim that (21) entails (19). Let u = (z − θ1x)/
√

θ2
2 + θ2

3x
2. Then after some

elementary manipulations,

∂f(z|x)

∂x
= −f ′ε(u)

θ1

√
θ2
2 + θ2

3x
2 + uθ2

3x

(θ2
2 + θ2

3x
2)3/2

− fε(u)
θ2
3x

(θ2
2 + θ2

3x
2)3/2

,

which entails that C = supz |∂f(z|x)/∂x| < ∞ in view of (21). So (19) holds with this C

and β = 1.
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3.2 Linear process

Let Xn =
∑∞

i=0 aiεn−i, where
∑∞

i=0 a2
i < ∞ and εi are iid with mean 0 and finite variance;

let fε be the density function of εi. Denote by Cp(R) the class of functions having up to

pth order derivatives.

Theorem 4. Assume that fε ∈ Cp+1(R) and

p+1∑
i=0

∫

R
|f (i)

ε (x)|2dx < ∞. (22)

Then

∆n = O
(

p∑
i=1

a2
n+i+1

)
. (23)

Proof. Without loss of generality we consider p = 2 and a0 = 1. Let f2,1 be the joint

density of (εn+2 + a1εn+1, εn+1). Then f2,1(u, v) = fε(u − a1v)fε(v) and the conditional

density of (Xn+2, Xn+1) given Xn is f2,1(u − Yn, v − Zn), where Yn =
∑∞

i=2 aiεn+2−i and

Zn =
∑∞

i=1 aiεn+1−i. Now we show that

∆(00)
n :=

∫

R2

‖P0f2,1(u− Yn, v − Zn)‖2dudv = O(a2
n+2 + a2

n+3). (24)

Recall that {ε′i}i∈Z is an iid copy of {εi}i∈Z. Let δ1 = an+3(ε
′
−1−ε−1), δ2 = an+2(ε

′
−1−ε−1),

Y ∗
n = Yn + δ1 and Z∗

n = Zn + δ2. Then

E[f2,1(u− Yn, v − Zn)|X−1] = E[f2,1(u− Y ∗
n , v − Z∗

n)|X0]

almost surely. By Cauchy’s inequality,

‖P0f2,1(u− Yn, v − Zn)‖ = ‖E[f2,1(u− Yn, v − Zn)− f2,1(u− Y ∗
n , v − Z∗

n)|X0]‖
≤ ‖f2,1(u− Yn, v − Zn)− f2,1(u− Y ∗

n , v − Z∗
n)‖.

Observe that for a differential function h, we have

∫

R
|h(x + δ)− h(x)|2dx ≤

∫

R
[

∫ δ

0

|h′(x + t)|dt]2dx

≤
∫

R
δ

∫ δ

0

|h′(x + t)|2dtdx = δ2

∫

R
|h′(t)|2dt. (25)
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By a change of variables we get

∆(00)
n ≤ E

∫

R2

|f2,1(u− Yn, v − Zn)− f2,1(u− Y ∗
n , v − Z∗

n)|2dudv

= E
∫

R2

|f2,1(u + δ1, v + δ2)− f2,1(u, v)|2dudv

≤ 2E
∫

R2

|fε(u + δ1 − a1(v + δ2))− fε(u− a1v)|2f 2
ε (v + δ2)dudv

+2E
∫

R2

f 2
ε (u− a1v)|fε(v + δ2)− fε(v)|2dudv

≤ 2E[(δ1 − a1δ2)
2 + δ2

2]

∫

R
f 2

ε (u)du

∫

R
|f ′ε(v)|2dv = O(a2

n+2 + a2
n+3).

By a similar argument, (22) implies that

∆(α)
n :=

∫

R2

‖P0f
(α)
2,1 (u− Yn, v − Zn)‖2dudv = O(a2

n+2 + a2
n+3)

holds for α = (0, 1), (1, 0) and (1, 1). Thus ∆n = O(a2
n+2 + a2

n+3). ♦

Corollary 3 and Theorem 4 immediately yield

Corollary 4. Assume (13) and
∑∞

i=0 |ai| < ∞. Then (15) holds.

If an = n−βL(n), where β ∈ (1/2, 1) and L is a slowly varying function, then an is

not summable and the process Xn is long-range dependent. Wu and Mielniczuk (2002)

derived limiting distributions of fn(x)− Efn(x) and obtained the interesting dichotomous

and trichotomous phenomena for different choices of bn.

If fε is Lipshitz continuous, Wu and Mielniczuk (2002) show that supy ‖P0fε(y|Xn)‖ =

O(|an|) and hence (9) holds if
∑∞

i=0 |ai| < ∞.

4 Proofs

Let

ξn,t =

√
bp
n

n
Yt

p∏
i=1

Kbn(x−i −Xt−i) and ζn,t =

√
bp
n

n

p∏
i=1

Kbn(x−i −Xt−i).
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Lemma 1. Let {Xn,i, i ∈ Z}, n ∈ N be a triangular array stationary process and {Gi, i ∈
Z} be an increasing sequence of sigma-algebras such that Xn,i is Gi measurable. Assume

that supn E|Xn,1| < ∞ and that there exists a δ > 0 for which E(|Xn,1|1+δ) = o(nδ). Then

1

n

n∑
i=1

[Xn,i − E(Xn,i|Gi−p)]
P−→ 0 (26)

for all p ∈ N.

Proof of Lemma 1. Observe that E{|E(Xn,i|Gi−1)|r} ≤ E(|Xn,1|r) for r = 1 or r = δ + 1.

Hence the general case in which p > 1 easily follows from (26) with p = 1 by considering

the sequence E(Xn,i|Gi−1) in view of

1

n

n∑
i=1

[Xn,i − E(Xn,i|Gi−p)] =
1

n

p−1∑

k=0

n∑
i=1

[E(Xn,i|Gi−k)− E(Xn,i|Gi−k−1)].

For any η > 0 and ε > 0 let an = nε2η and X ′
n,i = Xn,i1(|Xn,i| ≤ an). Write

Sn =
∑n

i=1[Xn,i − E(Xn,i|Gi−1)] and S ′n =
∑n

i=1[X
′
n,i − E(X ′

n,i|Gi−1)]. Then under the

proposed conditions of the lemma,

lim sup
n→∞

P(|Sn| ≥ 2nε) ≤ lim sup
n→∞

P(|S ′n| ≥ nε) + lim sup
n→∞

P(|Sn − S ′n| ≥ nε)

≤ lim sup
n→∞

1

n2ε2
E(|S ′n|2) + lim sup

n→∞

1

nε
E(|Sn − S ′n|)

≤ lim sup
n→∞

1

nε2
E(|X ′

n,1|2) + lim sup
n→∞

2

ε
E[|Xn,i|1(|Xn,i| ≥ an)]

≤ lim sup
n→∞

an

nε2
E|X ′

n,1|+ lim sup
n→∞

2

aδ
nε
E(|Xn,i|1+δ) ≤ η sup

n
E|Xn,1|,

which implies the lemma since η is arbitrarily chosen. ♦

Lemma 2. Under conditions of Theorem 1, we have n‖E(ξn,1|X0)‖2 = O(bn)

Proof of Lemma 2. Let the support of K be contained in the finite interval [−M,M ]. Since

g is countinous at x, there exists a δ0 > 0 such that Cg := sup{|g(y)| : |y− x| ≤ δ0} < ∞.

Observe that

E[Kbn(x−1 −X0)|X−1] =

∫

R
K(u)f(x−1 − bnu|X−1)du.

12



By (8), E[Kbn(x−1 −X0)|X−1] ≤ f∗ < ∞ with probability 1. For bn ≤ δ0/M ,

n‖E(ξn,1|G0)‖2 = bp
n

∥∥∥∥∥E
[
g(X0, . . . , X1−p)

p∏
i=1

Kbn(x−i −X1−i)

∣∣∣∣X−1

]∥∥∥∥∥

2

≤ C2
g b

p
n

∥∥∥∥∥E[Kbn(x−1 −X0)|X−1]

p∏
i=2

Kbn(x−i −X1−i)

∥∥∥∥∥

2

= O(bp
n)

∫

Rp−1

p∏
i=2

K2
bn

(x−i − ui)f(u2, . . . , up)du2 . . . dup = O(bn),

which ensures the lemma by (8) and the change of variable vi = (x−i − ui)/bn. ♦

Lemma 3. For y ∈ Rp let Hn(y) =
∑n

t=1 f(y|Xt)− nf(y). (a) Relation (9) implies

sup
y
‖Hn(y)‖2 = O(n). (27)

(b). Relation (13) implies

E
[
sup
y

H2
n(y)

]
= O(n) (28)

Proof of Lemma 3. (a) The argument in Wu and Mielniczuk (2002) is applicable here.

Let C = supy

∑∞
t=1 ‖P0f(y|Xt)‖ < ∞. Notice that ‖PkHn(y)‖ ≤ ∑n

t=1 ‖Pkf(y|Xt)‖ and

‖Pkf(y|Xt)‖ = 0 if k > t,

‖Hn(y)‖2 =
n∑

k=−∞
‖PkHn(y)‖2

≤
0∑

k=−∞

[
n∑

t=1

‖Pkf(y|Xt)‖
]2

+
n∑

k=1

[
n∑

t=k

‖Pkf(y|Xt)‖
]2

≤
0∑

k=−∞
C

n∑
t=1

‖Pkf(y|Xt)‖+ nC2 ≤ 2nC2 (29)

For a univariate, differentiable function L(·), by Lemma 4 in Wu (2003), we have

sup
x∈R

L2(x) ≤ 2

∫

R
[L2(x) + |L′(x)|2]dx. (30)

Iterating (30), one obtains the multivariate version

sup
u∈Rp

L2(u) ≤ 2p

1∑
α1=0

. . .

1∑
αp=0

∫

Rp

|L(α)(u)|2du. (31)

13



To see this, without loss of generality let p = 2. Then (30) implies that

sup
u1,u2∈R

L2(u1, u2) ≤ 2 sup
u1∈R

∫

R
[L2(u1, u2) + |L(0,1)(u1, u2)|2]du2

≤ 2

∫

R

{
sup
u1∈R

L2(u1, u2) + sup
u1∈R

|L(0,1)(u1, u2)|2
}

du2

≤ 2

∫

R

{
2

∫

R
[L2(u1, u2) + |L(1,0)(u1, u2)|2]du1

+2

∫

R
[|L(0,1)(u1, u2)|2 + L(1,1)(u1, u2)|2]du1

}
du2,

which is equal to the right hand side of (31) with p = 2. To obtain (28), we shall apply

(31) with L(·) = Hn(·). For t ≥ 0 let λt,α =
∫
Rp ‖P0f

(α)(u|Xt)‖2du. As (29), by Cauchy’s

inequality,

∫

Rp

‖H(α)
n (u)‖2du =

n∑

k=−∞

∫

Rp

‖PkH
(α)
n (u)‖2du

≤
n∑

k=−∞

∫

Rp




n∑

j=max(1,k)

‖Pkf
(α)(u|Xj)‖




2

du

≤
n∑

k=−∞

∫

Rp




n∑

j=max(1,k)

‖Pkf
(α)(u|Xj)‖2

λ
1/2
j−k,α







n∑

j=max(1,k)

λ
1/2
j−k,α


 du

≤
n∑

k=−∞




n∑

j=max(1,k)

λ
1/2
j−k,α




2

= O(n)

in view of (13). Thus (28) follows from (31). ♦

Lemma 4. (a) Let V2(·) and f(·|X0) be continuous at x. Assume (8). Then

n∑
t=1

E(ξ2
n,t|Gt−p)

P−→ V (x)f(x)κp
2. (32)

(b) Assume (9). Then

∣∣∣∣∣
n∑

t=1

[E(ξn,t|Gt−p−1)− E(ξn,t)]

∣∣∣∣∣ = O(
√

bp
n). (33)
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Proof of Lemma 4 (a) Observe that

n∑
t=1

E(ξ2
n,t|Gt−p) =

1

n

n∑
t=1

∫

Rp

V (x− bnu)K2(u)f(x− bnu|Xt−p−1)du,

and by the ergodic theorem, n−1
∑n

t=1 f(x|Xt−p−1) → f(x) almost surely. Since bn → 0,

by another application of the ergodic theorem,

1

n

n∑
t=1

∫

Rp

K2(u)|V (x− bnu)f(x− bnu|Xt−p−1)− V (x)f(x|Xt−p−1)|du

≤ κ

n

n∑
t=1

sup
|y−x|≤δ

|V (y)f(y|Xt−p−1)− V (x)f(x|Xt−p−1)|

→ κE

[
sup

|y−x|≤δ

|V (y)f(y|X0)− V (x)f(x|X0)|
]

holds for any δ > 0. Note that V (·) and f(·|X0) are continuous at x and f(·|X0) is

bounded. By the Lebesgue dominated convergence theorem we get,

lim
δ↓0
E

[
sup

|y−x|≤δ

|V (y)f(y|X0)− V (x)f(x|X0)|
]

≤ lim
δ↓0
E

[
sup

|y−x|≤δ

|V (y)− V (x)|f(x|X0)

]
+ lim

δ↓0
E

[
sup

|y−x|≤δ

V (x)|f(y|X0)− f(x|X0)|
]

≤ V (x) lim
δ↓0
E

[
sup

|y−x|≤δ

|f(y|X0)− f(x|X0)|
]

= 0,

which guarantees (32).

(b) By (a) of Lemma 3 and Cauchy’s inequality we have that

E

∣∣∣∣∣
n∑

t=1

[E(ξn,t|Gt−p−1)− E(ξn,t)]

∣∣∣∣∣ ≤
√

bp
n√
n

∫

Rp

K(u)|g(x− bnu)|E|Hn(x− bnu)|du

= O(
√

bp
n).

♦

Proof of Theorem 1. Let Gn = (. . . , θn−1, θn; . . . , εn−2, εn−1). Then ξn,t is Gn-measurable.

Clearly (10) follows from

n∑
t=1

[ξn,t − E(ξn,t|Gt−1)] ⇒ N [0, V (x)f(x)κp] (34)
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and
n∑

t=1

[E(ξn,t|Gt−1)− Eξn,t]
P−→ 0. (35)

For (34), observe that the summands form (triangular) stationary martingale differ-

ences; therefore, we can apply the martingale central limit theorem, since

n∑
t=1

E{[ξn,t − E(ξn,t|Gt−1)]
2|Gt−1)} =

n∑
t=1

E(ξ2
n,t|Gt−1)−

n∑
t=1

E2(ξn,t|Gt−1),

By Lemma 2, the latter sum tends to 0 in probability. For the former one, let vn,t =

nE(ξ2
n,t|Gt−1). Since V is continuous at x and K has bounded support, we have

E(vn,t) = E

[
Y 2

t

p∏
i=1

K2
bn

(x−i −Xt−i)

]

= E
[
V (Xt−1, . . . , Xt−p)K

2
bn

(x−i −Xt−i)
]

=

∫

Rp

V (x− bnu)K2(u)f(x− bnu)du → V (x)f(x)κp

and

E(v1+δ
n,t ) = E

[
|Yt|2(1+δ)

p∏
i=1

K1+δ
bn

(x−i −Xt−i)

]

= b−δ
n

∫

Rp

E[|G(x− bnu, θt)|2(1+δ)]K2(1+δ)(u)f(x− bnu)du = O(nδ).

Hence Lemma 1 is applicable and by (a) of Lemma 4, the convergence of the conditional

variance
∑n

t=1 E(ξ2
n,t|Gt−1)

P−→ V (x)f(x)κp holds. The Lindeberg condition follows from

nE(|ξn,1|2+δ) = n(bp
n/n)(2+δ)/2E

[
p∏

i=1

K2+δ
bn

(x−i −Xt−i)

]

= n(bp
n/n)(2+δ)/2bp

nb
−p(2+δ)
n = (nbp

n)−δ/2 → 0.

Now we shall prove (35). Observe that by Lemma 2, for i = 0, . . . , p− 1,

∥∥∥∥∥∥

bn/pc∑
t=1

[E(ξn,tp+i|Gtp−1+i)− E(ξn,tp+i|Gtp−p−1+i)]

∥∥∥∥∥∥

2

= bn/pc‖E(ξn,0|G−1)− E(ξn,0|G−p−1)‖2

≤ bn/pc‖E(ξn,0|G−1)‖2 = O(bn),
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which by summing over i = 0, . . . , p− 1 implies that

n∑
t=1

[E(ξn,t|Gt−1)− E(ξn,t|Gt−p−1)]
P−→ 0.

Thus (b) of Lemma 4 implies (35). ♦

Lemma 5. Assume (8). Let Mn(y) =
∑n

t=1{ζn,t(y)−E[ζn,t(y)|Xt−p]}. (a) For all y ∈ Rp

and a > 0,

P[|Mn(y)| > pa] ≤ 2p exp[−a2/(2K0a/
√

nbp
n + K0q∗)]. (36)

(b). Let K be Lipschitz continuous with index η > 0 and E(|X1|α) < ∞ for some α > 0.

Then for all ς > 0, there exists C > 0 such that

P
[

sup
y∈Rp

|Mn(y)| > C log n

]
= O(n−ς). (37)

In addition, log n = o(nbp
n), then (37) holds with log n replaced by

√
log n.

Proof of Lemma 5. (a) Let m = bn/pc and observe that for all 0 ≤ i ≤ p− 1,

Tn(y) :=
m−1∑
j=0

{E[ζ2
n,i+jp(y)|Xi+jp−p]− E2[ζn,i+jp(y)|Xi+jp−p]}

≤ 1

n

m−1∑
j=0

∫

Rp

K2(u)f(y − bnu|Xi+jp−p)du ≤ K0q∗.

Clearly, with probability 1, |ζn,t(y)−E[ζn,t(y)|Xt−p]| ≤ K0/
√

nbp
n. By Freedman’s inequal-

ity (cf. Freedman 1975),

P

[∣∣∣∣∣
m−1∑
j=0

{ζn,i+jp(y)− E[ζn,i+jp(y)|Xi+jp−p]}
∣∣∣∣∣ ≥ a

]
≤ 2 exp[−a2/(2K0a/

√
nbp

n + K0q∗)],

which trivially implies (36) by summing over i = 0, . . . , p− 1. Here we employ the martin-

gale inequality to estimate tail probabilities. In comparison, exponential inequalities for

strong mixing processes are used to obtain similar asymptotic properties; see for example

Bosq (1998, p. 27).

(b) Without loss of generality, assume that p = 1, E(|X1|α) < ∞ for some α > 0 and

that K is Lipschitz continuous with index 1. Then by the Markov inequality,

E

[
sup
|x|≥nA

|Mn(x)|
]

≤ nE

[
sup
|x|≥nA

|ζn,1(x)− E[ζn,1(x)|X0]|
]

17



≤ 2nE

[
sup
|x|≥nA

|ζn,1(x)|
]

≤ 2n√
nbn

K0P(|X1| ≥ nA −Mbn)

≤ 2n√
nbn

K0(n
A −Mbn)−αE(|X1|α) = O(n−ς).

Next we consider the behavior of Mn(x) when |x| < nA. Let a = 2C log n. By (a), for all

sufficiently large C > 0,

P{|Mn(x)| ≥ 2C log n} = O(n−C).

Choose C > A + 3 + ς. Then

P

{
sup

i=0,1,...,2nA+3

|Mn(−nA + in−3)| ≥ a

}
= nA+3O(n−C) = O(n−ς),

which implies P[sup|x|<nA |Mn(x)| ≥ a] = O(n−ς) in view of

|Mn(x)−Mn(y)| = O[n|x− y|/(bn

√
nbn)]

since K is Lipschitz continuous with index 1. Thus (37) holds. If log n = o(nbn), we can

choose a = 2C
√

log n in (a) and the upper bound O(
√

log n) similarly follows. ♦

Remark 1. ¿From the proof of Lemma 5, it is easily seen that the Lipschitz continuity of

K can be relaxed to piecewise Lipschitz continuity with finitely many pieces.

Proof of Theorem 2. Let Nn(y) =
∑n

t=1{E[ζn,t(y)|Xt−p]− Eζn,t(y)}. By (b) of Lemma 3,

E
[
sup
y
|Nn(y)|2

]
= E

[
sup
y

bp
n√
nbp

n

∫

R
K(u)|Hn(y − bnu)|du

]2

= O(bp
n).

Thus by (b) of Lemma 5, (14) holds since
√

nbp
n[fn(y)− E[fn(y)]] = Mn(y) + Nn(y). ♦
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