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Abstract. A weighted U-statistic based on a random sample X,..., X, has the form
Up=>, <ij<n w;—; K (X;, X;) where K is fixed symmetric measurable function and the w;
are symmetric weights. A large class of statistics can be expressed as weighted U-statistics or
variations thereof. This paper establishes the asymptotic normality of U,, when the sample

observations come from a non-linear time series and linear processes.
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1. Introduction. Consider the causal process
Xle( ,Ei_l,[—:i), (1)

where the ¢; are i.i.d. random elements. Clearly (1) is very general and represents a huge
class of processes. In particular, it contains the linear process X; = Z(;io a;e;—;, where
a; are square summable and €; has mean 0 and finite variance, and many nonlinear pro-
cesses (cf. Section 3) including the threshold AR (TAR) models (Tong, 1990), AR with
conditional heteroscedasticity (ARCH, Engle, 1982) models, Random coefficient AR (RCA)
models (Nicholls and Quinn, 1982), exponential AR (EAR) models (Haggan and Ozaki,
1981). The main goal of this paper is to consider the asymptotic behavior of the following
statistic:
Uo= > Hij(Xi, Xj) = Y wi jK(X;, X)),
1<i,j<n 1<i,j<n

where K is fixed symmetric measurable function and the w; are symmetric constants. We
refer to U, as a weighted U-statistic. The class of statistics that can be written in this form
or variations of this form is clearly huge. For example, if H;, ;,(z1,22) = [G(z1) + G(22)]/2,
n~1U, is the partial sum of G(X}),... ,G(X,,); if H, i,(21,72) = m122I([i1 — 15| = k), then
(n — k)~'U, is the sample covariance function of lag k in {X;}; if H;, ;, = I(i1 # is)K and
K, respectively, for some fixed function K, then U, is a (non-normalized) U and V-statistic,
respectively.

The study of asymptotic properties of the weighted or even the usual U-statistics is in
general not straightforward. Hoeffding’s decomposition (Hoeffding, 1961) provides a powerful
tool for understanding the large-sample properties of U-statistics based on i.i.d. or even
weakly dependent observations. See Randles and Wolfe (1979), Serfling (1980) and Lee
(1990). For the i.i.d. case, a small number of papers consider the asymptotic properties
of weighted U-statistics; recent references include O’Neil and Redner (1993), Major (1994),
and Rifi and Utzet (2000). For weakly dependent processes, the results for U-statistics are

typically developed under mixing conditions; examples of these can be found in Yoshihara



(1976), Denker and Keller (1983,1986), and a series of recent papers by Borovkova, Burton
and Dehling (1999, 2001, 2002). Laws of large numbers for U-statistics of stationary and
ergodic sequences were considered by Aaronson, Burton, Dehling, Gilat, Hill and Weiss
(1996) and Borovkova et al. (1999). For long-memory processes, U-statistics and quadratic
forms were considered by Dehling and Taqqu (1989, 1991), Ho and Hsing (1996), Giraitis
and Taqqu (1997), Giraitis, Taqqu, and Terrin (1998), among others.

Using martingale-based techniques, we prove some general results for U, for processes
satisfying (1) in a variety of short and long-memory situations. Approaches based on mar-
tingales are very effective in dealing with asymptotic issues of stationary processes. See
Woodroofe (1992), Ho and Hsing (1996, 1997), Wu and Mielniczuk (2002), and Wu (2003) for
some recent developments, where certain open problems are dealt with. Wu and Woodroofe
(2003) investigate approximations to sums of stationary and ergodic sequences by martin-
gales. Based on such approximations, they obtain necessary and sufficient conditions for such
sums to be asymptotically normal from the martingale central limit theorem. No mixing
conditions will be involved and the results obtained are often nearly optimal.

Specifically, in section 2, we will state two general central limit theorems for a stationary
process Y; ; where Y; ; is measurable with respect to the o-field generated by e,k < iV j,
where 7V j = max(, j). An example of Y; ; is Y, ; = K(X;, X;) but the realm of possibilities
goes beyond that. In addition to the dependence of the process Y; ;, the w; introduce another
level of dependence in U,. The two cases of > .2 |w;| < oo and Y .-, |w;| = co correspond
to short and long-range dependence, respectively, thereby entailing norming sequences of
different orders of magnitude. We will address both cases.

In section 3 we apply the results to non-linear time series that are geometric-moment
contracting. These are “short-memory” processes, which include a large class of processes
mentioned in the beginning of this section, and also processes that do not satisfy any strong
mixing conditions. In sections 4 and 5, respectively, our general results are applied to short
and long-memory linear processes. In the long-memory case, we let Y; ; be the remainder of an

ANOVA decomposition of K (X;, X;). The resulting decomposition of U, is similar in spirit



to Hoeffding’s decomposition, and the asymptotic distribution of U,, can be determined by
identifying the dominant term(s) of the decomposition. In sections 3 and 4 we also compare
some of our results with related results in Borovkova et al. (2001). The two sets of results
have overlapping but somewhat different ranges of applicability; we explain the differences
and, where they overlap, we point out situations where our results work more effectively.

Detailed proofs are included in Section 6.

2. Notation and main results. Let ¢;,7 € Z, be i.i.d. random elements taking values
in a general state space. Define the shift processes Z; = (... ,&;_1,¢;) and, for each ¢ > 1,
Zi = Zivg = (&i_¢s+1.-.,5;), where we often suppress £ in Zi,é to simplify notation. Let
Yi .1, 7 € Z, be random variables with zero means and finite variances, such that Y; ; =Y},
Y,; € 0(Z;y;) and (Y;;,Z;) is a stationary process in the sense that the (Yiysjie, Zpse)
have the same finite-dimensional distributions as (Y;;,Z;) for each ¢t € Z; similarly let
ffm, 1,7 € Z, be random variables with zero means and finite variances, such that }7” = }7”,
Y/i,j € O’(Zi, Zj) and (Nm, Zk) is a stationary process in the sense that the (}N/Z-HJH, ZkH) have

the same finite-dimensional distributions as (Y; ;, Z) for each t € Z. Define the projection

operator

Pi§ = E(€|Zi) — E(§|Zi-1), t € Z,
where ¢ is an integrable random variable. Let

Li; =w;_;Y;; and E” = wi_jffi,j.

The two cases where the weights w; are summable and non-summable have distinct flavors,

and they will be considered separately in Sections 2.1 and 2.2.

2.1. Summable weights. In this sub-section we consider the asymptotic distribution of
lemgn w;_;Y; ; where the weights w; are absolutely summable. When Y; ; = K(X;, X;) —
EK(X;,X;), obvious examples of this include partial sums for which w; = §;¢ and k-lag
sample covariance function for which w; = 9, . Let %, denote convergence in distribution

and Normal (0,0?) be the normal distribution with mean zero and variance o2,



For any integers i, j, define
0i; = PoYisl- (2)

THEOREM 1 Assume that

Z Z |wk|0,-7i_k < OQ. (3)

k=0 =0

Then

1 d
— Z L;j — Normal (0,0?) (4)
v 1<i,j<n

for some 0% < oo.

REMARK. Since 6;; = 6,;, and wy, = w_g, (3) is equivalent to the seemingly stronger

statement

D fwiliok < o0 (5)

k=—o00 1=0
in view of
—1 0o 0o [e) 0o o) co 00
D 2 wnlbii =D Il D O5kg = 3 lwnl 3 0iin <D [wildrik
k=—o00 1=0 k=1 7=0 k=1 i=k k=0 =0

2.2.  Non-summable weights. The derivation of the main result, Theorem 3, in this
section for non-summable weights relies on Theorem 2, which asserts that ), <ij<n Lij can
be approximated by Z1§i,jgn Ei’j. To consider the asymptotic behavior of the latter we
apply the idea of the Hoeffding decomposition.

Let
éz’,j = sup HPO}N/Z'J”
0>1
and

0¢ := sup ||Y1 — Vi . (6)
JEL



Define

n n 1/2
Wa(i) =Y wij and W, = [Z W2(5) /n] .

j=1

THEOREM 2 Assume that limy_,o 0, = 0, liminf,,_, Wn/( Yoo ]wz|) >0, and

lim su min(6; ;. 0. 7
i3m0 - ”
Then
2
lim lim sup Z (Li; — Li;)|| =0. (8)
{—00 oo nt 1<ii<n

THEOREM 3 Assume that Y2 |w;| = 0o and Y ,_,(n — k)wi = o(nW}?). Then under

the conditions of Theorem 2,

1
Z L;; ~%, Normal (0,0?) 9)

/ 2
an 1<4,5<n

for some 02 < 0.

REMARK. The assumptions on the w; in Theorems 2 and 3 are very minor and are satisfied for
every situation of practical interest. For example, if w,, ~ C/n”, 3 < 1, then those conditions
hold. Note, however, that in Theorem 3, the second condition »,_,(n — k)w; = o(nW}?)
cannot be derived from the first one Y ;° |w;| = oo. For example, let w, = 2" whenever
n =22 ke Nand w, = 0 otherwise. Then >.°, |w;| = oo and there exists a constant

¢ > 0 such that > _,(n — k)wi > ¢nW; for all n > 4.

The conditions (3) and (7) are closely related through é,. The following is useful in

verifying the conditions in certain situations.



PROPOSITION 4 The following hold:

kim0 i=0

and for any e,

supZmin(éi,i,k,e) < 4Zmin (sup 5@,6) . (11)
i=0

k P 0>

Proor. Let j > i > ¢ > 0, then Z; and Zj are independent of Zy. Thus }7” is also
independent of Z, and Poﬁ,j =0.If:>/,5 <—1, then Z; is independent of Zo and Zj is
Z_, measurable. So E[Y;;|Z¢] = E[Y;;|Z_,] and, again, PyY;; = 0. Therefore,

Oro—r = || PoYeo—ill 1Po(Yeoor — Youoi) || < Yook — Yoooill < 6 k> €>0,

Ovine = [PoYernel = 11PoYerne — Yerro)| < | Yesne — Yorrel < 0o, k,£>0,  (12)

by Cauchy’s inequality. Hence

00 k—1 0o 00
Z Oiik = Z Oiik + Z Oivri <2 Z ds,
=0 =0 =0 =0

proving (10). To prove (11), similarly write

00 k—1 00
Z min(6, ;_r,€) = Z min (sup | PoYiizkll, e) + ) min (sup 1 PoYitk.ills e>
i=0 i=0 £>0 i=0 >0
k—1 ~ 0 ~
- Zmin (sup 1PoYiizkll, e) + » min <sup 1PoYisrill, (—:) . (13)
i=0 b i=0 bz

Now, for 0 <i < k — 1, by the triangle inequality and (12),
Hpoffi,zekH < |WPoYiiill + Po(Yiiox — Y/;sz)H < 0; + 0y,

where the same bound holds for ||PyYiiks| if i > 0. Applying this and the inequality
min(a + b, ¢) < min(a, ¢) + min(b, ¢) for a,b,c > 0, (11) follows readily from (13). &

It follows from Proposition 4 that if both the |w;| and the J, are summable then (3) holds;
if 3570 supys; 0¢ < 0o then (7) holds.



3. Nonlinear time series. Let {€/} be an i.i.d. copy of {¢;}. We say that X,, = F'(Z,)
is geometric moment-contracting if there exist « > 0, C' = C(a) > 0 and 0 < r(a) < 1 such

that
E{|F(... ,e_1,€0,€1,-- ,6n) — F (... ;e 1,e0,€1,.-.,ea)|*} < Cr*(a), n € N. (14)

Without loss of generality let o < 1 since otherwise we can employ the Holder inequality.
We may view X/ := F(... & |,e,€1,...,&n) as a coupled version of X,,.

Condition (14) is very mild, which is satisfied by a wide class of nonlinear time series.
Note that geometric moment contraction does not even requiring mixing (see the Example
at the end of the section). An important special class of (1) is the so-called iterated random

functions such that (14) is satisfied. Let X, be defined recursively by
Xn - F<Xn—175n)7 (]'5)

where F(+,-) is a bivariate measurable function with the Lipschitz constant

F(z,e) — F(a'
L, = sup [F@:9) — Fle'e)l
vt |z — |

< 0 (16)
satisfying
E(log L:) < 0. (17)

Then the Markov chain (15) admits a unique stationary distribution if E(L%) < oo and
Ellxg — F(x,€)|*] < oo for some a > 0 and xy (Diaconis and Freedman, 1999). The same
set of conditions actually also imply the geometric-moment contraction (14) (cf. Lemma 3 in
Wu and Woodroofe, 2000). The condition (17) indicates that the iterated random function
(15) contracts on average, which is satisfied for many popular nonlinear time series models
such as TAR, RCA, ARCH and EAR under suitable conditions on model parameters.

Recall that Zk = ( .. 7€k—175k) and ka = (5k—6+17 ce ,Sk). Let Z;c = ( .. ,6271,82).

LEMMA 5 The geometric moment-contraction condition (14) holds if and only if there
exist [y, Fy, ..., with each F, being an (-variate measurable function, such that for some

C < o0,

E{|F<Zk) — Fg(Zu)P‘} < CT’Z(OO, ¢ eN. (18)



PrRoOOF. “=7. Assume (14). Then for each ¢, there exists a realization Z{ = zy such
that E(|X, — X}|*|Zy = zo) < Cr(a). So (18) holds by defining Fy(-) = F(zo,-), which is

clearly measurable. The “«<” direction follows easily from

E(|Xe— X)|*) = E[F(Zi) = F(Zy_p, Zi0)|"]
< BlF(Zy) = Fi(Zio)| + | F(Zi_gs Zne) = Fo(Zy )|
< E[F(Zy) = Fil(Zwo)|*) + B F(Z_g, Zne) = FilZe)|"]
= 2E[|F(Zi) — Fo(Zy0)|"),
where we have applied the inequality |a + b|* < |a|* + |b]* for 0 < a < 1. &

In Lemma 5, we can often choose z, arbitrarily in defining F,. This can be illustrated by
the correlation integral example in Theorem 7 below.

We remark that conditions similar to (14) and (18) have appeared in the literature.
Denker and Keller (1986) assumed that F' is Lipschitz-continuous in the sense that there
exists a p € (0,1) for which

|F(...  2n-1,20) — F(... ,2,,_1,2,)| < const. - p" (19)
if 2y =2, ..., 2, = 2. For the two-sided extension see Definition 1.3 in Borovkova et al.

(2001). Comparing with our condition (14), (19) is stronger and it does not allow models
like X,, = pX,_1+ &, where |p| < 1 and the random variables ¢, are i.i.d. with unbounded
support. Borovkova et al. (2001) proposed a weaker version of (19), termed r-approzimation

condition, which requires
di(r) := E|Xo— E(Xole_i,...,&)|" — 0 as £ — oo, (20)

for some r > 1. To make this weaker version operational, one needs to implicitly assume
E|Xy| < oo, which excludes the case that ¢, does not have a mean. Our formulation has

the advantage that heavy-tailed distributions are allowed.

As before write X; = F(Z;), and for a fixed choice of f-variate function Fj from Lemma

5, deﬁne Xz = Ni,[ = Fg(ZM); let 1/;1’2'2 = K(XilyXig) — E[K(X“, 22)] and i1,d0 —



K(X“,X ) — EK(X“,X ) and recall that L; ;,, = w;,_;,Yi, ;, and _Zil’zé = Wi, —iy Yiy ia-

Then Theorem 1 and Theorem 3 imply (i) and (ii) of the following result respectively in

view of Proposition 4.

THEOREM 6 Suppose that for each £ > 1, there exists an (-variate function F, such that

(18) holds and Y72 supys; 0p < 00.
(i) If > |w;| < oo then

n-1/2 Z w;—;[K(X;, X;) — EK(X;, X;)] ~%, Normal (0,0%)

ij=1

for some 02 < 0.

(it) Let 352 |wi| = oo. If we also have iminf, .o W, /(3 7y lws]) > 0 and >;_(n
k)w? = o(nW?2), then

(nW2) 723" wi j[K(Xi, X;) — EK (X, X;)] = Normal (0,0?)

3,7=1

for some 0% < oo.

The inequality (18) implies that the distance between X; and X’M decays exponentially
fast to 0 in ¢. Thus under certain continuity conditions on K, J, is expected to vanish

sufficiently quickly. For an application of Theorem 6, consider the correlation integral

n

Nb = E 1‘X1‘17X7;2|<b7

i1 ia=1
which measures the number of pairs (X;, X;) such that their distance is less than b > 0.
Correlation integral is of critical importance in the study of dynamical systems; see Wolff

(1990), Serinko (1994) and Denker and Keller (1986) for further references.
THEOREM 7 Suppose that X,, defined in (1) satisfies (14), and for some k > 1,

sup P(x<X0—Xj§J:—|—T)SClOg_QRT_l (21)
7j#0,zeR

for all0 <7 <1/2. Then [N, — E(Ny)]/n?/? N N(0,0?) for some 02 < 00.



PROOF. Let K(x,y) = 1,—y<; and w; = 1. By Lemma 5, for each ¢ there exists an
(-variate measurable function Fy(-) such that (18) holds. Next we shall verify that (18)
together with (21) implies that 6, = O(¢~"), which is summable and thus completes the
proof in view of (ii) of Theorem 6. To this end, let u = 7(a)¥/?® < 1. Then by (18)

and the Markov inequality, ||1|X0_X0|2uz||2 < u™E| Xy — Xo|* < Cr(a)!?, where, as usual,

X; = X;y. For any 0 < u < 1 observe that

H [K(X[)? Xl) - K(X()? X’L')]lmaxﬂXoon\, | X —X])<ut H

< PY2(b—2u* < |Xo— X;| < b) + PY2(b < | Xy — Xy < b+ 2u)
which, by (21), is bounded by 2C*/2log™"(2u)~' = O(¢{~*). Since |K| < 1,

I[K (X0, Xi) — K(Xo, X))l < 1K (X0, Xi) — K (Xo, Xi) 10— %o, 11— %)y <ut |
+ || [K(X07 XZ) - K(XO’ Xi)]]‘maxﬂXo—XoL | X=X, ) >ut ||
= O(™") + Ofr(a)"],

proving that §, = O((7"). ¢

ExamMPLE. Let X, = (X,,-1 + €,)/2, where ¢, are i.i.d. Bernoulli random variables
with success probability 1/2. Then X,, admits uniform(0,1) as a stationary distribution.
This process is not strong mixing. Now we show that (21) is satisfied. Assume j > 1.
Let U = 37_ £;/27%. Then U is uniformly distributed over {0,1/27,...,(2/ —1)/2/} and
X; = Xo/2/ + U. Hence (21) holds in view of

Plr<Xo—X;<a+71) = EP[(x+U)/(1-27)<Xo< (z+7+U)/(1—-27)|U]

< 7/(1-277) <2r

The process X, is related to the doubling map Tx := 2z mod 1 in the following way.
Let Yy be a uniform(0,1) random variable and define recursively Y; = 2Y; ; mod 1 for
i > 1. Then (Xi,...,X,) has the same distribution as (Y,,,...,Y;) and hence N, and

M, = Z:” i=1 Ljvi—y;|<p are identically distributed. The limiting distribution of the empirical

10



U-process { M, 0 <b < 1} was discussed in Borovkova et al. (2001); see Section 6 therein.
¢

Our Theorems 6 and 7 are closely related to certain results by Borovkova et al. (2001),
which considered non-weighted U-statistics for two-sided processes X, = F((epik)rez),
where (g,,)nez is stationary and absolutely regular (or weak Bernoulli). To make a specific

comparison, we state here their Theorem 7, a central limit theorem. Let
Br = 2sup{sup{P(Ale1, ... ,e,) — P(A) : Ais o(epik,Entki1, ... )-measurable}}

be the mixing coefficients, oy = [25°°°, di(1)]/2 with dj,(1) defined by (20), and K(-,-) be
a bounded, symmetric function such that
sup E{[K(Xo, Xi) — K (X', Xi)[1)x0-x71<} < &(7)
1<k<oo
with lim, o ¢(7) = 0, where X’ is identically distributed as X, and X, is interpreted as an
independent copy of Xj. See Definitions 1.2, 1.4 and 2.12 in Borovkova et al. (2001). Then

the asymptotic normality of U, holds provided
D K (B + ak + b)) < 0. (22)
k=1

This result has a number of similarity with our Theorem 6 above. However, the two results
do not imply one another. Theorem 6 assumes one-sided processes with i.i.d. innovations
while their result allows the innovations to be two-sided and weakly dependent; on the other
hand, Theorem 6 allows unbounded K, general weights w;, and process X for which the
mean is infinite, whereas their result requires K to be bounded, w; = 1 and E|X| < oo. Let
us make a more specific comparison in the context of Theorem 7 of the present paper where
both results are applicable. Applying the central limit theorem in Borovkova et al. (2001)
to NV}, for one-sided processes with i.i.d. innovations satisfying (18) with a = 1 and (21), we
have 3, = 0 and «,, < Cp™ for all n > 1, where p € (0,1). By Example 2.2 in Borovkova et
al. (2001),

p(1) = sup P(b—7<|Xo— Xi| <b+7)<2Clog > 771,

1<k<o0

11



Thus condition (22) is reduced to > 5o k*log™*(1/p*) < oo, namely x > 3/2, which is

stronger than the condition £ > 1 imposed in Theorem 7.

4. Short-memory linear processes. Let (a,),>0 be square summable, (g,),>0 be

1.1.d. random variables with mean 0 and finite variance and
o0
Xn = Z AiEp—j- (23)
i=0

If >, la;| < oo, then the covariance function I'(n) = E(X,X,,) is summable and we say that
X, is short-memory. In this section, let Y; ; = K(X;, X;) — EK(X;, Xj). For short-memory
processes, we shall utilize the linearity structure and provide conditions on K (-, ) such that
(3) and (7) hold by computing the quantities #;; in (2) and é” in (7). In Section 5 we
shall discuss the case when X, is long-memory, which has a very different flavor. Note that
Y oo 0¢ < 00 is not guaranteed by Y |a;| < oo, and we need more refined computations,
which is feasible by the linearity of X,,.

Let a; = a;l(i < (), X,, = > @ien—; and }7;] = K(f(,-,f(j) — EK(Xi,Xj). Also define

/ _ /
Xi7j17j2 = X j, j» — @i€o + a;g(, where the truncated process

Zj1§j§j2 a;—je; —00 < j; < Jp <00
Xijijz =
0 —o0 < jo+1< 7 < oo

Define the convolutions

Ki iy i(x1,03) = EK(x1+ X5, ji100 s T2+ Xiyjt1.00),
Kihj(l‘l,l'g) = EK(l’l +Xi1,j+1,oo s ZL’Q), T1,T2 - R. (24)

% % % N/
Let Ky iy 5, Kiyjy Xiji g, and X

i ivj, De similarly defined as K; K j, Xijy j, and X/

1,862,079 1,51,52

with Z; replaced by Z;.
PROPOSITION 8 Assume that sup, ; | K(X;, X;)|| < oo and supi7j7é||K()~(i,)~(j)|| < 0.

Further, assume that there exist ng € N and C < oo such that for all iy,i5,¢ > ny,

151020 (XY, 000 Xy —00) — Kt 2.0(Xi 00,00 Xiz—o00) || < Cllan | + |ai,) (25)

12,

12



and

sup ||f(11 O(X’

i1,—00,0
k<-1

Then the following hold.

(i)

Xi) — Koy 0(Xiy —000, Xi) || < Clagy|. (26)

. C(lail + la;) 4,5 = no,
i <
Cla] i > ng,j <0.

(ii) There exists some constant C' < oo such that
sup » ;i < C"Y suplail,
k>0 Z ZO i |
and for any € > 0,

supme ik, €) < C' e—i-Zmln sup |a;, €)

k>0 i—0 j>i

PROOF. Fix iy,i5 > ng. First we remark that if ¢ < ng then the left-hand sides of (25)
and (26) are both equal to 0 so that the inequalities trivially hold. Writing

E[Ks, iy0(X! o000 Xty —00.0)|Z0) = Kiy i -1 (Xiy —o0—1, Xiy —o0,1),

00,07 12

we have by Cauchy’s inequality that

||P0 ( Zl’X’ig)H - ||[~{i1,i2,0()2i1,—oo,07Xig,—oo,()) - Kil,iz,—l(Xil,—oo,—hXig,—oo,—l)”
= HE[ i1,i2, U(Xil,—OO,()? Xi2,—0<>,0) KZl i, O(lel —00,07 X’L’Q —0 0)|Z0] ||

< 1 K1000(X], 000 XD —o00) — K in,0( Xt —00.05 Xig—00,0)] |-

Similarly, [|PoK (X, Xp)| < 1K 0(X! X)) — Kiy 0(Xs, —00.0, X3)||, which completes

11,—00,07

the proof of (i) in view of (25) and (26).
The first inequality in (ii) follows simply from

Zezz k_zezz k+zez+k1 <C +2ZSUp’az

i=no j>i

13



whereas the second inequality there can be derived similarly. &

REMARK. Note that X/

000~ Xiy 001 = a4, () — &0), conditions (25) and (26) can be
interpreted as the “Lipschitz continuity” of K, 0 and f(il o- Discontinuous functions K are
allowed since these are convolutions of K and the distribution functions of (X ( i1.1.005 Xi%lﬁoo)
and ()N(ll 41,00, 0), resp. For example, if K is a bounded function and f;, the density function
of e, satisfies [ |fL(t)]dt < oo, then it is easily seen that (25) and (26) hold. Observe that
degree of smoothness of the distributions of the above random vectors increases with 7y, 7s.

Thus, by only requiring (25) and (26) to hold for large ij,is, an additional dimension of
flexibility is in place.

Proposition 8 together with Theorems 1 and 3 immediately yield

THEOREM 9 Assume that ) 7, sup;s, |a;| < oo. Also assume that sup, ; || K (X;, X;)|| <

0o and sup; ; | K (X, X;)|| < oo and that the regularity conditions (25) and (26) hold.
(i) If Zio |w;| < 0o, then

n-1/2 Z w;_;[K(Xi, X;) — EK(X;, X;)] 4, Normal (0,0%)

ij=1

for some 0% < oco.

(ii) Suppose that > .7, |w;| = oo with liminf, . <= =— s > 0 and Y p_o(n — k)wi =

o(nW?2). Assume also that limy_, 6, = 0. Then

0| il

(W22 3" wi j[K(Xi, X;) — EK (X, X;)] = Normal (0,0?)

ij=1

for some 0 < 0.

REMARK. Consider the special case in which a, = n™” forn > 1 and 8 > 1 and ¢; are
i.i.d. standard normal random variables. Then by (20), d,(1) ~ ¢;n'/?7? for some ¢; > 0.

Here 7, ~ 3, is meant as lim,_..c V»/B, = 1. So a,, ~ co;n**7/2 and the condition (22) of

14



Borovkova et al. (2001) necessarily requires y - n*a, < oo, or § > 15/2. In comparison,

our Theorem 9 only imposes 3 > 1.

5. Long-memory linear processes. In (23), let a; = j7°L(j)I(j > 1) for some
B € (1/2,1) and slowly varying function L. Thus, a; is regularly varying at oo with index
— 3. This represents a rich class of processes. In particular, it contains the important time
series model fractional autoregressive integrated moving average (FARIMA) process. See
Granger and Joyeux (1980). Note that {X;} is long-range dependent in the sense that the
covariances are not summable (cf. Beran, 1994).

Let K = {0} U{k = (k1,... k) :r=1,2,... k; € {1,2}} and |k| be the length of k
(10| = 0). We assume throughout the section that integer p > 1 satisfies

Zn PRI ()P < (27)

Condition (27) allows simultaneous consideration of two cases: (i) (p+ 1)(26 — 1) > 1 and
(ii) (p+1)(26—1) =1and Y 7 |LP*(n)|/n < oo. Case (i) has been widely studied (see Ho
and Hsing (1997)), while the boundary case (p + 1)(28 — 1) = 1 has been overlooked in the
literature. Our approach allows us to investigate the boundary case for which the limiting
behavior depends on the growth of the slowly varying function L.

Denote by C?(R?) the class of all functions g such that the partial derivatives Dyg =
0"g/0xy, - - - Oy, exist for all k = (ky,... ,k,) € K for which |k| < p. For each iy, io, let

Y;

i = K (X5, X5,) ZZDIKMQ, 0,00 Y Ha” i,

r=0 |l|=r J1>>gr s=1

and L;, ;, = w;, i, Yi, 4, Let YZJ, LZJ be defined as Y] ;, L; ; with a; = a,1(i < ¢) replacing a;.
Let Kiy iy o Kiy s Xy ios Kivinis Koy s and X;

it be defined as in section 4.
Write

,J1,J2

Z Liysy + Z Ly (28)

i1,i2=1

15



where

Iny = Z Z Wiy —iy DK, iy, -00(0,0) Z Haw —js€js

[l|=ri1,52=1 J1>>4r s=1

Observe that Z,,,1 < r < p, are well-structured, and can be shown to follow non-central
limit theorems under mild regularity conditions on the DyH;, ;, —«0(0,0). Our main results

Theorems 10 and 11 below show that the normalized " follows a central limit

i1,92=1 11 i2
theorem under mild conditions. These two pieces of information will then combine to give
L

a comprehensive picture of the asymptotic behavior of U,. We refer to > " and

i1,i0=1 11,12

p

I _1 Zn,y, respectively, as the short and long-memory components of U,,.

We now state the technical conditions for our main results. In the following let

[e.9]

Ai(k)=>af, k=24 i>0.

¥ Y
j=i

(K1) There exists ng € N such that K;, ;,0(-,+) € C*(R?) when i1,iy > ng, and for all
k € K with |k| < p,

E[-DkKil,ig,O (Xil,—oo,()) Xig,—oo,o) |Z—1] = DkKi1+1,i2+1,0<Xi1,—oo,—17 Xig,—oo,—l)- (29)
(K2) For iy,is > ng, there exists C' < oo such that for all k € K with k| < p,

||DkKi1,i2,0<Xi1,—oo,07 X’iQ,—OO,O) - DkKil,ig,—l(Xih—oq—l; Xig,—oo,—l)
<VDk 117127_1(Xi17_007_17Xi27_007_1)7 (ai1€0a ai250)>“ < C (a?l + azzg) ) (30)

and, for |k| = p,
| Dk .0 Xy —00,0: Xia,—00.0) = DK ia,—1(0,0)[|* < C[A;(2) + Aiy (2)). (31)
(K3) For i; > ng, there exists C' < oo such that

sup || PoK (Xy,, Xi)|| = sup 56,1 ( Xy~ 00,00 Xi) — Kiy 0(Xiy—o0,—1, Xi)|| < Clag, | (32)

k<-1

16



Similarly we define

(K4) There exists ng € N such that for each y, K;,(-,y) € C*(R) when iy > ng,is < —1,
and for all k£ < p,

k,0 k0
E[Ki(ho)(Xil,—OO,O? Xi)|Z 1] = Kz-(1+1),o(Xi1,—oo,—17Xz‘2)- (33)
(K5) For iy > ng,is < —1, there exists C' < oo such that for all k& < p,

HKkO( Zl 70007X ) K(k (Xll 700717Xi2)

i1,t2,—1
—Kffjo)(xih_oo,_l,;(;) ai, &0 < Ca?, (34)
and, for all k < p,
KD (X 0 Xia) = KL (0, X)) |7 < C A (2). (35)
(K6)
Jim up K (X1, X;) — K(X1, X,)| = 0. (36)

REMARK. The conditions (K1) and (K4) state that we can interchange the order of differen-
tiation and integration. The other conditions are smoothness conditions on K;, ;, o and K;, o
for large 41,4. For the latter, the remarks following Proposition 8 are still relevant. These
conditions are left in the form in which they are directed applied in the proofs. Finding suf-
ficient conditions that are easy to work with in specific contexts should be straightforward.

See Ho and Hsing (1997), Koul and Surgailis (1997), and Giraitis and Surgailis (1999).

In the following we consider two special cases of > . |w;| < oo and ) . |w;| = co. Gener-

alizations are possible at the expense of additional details.

THEOREM 10 Assume that ) °, lw;i' P L(i)| < oo, E(e}) < 0o and sup; || K(Xo, X;)| <
oo. Then under the regularity conditions (K1)-(K3), we have n~'/? D 1<y in<n Lirsia 4,

Normal(0, 0?) for some 02 < 0o.

17



THEOREM 11 Let w; = 1, and assume that E(e1) < oo, and sup, ; | K(X;, X;)|| < oo,
Sup; |K(X;, X;)|| < 0o. Then under the regularity conditions (K1)-(K6), we have

—3/2 o d 2 2
=2 i inen Livis — Normal(0,0%) for some 0* < oco.

We conjecture that Theorems 10 and 11 can be more made general by dropping the
restrictions on the w;. While that generality is not achieved in this paper, the two theorems
do already cover a wide range of interesting results. In particular, numerous limit theorems
for the partial sum in the context of long-memory linear process (cf. Ho and Hsing, 1997)
are special cases.

As explained earlier, the asymptotic distribution of U, is determined by one term or
a combination of terms on the right of (28). The asymptotic behavior of U, is described
by Theorems 10 and 11, while those for the “non-central” terms Z, , are typically more
straightforward but must be considered case by case. Let’s take any [y, ... ,l. € {1,2} with
1 <r <pand(ry,rs) = (p,q), and consider two special cases for the purpose of illustration.

First let’s consider the case where |w;| is summable. Note that under general conditions

we expect
Kot —o(21,22) = G(21,22) = EK(X1 + a1, Xo + Z2)

where Xl, X, are i.i.d. that have the same distribution as X;. Hence we assume that the

we Dy, 1, K11 -00(0,0) are absolutely summable in ¢ and

lim <w0Dh7.,_,lTKLLOO(0, 0) +2> wiDy,.. 1, Kos—oo(0, 0)) = C € (=00, ).

n—00
t=1

18



Then it is not difficult to see (cf. Surgailis, 1982, Major, 1980) that

T
2
E wil—ilel,m,HKihiz,—OO(Oa O) E : Haizs—jssjs

1<iy,i2<n Ji>>4r s=1
. 2
= E E wil*izpllw7HKi1,i2,*OO(07 0) | | iy —js
J1>>gr \1<i1,i2<n s=1

~ C? Z [zn:ﬁat_jsr

J1>>0,  t=1 s=1

-~ Czn%’"(w’l)LQ’”( / / Hl’—us dx} duy - - - du,
U > >Up =

and

_1+T(6 1/2)L Z Wiy — Z2Dl1 lKi17i2,—OO(O’ O) Z Haizs—jsejs

1<l1,12<n J1>->gr s=1
1 I8
e [/ [T — w de|aBw)- - dB(u,) (37)
UL S>Up =0 4_1

where the limit is expressed in the form of a multiple Wiener-Ito integral with B denoting

standard Brownian motion and y, = max(y,0). Note that applying Theorem 10, the rate of

>t ig1 Li i in this case is n'/2 which is lower than that of > i<ivig<n Di e Hiy iy —00(0,0)
Zj1>--->jr ngl @iy, —js€js-

As a second example, we consider an application in connection of Theorem 11 by assuming

w; =1and Dy, 1, Kot —00(0,0) = C € (—00,00). (38)

Under this assumption,

2
E : TR A G 0 0 § , Hall _.798]9”

1<z1,zg<n J1>>0p 5=1
r

1 1 9
- 02n4_’”(m_1)[,2’"(n)/ [/ / H(:vl - us)jrﬁdxld:vg} duy - - - du,
U > S>Up x1=0 Jx2=0 s=1

and
n_2+T( 1/2 Z Dh,--- Iy 11 yi2,— O O Z Hall —5sEJs (39)
1<11,12<n J1>>0r 5=1
. 1 1 r
SLITel [/ / (23— 21) P [ (. — us);ﬁdxld@] dB(u,) - - dB(u,).
Up>e>Up xr1=0 J x2=0 s—1
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Now Theorem 11 implies that the rate of " Li, i, is n®/%, which is dominated by that

i1,i2=1

of 219'1,1'291 D, . ,irKh,iz,—OO(O? 0)2j1>m>jr H::1 Ay —js€js -

In view of these examples and Theorems 10 and 11, in (28) one can refer to > 77" . | Li, 4,

the short-memory component, and »%_, Z, . the long-memory component of U,,.

Numerous applications result from these two simple cases. The following are some illus-

trations.

(a) Sample covariance function

Suppose

where T' is some function. n~'U, is an estimator of E[T(X1)T(X14x)]. So Hy, i, (21,12) =
Wi, —i, K (21, 22) Where wy;, i, = I(|i1 — i = k) and K (21, 22) = T'(21)7T (x2). Thus Theorem
10 applies, where the asymptotic distribution rests on 7. Let’s consider an example by

assuming k > 2, T'(z) = 2% and E(XleJrk) =0,7 =1,2. It is easy to see that

1Ko -2(0,0) = 2B(X})ift=kand (Iy,...,l)=(1,1) or (2,2)

goae

= 0 otherwise.

If 3 € (3/4,1) then >~? | Z,, =0 and hence

1
NZD
If 3 € (1/2,3/4) then Y %, Z,, is dominated by the term

(U, — EU,) —%, Normal (0,0%).

Zn,2 = Z (Dl,l+D2,2)Hi1,i27—00(070) Z Haizs—jsgjs

1<i1,2<n J1>>gr s=1

n—k
= 8E(X}) Z Zai—jlai+k—j25j15j2'

=1 j1>jr
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Hence (37) and the discussion leading to it give

8E(X2)]'n 20V L2 () (U, - EU,)

- / io[(x )z — ua) ]| dB(ur)dB us).

U >u2

(b) U and V-statistics

The asymptotic distribution of statistics of the form
Z K(X;,X;,) or Z K(X;,X
1<ii#ia<n 1<iq,ia<n
can be considered using Theorems 10 and 11. Note that the partial-sum theory developed in
Ho and Hsing (1997) is readily recovered here by letting K (x1,z2) = (h(z1) + h(x2))/2. We
give another example here, the Wilcoxon one-sample statistic and the signed-rank statistic,

for which the asymptotic distribution is not seen elsewhere.

Let
Kil’iQ(SCl,QIQ) = [(xl + T9 > 0)

Then [n(n — 1] 32 i ip<n K (Xiy, Xiy) is called the Wilcoxon one-sample statistic. Let’s

assume for simplicity that €; has a normal distribution and that the marginal of {X;} is

standard normal. Simple calculations give

T+ X9
1,12, ( 1 2) ( 1 2 ( 1 2)) ( 2(1+pi1_i2)>

where p, = EX1X1,, and ¢ is the standard normal pdf. Hence,

1 1
KM (0,0) = $(0) — —=
v 2(1 4 piy—i,) 2/

With C' = 1/(2y/7) in (38), it follows from (39) that for each g € (1/2,1),

as |i; — is] — oo.

n®=2L7Y(n)(U, — EU,) / / (x — )] PdrdB(u) (40)
ueR J =0

21



which has a normal distribution. A related statistics is the signed-rank statistic
n
W, => WR'
i=1

where U; = sign of X; and R = the rank of |X;| among |X|,...,|X,|. It can be shown
(cf. Randles and Wolfe, 1979) W,, = U, (1 + 0,(1)) and hence the asymptotic distribution

can be derived in exactly the same way.

n
i1,i0=1

There are situations where ) L; i, as well as Z,,,1 < r < p all equal zero.
Then the asymptotic distribution will be determined by the lowest-order non-trivial Z,, ,.
This is exemplified by certain U-statistics with degenerate kernels, kernels which satisfy
[, K(21,22)dF (x1) = 0 for all z5. See Dehling and Taqqu (1989, 1991) and Ho and Hsing
(1996). The approach in those references overlaps and complements the approach described

here.
6. Proofs.

PROOF OF THEOREM 1. Let &,(Z;) = 25" Ly; and S,(&n) = Sopy &m(Zs), m > 1.
Then (5) implies

[ee) oo t+m [e%¢) m
Z Hpo(fm(zt»n < Z Z |wt—i|6t,i < Z Z |wk|8t,t—k < 0
t=0 t=0 i=t—m t=0 k=—m

which entails S,,(&,)/v/n = N(0,02) for some 02 < oo by Theorem 1 in Woodroofe (1992)
(see also Lemma 5 in Wu (2003)). Let LIM be limsup,,_, . limsup,,_, ... It remains to verify

that

= LIML

Z Lil,iz - Sn(fm) \/ﬁ

1<iy,i2<n

Z Li1,i2

|7;17’L'2|>m, 1<i1,i2<n

~0. (41)

1
LIM—
vn
To this end, note that the projections P; are orthogonal and hence

2
2 n

= > |7 > Li, i,

t=—o00 [i1—i2|>m, 1<i1,i2<n

> Li i,

|i1—i2‘>7’l’b7 1<i1,i2<n
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2
n

< Z Z ”PtLil,iz”
t=—o00 |’£1 i2\>m,1§il,i2§n
n n 2
< (z+z>[z 3 uptLh,mu]. (12)

t=—0o0 io=111=to+m+1

Making use of the fact that P,L;, ;, = 0 for ¢t > 7; V 19,

n n n 2 n [ n-1 n—k 2
Z (Z Z ||Pth‘1,i2||) = Z |P: L z-‘rk:z”]
t=1 t9=111=t2+m+1 t=1 Lk=m+41i=t—k

n [ n—-1 n—t 2

= Z \’wkw“k]
t=1 Lk=m+1 i=0
-1 n 2
k=m+1 =0

and similarly,
0 ['n n 2
E E E ||PtLi17i2||
t=—o0 Liz=11i1=t2+m—+1
n—1 n—k
<§ E |wk|9z+k+tz+t
+1
n

0 [ n—1 n—k
t=0 Lk=m i=1

= Z Z Z||PtLi+k,i||
t=—o0 Lk=m+1 i=1
oo n—-1 n—k [e's)
< C’Z Z Z|wk|92+k+m+t<0 Z ZZ|wsz+k+tz+t

t=0 k=m+1 i=1 k=m+1 i=1 t=0

< C YD D lwdbi=Cn Yy Y weldije, (44)
k=m+1 i=1 j=0 k=m-+1 j=0
in view of
n—1 n—k
Z Z |wk|91+k+tz+t < Z |wy| Zez+k+tz+t < Z |wg| 2933 p=: C < o0.
k=m+1 =1
Hence (41) follows from from (3), (42)-(44). O

PROOF OF THEOREM 2. By Cauchy’s inequality, we have | Po(Ls, s, — Li, 5,) || < |[ws, i, |0-

By the triangle and Cauchy’s inequalities, we also have
1Po(Liy i = Liy )| < Cluwiy i, 163, 45
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Thus there exists a C' > 0 such that for all i1, 79, £ such that
1Po(Liy i = Liyia) || < Cluws, iy min(8, 55, 6¢). (45)

In the sequel let LIM stand for limsup,_, limsup,,_,., and C stand for a constant which

may vary from line to line. By the proof of Theorem 1, we have

2

1 -
A= LIMnW2 > (Livis = Lia)|| <I+1I
1<i1,22<n
where
C n [n—-1n—t 2
PSS i )|
oo [n—1 n+t
I = LIMnWT%Z Z Z \wk\mln ;i k,&)]
t=0 k=0 i=1+k+t

By the assumptions, we have

I < C'lim sup sup min(6; ;_, 0¢) = C lim sup min(6;;_x,0) =0
=00 k>OZ e 6—0 k>OZ bicir 0 7

and

00 n—1 n-+t n—1 oo
II < LIM Z <Z Z |wk|m1n ;e k,5g> ( Z|wk|m1n ;i k,ég))
nW, n t=0 \k=01i=1+¢ k=0 i=1
2
< C’hm su min(6; ;—, = 0.
o <k>IO)Z g )
Thus A = 0 follows. &

PrOOF OF THEOREM 3. The plan of the proof is to show that for every fixed ¢ > 1,

(nW?2)~1/2 Z Liy i, —2, Normal (0,6%) as n — oo (46)

1<i1,i2<n

for some finite 62. It follows then from Theorem 2 that &2 is Cauchy in ¢ and hence converges

to a finite constant as £ — oo. By this and another application of Theorem 2, we conclude
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that (9) holds with 0% = limy_,, 5 € (0,00). Thus, we will focus on proving (46) for a fixed
¢. Observe that

| X R

1<y ig<n,Jig —iz[ <L

¢
=0 (ﬁZ rwkr) — ol(uWV2)!")
k=0
since W,, — oo. Thus it suffices to show that

(nW?2)~1/2 Z Li, i, —%, Normal (0,6%) as n — oo (47)

1<y, i2<n,|i1 —iz|>¢
for some finite 62. Fix iy, 4y with |i; — 5| > £, observe that Zil and ZiQ are i.i.d. Now define
Jihiz(zil) = E[Li17i2|zi1] and

Riviy = Liviy — Jivin(Ziy) — Ty (Ziy).

Let i1 = r1 + 1€ and iy = 79 + @of, where integers 0 < ry,ry </l —1land 0 < ¢ # g < q=

|n/¢]. Since ]%Tﬁql& ro+qoe are uncorrelated for different pairs g1 < ¢o,

2
Z 5 Z 2
RT1+Q1Z,T2+q2€ < C We i 4 qil—ro—qob>
1<q1<q2<q 1<q1<q2<q
which in conjunction with Cauchy’s inequality by summing over 1,70 = 0,... ,{ — 1 yields

that

2

Z Rilﬂé < C Z Z wfl'ﬂhf—rz—(hz
1<i,ia<n,|iy —iz| > 1<r1,re<€1<q1<q2<q
n
= C Z w? < C’Z(n — k)w; = o(nW?).
i1—ig — k n
1<iy,ia<n k=0

So (47) will follow from

(nW?2)~1/2 > Jiviy(Zi)) —% Normal (0,52) as n — oo (48)

1<iy,ia<n,|i1 —iz| >

for some finite 52, which can be easily shown to hold by the Central Limit Theorem for

(-dependent processes. &
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PROOF OF THEOREM 10. We verify (3). By (c) of Lemma 12 and Lemma 13 below, we

have for k£ > 0,

Zemek < CZ%’% = CZ%’ < 0.
i=k i—k i=0

Next for ¢ > 0 and j < —1, we have by (K3) that ||PoK (X;, X;)|| = O(|a;|) uniformly. It is
easily seen that for the “well-structured” part K(X;, X;)—Y; ;, we also have ||Po[K (X}, X;)—
Y ;lll = O(Ja;|) uniformly. Hence, for k£ > 0,

k—1 k—1
D ik <) lail < CKOL(K)
1=0 1=0

by Karamata’s Theorem. Hence

o) k—1 [%S)
Z |wy| Zei,zek < C'Z lwi| kP L(k) < 0o
k=0 =0 k=0

¢
PrROOF OF THEOREM 11. For each i1 > 19, let
i1 pA(t—i2) r
,0)
yihiz = 217 Z Z Kzlrm ia 11 —00,i27 Xiz) Z H @iy —js € s
t=io+1 r=1 t=41>>jr>02+1 s=1
p r
_Z ZDlKihim—OO(O?O) Z Haizs—jssjs
r=0 [t|=r 22>51>->jr 5=1
and Vi, i, = Vi, if 11 <. We first apply Theorem 3 to show that
n3/2 Z Virsis LN Normal(0, o%) (49)

i1,i2=1

2

for some 0% < oo. For the process {);;}, it follows easily from (36) that lim, .. d, = 0.

Hence we focus on verifying the condition (7). Observe that for iy > ia, P, 4, 18 equal to

PA(t—i2)

r
(r,0)
Pt 217 E , Hzl 12, Z2 11 —00,12 Xi2) E H iy —js €

t=j1 > >jp >ig+1 s=1
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if io < t < 41, and equal to P;Y;, ;, if t < 5. Hence by Lemmas 12 and 14 below, for

il > HlaX(O, iz),

~ ~ Cgh,iz 10 <0< 1y
0i17i2 = sup Poyil,iz <
£20 Ci, g > 0.

Note that §i17i2 = Q/Jil if ’ig S —pP- Thus
0 R k—1 . 0 )
Z min(6; ,_x,€) = Z min(6; ;,_x, €) + Z min (0, €)
=0 =0 =0
< C<e+2min(wi,e)>—>0ase—>0
=0

since the v; are summable by Lemma 13 below. Hence the condition (7) is proved for {Y; ;}
and the proof for (49) is complete.
Next observe that

.
11712 yll,lz + VVZLZz = ylhlz + E RZMz, E : E Hai1—js€js

t=io+r t=41>->jr>i2+1 s=1

where
7,0 (r,0
Ri17i27r = K’i(l,’iQ),iQ (X'Lly oo Z27 Z Z D Kzl 7,2)7 0 0) Z H ails _jsgjs'
=0 [l|=r i2>j1> >4, s=1
Hence the conclusion of the theorem follows from (49) and Lemma 15 below. &
For k € K with |k| < p, define
M), = DiKiyin0(Xi —oc0, Xia,—oc.0)
p—Ik| r
— >3 DiDkKi (0,00 > ],z
r=0 |l|=r 02j1>j2>+->jr s=1

LEMMA 12 Assume that E(el) < oo, and (K1) and (K2) hold. Then there exists a

constant C', independent of i1,io > ng, such that
(1) for allk € IC with |k| < p—1,

(1,k) (2,k)
1P ML < Clal, +af, + af | My 5P + a, IMES ]

741 )12 11,82
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(ii) for all k € IC such that |k| < p,

IMP) 112 < O[As (4) + Ay (4) + A FH ) A7+ (9]

11,12

(iii) |[PoYi i |I> < C(47 +03), where v = |al[Jai| + /Aira(4) + A7, (2))-

PROOF. We first prove (i). Define

=1kl

T

Bi(iniz) = 3 Y DiDeKiyin-50(0,0) > JJai, e
r=1 |l|=r 0=j1>j2>>jr s=1
p—|k| r

Blk 7,1,@2 E E DlDl kK“ ig,— (0 0) E Ha’ils—jsgjs?
r=1 |l|=r—1 —1>j2>>jr =2
p—|k| r

By k(Zb Z2 E E DlD2k i1,i0,— (0, 0) E H iy —js€js -
r=1 [l|=r—1 12> >y 5=2

Then Byg(i1,12) = ai,€0B1 (i1, 72) + ai,0Bak(i1,12). Observe that for « = 1 and 2,
HDL,kKil,ig,fl(X’Lll,foo,*17 Xi%,oo’,l) - BL,’C(?:17 22) H = HM(L—F% 12+1||
Hence by the triangle inequality,
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By (29) and the triangle inequality,
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from which (i) follows in view of (30) and (50).

To establish (ii) we will adopt a backward induction argument. First for |k| = p, since

ME = DeKi i 0(Xi, —00.0y Xig—o00) — DeKi, ia.—00(0,0), (i) follows from (31). Next we
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make the induction assumption that (ii) holds for all k with |[k| = m > 1 and we wish to

show that it holds for all |k| = m — 1. By (i) we have for any k with |k|

(1,k) (2,k)
1P ML < Claf, +af, + af | My 5P + a IME 0]

7,1 i2 11,52

Since the projections P; are orthogonal and 77t]\/[i(1kg2 =0fort>1,
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S C ([A ( + Azg + Z 11+t + a12+t [Ai1+t<4) + Ai2+t(4)]
t=0

+ ) (ah o +ad )AL (2) + AZIZ“@)])
t=0

=m —1,

by the induction assumption. Now the induction is complete since Y o, a?,,A;1(4) =

o[Ai(4)] and 3232, af, AL (2) = O[AT™(2)).

Finally, (iii) follows readily from parts (i) and (ii) of this lemma by noting that P;Y;, ;,

and PoYi, —tip—t = PolM, have the same distribution.

Zl tZQ t

LEMMA 13 If p and L(-) satisfies (27), then > ;= 1; < 00.
Proor. By Karamata’s theorem,
A, (k) = O(na®) for k > 2.
So the lemma easily follows from (27) after elementary calculations.

For all 21 > 0 > iy, define

117,2: E Pt 1112
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where PtN
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¢

(51)

if 0 <k <pA(t—riy) and 0 otherwise. The following lemma is very similar to Lemma 12.
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LEMMA 14 Assume that E(e]) < oo and conditions (K4) and (K5) hold. Let iy > ng >
0 > iy and write p' = p A (—iy). Then there exists a constant C, independent of i1,1is, such

that
(i) for all0 <k <p —1,

1Po
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N2 < Cab + a2 INSED, ]
(ii) for all0 <k </,

IV, P < O A (@) + 47 7M )]

11,12

(iti) |Podianll* < C& 4, where &,y = las, |[la,| + \/Ail+1(4) + A7 (2)]

PROOF. We first prove (i). Fix k < p’ — 1. By the triangle inequality and (33),
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The first term on the right is bounded by Clw;, _;,|a?, by the assumption (34). The second
term on the right is bounded by
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Observe that

k+1)
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Hence (i) follows.

To establish (ii) we will adopt a backward induction argument. First for & = p/, (ii)

follows from (35) in view of

/ /70 /70
N(p) = K(p ) (X’il,—oo,07Xi2) - K(P ) (Xil,—oo,iga X’Lz)

11,12 11,32,0 11,12,12

Next we make the induction assumption that (ii) holds for £ = m > 1 and we wish to show

that it holds for k = m — 1. By (i) we have

[PV VI <l + a2 N
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Since the projections P; are orthogonal,
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by the induction assumption. Now the induction is complete since Y o, a7, A;i1(4) =

o[A;(4)] and Y777 a2, ATL™TH(2) = O[AF T (2)].

Finally, (iii) follows readily from parts (i) and (ii) of this lemma by noting that P, 4,
and PoVi,—tis—t = PolN, “ tw_t have the same distribution. O

LEMMA 15 Under the conditions of Theorem 11,

w23 0,

1,j=1

31



PRrRoOOF. Recall that

p—r !
_ g(r0) (r,0)
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and hence we have for iy > iy > 0,
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~ CaiQ(iaiz)% ~ ig_éLp_T+1(i2) = Niy»
where 6 = (p — 7+ 1)(6 — 1/2) + 1/2 by Lemma 12 and (51). Projecting iteratively, we
obtain

2

n r
I > Riir > ai—j, [ [ @ir-i.ch.
i1>i9=1 io+r<t<iy t=71>->jr>02+1 s=1
n t-—1 r
_ 2
= > 1YY T et Ririarl
n>ty>>te>1  i1=ty io=1 s=1
tr—1 n tr—1 r

— Z Z 1 Z Z Hail—tspt/Rz‘l,m,r

n>t1 > >t >1t/=—o00  i1=t1 i9=1Vt' s=1

2

tr—1 n tr—1 r

DN S 3 S | (e

n>t1 > >t >1 t/=—o00 11=t1 19=1Vt' s=1

IN

Now approximating summations by integrals, the last expression can be seen to be asymp-

totically equal to Cn" 5205+ ([(n))2e=m+1) x INT for large n, where

t 1 2 o1 2
INT = / / / [[@-t)~" (/ (y — t')—6> .
1>t1>->t,>0 Jt/=—00 T=t1 41 y=0Vvt/

Since
r+5-2(rf+0)=4—-(p+1)(26—-1) <3,

where the equality holds only if L(n) — 0 by (27), the result will follow if we can show that
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INT < oo, which is what we will do. First

1 r oo r t _t _ﬁ
—t, Bdr < (t, —t —(7"/3—1)/ -B 1)~5 1 s d
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Hence we have
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Writing
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it is easy to see that all three integrals are uniformly bounded since 1/2 < § < 1. Also,

integrating iteratively from ¢, to t3, we obtain

T
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Since r(260 —1) < 1,
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1 t1
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Hence we conclude that INT < oo and the proof is complete. &
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