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Abstract. A weighted U -statistic based on a random sample X1, . . . , Xn has the form

Un =
∑

1≤i,j≤n wi−jK(Xi, Xj) where K is fixed symmetric measurable function and the wi

are symmetric weights. A large class of statistics can be expressed as weighted U -statistics or

variations thereof. This paper establishes the asymptotic normality of Un when the sample

observations come from a non-linear time series and linear processes.
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1. Introduction. Consider the causal process

Xi = F (. . . , εi−1, εi), (1)

where the εj are i.i.d. random elements. Clearly (1) is very general and represents a huge

class of processes. In particular, it contains the linear process Xi =
∑∞

j=0 ajεi−j, where

aj are square summable and εj has mean 0 and finite variance, and many nonlinear pro-

cesses (cf. Section 3) including the threshold AR (TAR) models (Tong, 1990), AR with

conditional heteroscedasticity (ARCH, Engle, 1982) models, Random coefficient AR (RCA)

models (Nicholls and Quinn, 1982), exponential AR (EAR) models (Haggan and Ozaki,

1981). The main goal of this paper is to consider the asymptotic behavior of the following

statistic:

Un =
∑

1≤i,j≤n

Hi,j(Xi, Xj) :=
∑

1≤i,j≤n

wi−jK(Xi, Xj),

where K is fixed symmetric measurable function and the wi are symmetric constants. We

refer to Un as a weighted U -statistic. The class of statistics that can be written in this form

or variations of this form is clearly huge. For example, if Hi1,i2(x1, x2) = [G(x1) + G(x2)]/2,

n−1Un is the partial sum of G(X1), . . . , G(Xn); if Hi1,i2(x1, x2) = x1x2I(|i1 − i2| = k), then

(n − k)−1Un is the sample covariance function of lag k in {Xi}; if Hi1,i2 = I(i1 6= i2)K and

K, respectively, for some fixed function K, then Un is a (non-normalized) U and V -statistic,

respectively.

The study of asymptotic properties of the weighted or even the usual U -statistics is in

general not straightforward. Hoeffding’s decomposition (Hoeffding, 1961) provides a powerful

tool for understanding the large-sample properties of U -statistics based on i.i.d. or even

weakly dependent observations. See Randles and Wolfe (1979), Serfling (1980) and Lee

(1990). For the i.i.d. case, a small number of papers consider the asymptotic properties

of weighted U -statistics; recent references include O’Neil and Redner (1993), Major (1994),

and Rifi and Utzet (2000). For weakly dependent processes, the results for U -statistics are

typically developed under mixing conditions; examples of these can be found in Yoshihara
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(1976), Denker and Keller (1983,1986), and a series of recent papers by Borovkova, Burton

and Dehling (1999, 2001, 2002). Laws of large numbers for U -statistics of stationary and

ergodic sequences were considered by Aaronson, Burton, Dehling, Gilat, Hill and Weiss

(1996) and Borovkova et al. (1999). For long-memory processes, U -statistics and quadratic

forms were considered by Dehling and Taqqu (1989, 1991), Ho and Hsing (1996), Giraitis

and Taqqu (1997), Giraitis, Taqqu, and Terrin (1998), among others.

Using martingale-based techniques, we prove some general results for Un for processes

satisfying (1) in a variety of short and long-memory situations. Approaches based on mar-

tingales are very effective in dealing with asymptotic issues of stationary processes. See

Woodroofe (1992), Ho and Hsing (1996, 1997), Wu and Mielniczuk (2002), and Wu (2003) for

some recent developments, where certain open problems are dealt with. Wu and Woodroofe

(2003) investigate approximations to sums of stationary and ergodic sequences by martin-

gales. Based on such approximations, they obtain necessary and sufficient conditions for such

sums to be asymptotically normal from the martingale central limit theorem. No mixing

conditions will be involved and the results obtained are often nearly optimal.

Specifically, in section 2, we will state two general central limit theorems for a stationary

process Yi,j where Yi,j is measurable with respect to the σ-field generated by εk, k ≤ i ∨ j,

where i∨ j = max(i, j). An example of Yi,j is Yi,j = K(Xi, Xj) but the realm of possibilities

goes beyond that. In addition to the dependence of the process Yi,j, the wi introduce another

level of dependence in Un. The two cases of
∑∞

i=0 |wi| < ∞ and
∑∞

i=0 |wi| = ∞ correspond

to short and long-range dependence, respectively, thereby entailing norming sequences of

different orders of magnitude. We will address both cases.

In section 3 we apply the results to non-linear time series that are geometric-moment

contracting. These are “short-memory” processes, which include a large class of processes

mentioned in the beginning of this section, and also processes that do not satisfy any strong

mixing conditions. In sections 4 and 5, respectively, our general results are applied to short

and long-memory linear processes. In the long-memory case, we let Yi,j be the remainder of an

ANOVA decomposition of K(Xi, Xj). The resulting decomposition of Un is similar in spirit
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to Hoeffding’s decomposition, and the asymptotic distribution of Un can be determined by

identifying the dominant term(s) of the decomposition. In sections 3 and 4 we also compare

some of our results with related results in Borovkova et al. (2001). The two sets of results

have overlapping but somewhat different ranges of applicability; we explain the differences

and, where they overlap, we point out situations where our results work more effectively.

Detailed proofs are included in Section 6.

2. Notation and main results. Let εi, i ∈ Z, be i.i.d. random elements taking values

in a general state space. Define the shift processes Zi = (. . . , εi−1, εi) and, for each ` ≥ 1,

Z̃i = Z̃i,` = (εi−`+1 . . . , εi), where we often suppress ` in Z̃i,` to simplify notation. Let

Yi,j, i, j ∈ Z, be random variables with zero means and finite variances, such that Yi,j = Yj,i,

Yi,j ∈ σ(Zi∨j) and (Yi,j,Zk) is a stationary process in the sense that the (Yi+t,j+t,Zk+t)

have the same finite-dimensional distributions as (Yi,j,Zk) for each t ∈ Z; similarly let

Ỹi,j, i, j ∈ Z, be random variables with zero means and finite variances, such that Ỹi,j = Ỹj,i,

Ỹi,j ∈ σ(Z̃i, Z̃j) and (Ỹi,j, Z̃k) is a stationary process in the sense that the (Ỹi+t,j+t, Z̃k+t) have

the same finite-dimensional distributions as (Ỹi,j, Z̃k) for each t ∈ Z. Define the projection

operator

Ptξ = E(ξ|Zt)− E(ξ|Zt−1), t ∈ Z,

where ξ is an integrable random variable. Let

Li,j = wi−jYi,j and L̃i,j = wi−jỸi,j.

The two cases where the weights wi are summable and non-summable have distinct flavors,

and they will be considered separately in Sections 2.1 and 2.2.

2.1. Summable weights. In this sub-section we consider the asymptotic distribution of
∑

1≤i,j≤n wi−jYi,j where the weights wi are absolutely summable. When Yi,j = K(Xi, Xj)−
EK(Xi, Xj), obvious examples of this include partial sums for which wi = δi,0 and k-lag

sample covariance function for which wi = δi,k. Let
d−→ denote convergence in distribution

and Normal (0, σ2) be the normal distribution with mean zero and variance σ2.
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For any integers i, j, define

θi,j = ‖P0Yi,j‖. (2)

Theorem 1 Assume that

∞∑

k=0

∞∑
i=0

|wk|θi,i−k < ∞. (3)

Then

1√
n

∑
1≤i,j≤n

Li,j
d−→ Normal (0, σ2) (4)

for some σ2 < ∞.

Remark. Since θi,j = θj,i and wk = w−k, (3) is equivalent to the seemingly stronger

statement

∞∑

k=−∞

∞∑
i=0

|wk|θi,i−k < ∞ (5)

in view of

−1∑

k=−∞

∞∑
i=0

|wk|θi,i−k =
∞∑

k=1

|wk|
∞∑

j=0

θj+k,j =
∞∑

k=1

|wk|
∞∑

i=k

θi,i−k ≤
∞∑

k=0

∞∑
i=0

|wk|θi,i−k.

2.2. Non-summable weights. The derivation of the main result, Theorem 3, in this

section for non-summable weights relies on Theorem 2, which asserts that
∑

1≤i,j≤n Li,j can

be approximated by
∑

1≤i,j≤n L̃i,j. To consider the asymptotic behavior of the latter we

apply the idea of the Hoeffding decomposition.

Let

θ̂i,j = sup
`≥1

‖P0Ỹi,j‖

and

δ` := sup
j∈Z

‖Y1,j − Ỹ1,j‖. (6)
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Define

Wn(i) =
n∑

j=1

wi−j and Wn =

[
n∑

i=1

W 2
n(i)/n

]1/2

.

Theorem 2 Assume that lim`→∞ δ` = 0, lim infn→∞ Wn/
( ∑n

i=0 |wi|
)

> 0, and

lim
ε→0

sup
k≥0

∞∑
i=0

min(θ̂i,i−k, ε) = 0. (7)

Then

lim
`→∞

lim sup
n→∞

1

nW 2
n

∥∥∥∥∥
∑

1≤i,j≤n

(Li,j − L̃i,j)

∥∥∥∥∥

2

= 0. (8)

Theorem 3 Assume that
∑∞

i=1 |wi| = ∞ and
∑n

k=0(n − k)w2
k = o(nW 2

n). Then under

the conditions of Theorem 2,

1√
nW 2

n

∑
1≤i,j≤n

Li,j
d−→ Normal (0, σ2) (9)

for some σ2 < ∞.

Remark. The assumptions on the wi in Theorems 2 and 3 are very minor and are satisfied for

every situation of practical interest. For example, if wn ∼ C/nβ, β < 1, then those conditions

hold. Note, however, that in Theorem 3, the second condition
∑n

k=0(n − k)w2
k = o(nW 2

n)

cannot be derived from the first one
∑∞

i=1 |wi| = ∞. For example, let wn = 2k whenever

n = 22k
, k ∈ N and wn = 0 otherwise. Then

∑∞
i=1 |wi| = ∞ and there exists a constant

c′ > 0 such that
∑n

k=0(n− k)w2
k ≥ c′nW 2

n for all n ≥ 4.

The conditions (3) and (7) are closely related through δ`. The following is useful in

verifying the conditions in certain situations.
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Proposition 4 The following hold:

sup
k

∞∑
i=0

θi,i−k ≤ 2
∞∑
i=0

δi (10)

and for any ε,

sup
k

∞∑
i=0

min(θ̂i,i−k, ε) ≤ 4
∞∑
i=0

min

(
sup
`≥i

δ`, ε

)
. (11)

Proof. Let j ≥ i ≥ ` ≥ 0, then Z̃i and Z̃j are independent of Z0. Thus Ỹi,j is also

independent of Z0 and P0Ỹi,j = 0. If i ≥ `, j ≤ −1, then Z̃i is independent of Z0 and Z̃j is

Z−1 measurable. So E[Ỹi,j|Z0] = E[Ỹi,j|Z−1] and, again, P0Ỹi,j = 0. Therefore,

θ`,`−k = ‖P0Y`,`−k‖ = ‖P0(Y`,`−k − Ỹ`,`−k)‖ ≤ ‖Y`,`−k − Ỹ`,`−k‖ ≤ δ`, k > ` ≥ 0,

θ`+k,` = ‖P0Y`+k,`‖ = ‖P0(Y`+k,` − Ỹ`+k,`)‖ ≤ ‖Y`+k,` − Ỹ`+k,`‖ ≤ δ`, k, ` ≥ 0, (12)

by Cauchy’s inequality. Hence

∞∑
i=0

θi,i−k =
k−1∑
i=0

θi,i−k +
∞∑
i=0

θi+k,i ≤ 2
∞∑
i=0

δi,

proving (10). To prove (11), similarly write

∞∑
i=0

min(θ̂i,i−k, ε) =
k−1∑
i=0

min

(
sup
`≥0

‖P0Ỹi,i−k‖, ε
)

+
∞∑
i=0

min

(
sup
`≥0

‖P0Ỹi+k,i‖, ε
)

=
k−1∑
i=0

min

(
sup
`≥i

‖P0Ỹi,i−k‖, ε
)

+
∞∑
i=0

min

(
sup
`≥i

‖P0Ỹi+k,i‖, ε
)

. (13)

Now, for 0 ≤ i ≤ k − 1, by the triangle inequality and (12),

‖P0Ỹi,i−k‖ ≤ ‖P0Yi,i−k‖+ ‖P0(Yi,i−k − Ỹi,i−k)‖ ≤ δi + δ`,

where the same bound holds for ‖P0Ỹi+k,i‖ if i ≥ 0. Applying this and the inequality

min(a + b, c) ≤ min(a, c) + min(b, c) for a, b, c ≥ 0, (11) follows readily from (13). ♦

It follows from Proposition 4 that if both the |wi| and the δ` are summable then (3) holds;

if
∑∞

i=0 sup`≥i δ` < ∞ then (7) holds.

6



3. Nonlinear time series. Let {ε′j} be an i.i.d. copy of {εj}. We say that Xn = F (Zn)

is geometric moment-contracting if there exist α > 0, C = C(α) > 0 and 0 < r(α) < 1 such

that

E{|F (. . . , ε−1, ε0, ε1, . . . , εn)− F (. . . , ε′−1, ε
′
0, ε1, . . . , εn)|α} ≤ Crn(α), n ∈ N. (14)

Without loss of generality let α < 1 since otherwise we can employ the Hölder inequality.

We may view X ′
n := F (. . . , ε′−1, ε

′
0, ε1, . . . , εn) as a coupled version of Xn.

Condition (14) is very mild, which is satisfied by a wide class of nonlinear time series.

Note that geometric moment contraction does not even requiring mixing (see the Example

at the end of the section). An important special class of (1) is the so-called iterated random

functions such that (14) is satisfied. Let Xn be defined recursively by

Xn = F (Xn−1, εn), (15)

where F (·, ·) is a bivariate measurable function with the Lipschitz constant

Lε = sup
x′ 6=x

|F (x, ε)− F (x′, ε)|
|x− x′| ≤ ∞ (16)

satisfying

E(log Lε) < 0. (17)

Then the Markov chain (15) admits a unique stationary distribution if E(Lα
ε ) < ∞ and

E[|x0 − F (x0, ε)|α] < ∞ for some α > 0 and x0 (Diaconis and Freedman, 1999). The same

set of conditions actually also imply the geometric-moment contraction (14) (cf. Lemma 3 in

Wu and Woodroofe, 2000). The condition (17) indicates that the iterated random function

(15) contracts on average, which is satisfied for many popular nonlinear time series models

such as TAR, RCA, ARCH and EAR under suitable conditions on model parameters.

Recall that Zk = (. . . , εk−1, εk) and Z̃k,` = (εk−`+1, . . . , εk). Let Z′k = (. . . , ε′k−1, ε
′
k).

Lemma 5 The geometric moment-contraction condition (14) holds if and only if there

exist F1, F2, . . . , with each F` being an `-variate measurable function, such that for some

C < ∞,

E{|F (Zk)− F`(Z̃k,`)|α} ≤ Cr`(α), ` ∈ N. (18)
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Proof. “⇒”. Assume (14). Then for each `, there exists a realization Z′0 = z0 such

that E(|X` − X ′
`|α|Z′0 = z0) ≤ Cr`(α). So (18) holds by defining F`(·) = F (z0, ·), which is

clearly measurable. The “⇐” direction follows easily from

E(|X` −X ′
`|α) = E[|F (Zk)− F (Z′k−`, Z̃k,`)|α]

≤ E[|F (Zk)− F`(Z̃k,`)|+ |F (Z′k−`, Z̃k,`)− F`(Z̃k,`)|]α

≤ E[|F (Zk)− F`(Z̃k,`)|α] + E[|F (Z′k−`, Z̃k,`)− F`(Z̃k,`)|α]

= 2E[|F (Zk)− F`(Z̃k,`)|α],

where we have applied the inequality |a + b|α ≤ |a|α + |b|α for 0 < α ≤ 1. ♦

In Lemma 5, we can often choose z0 arbitrarily in defining F`. This can be illustrated by

the correlation integral example in Theorem 7 below.

We remark that conditions similar to (14) and (18) have appeared in the literature.

Denker and Keller (1986) assumed that F is Lipschitz-continuous in the sense that there

exists a ρ ∈ (0, 1) for which

|F (. . . , zn−1, zn)− F (. . . , z′n−1, z
′
n)| ≤ const. · ρn (19)

if z1 = z′1, . . . , zn = z′n. For the two-sided extension see Definition 1.3 in Borovkova et al.

(2001). Comparing with our condition (14), (19) is stronger and it does not allow models

like Xn = ρXn−1 + εn, where |ρ| < 1 and the random variables εn are i.i.d. with unbounded

support. Borovkova et al. (2001) proposed a weaker version of (19), termed r-approximation

condition, which requires

dl(r) := E|X0 − E(X0|ε−l, . . . , εl)|r → 0 as ` →∞, (20)

for some r ≥ 1. To make this weaker version operational, one needs to implicitly assume

E|X0| < ∞, which excludes the case that εn does not have a mean. Our formulation has

the advantage that heavy-tailed distributions are allowed.

As before write Xi = F (Zi), and for a fixed choice of `-variate function F` from Lemma

5, define X̃i = X̃i,` = F`(Z̃i,`); let Yi1,i2 = K(Xi1 , Xi2) − E[K(Xi1 , Xi2)] and Ỹi1,i2 =
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K(X̃i1 , X̃i2) − EK(X̃i1 , X̃i2) and recall that Li1,i2 = wi1−i2Yi1,i2 and L̃i1,i2 = wi1−i2Ỹi1,i2 .

Then Theorem 1 and Theorem 3 imply (i) and (ii) of the following result respectively in

view of Proposition 4.

Theorem 6 Suppose that for each ` ≥ 1, there exists an `-variate function F` such that

(18) holds and
∑∞

i=0 sup`≥i δ` < ∞.

(i) If
∑ |wi| < ∞ then

n−1/2

n∑
i,j=1

wi−j[K(Xi, Xj)− EK(Xi, Xj)]
d−→ Normal (0, σ2)

for some σ2 < ∞.

(ii) Let
∑∞

i=1 |wi| = ∞. If we also have lim infn→∞ Wn/
( ∑n

i=0 |wi|
)

> 0 and
∑n

k=0(n −
k)w2

k = o(nW 2
n), then

(nW 2
n)−1/2

n∑
i,j=1

wi−j[K(Xi, Xj)− EK(Xi, Xj)]
d−→ Normal (0, σ2)

for some σ2 < ∞.

The inequality (18) implies that the distance between Xi and X̃i,` decays exponentially

fast to 0 in `. Thus under certain continuity conditions on K, δ` is expected to vanish

sufficiently quickly. For an application of Theorem 6, consider the correlation integral

Nb =
n∑

i1,i2=1

1|Xi1
−Xi2

|<b,

which measures the number of pairs (Xi, Xj) such that their distance is less than b > 0.

Correlation integral is of critical importance in the study of dynamical systems; see Wolff

(1990), Serinko (1994) and Denker and Keller (1986) for further references.

Theorem 7 Suppose that Xn defined in (1) satisfies (14), and for some κ > 1,

sup
j 6=0, x∈R

P (x < X0 −Xj ≤ x + τ) ≤ C log−2κ τ−1 (21)

for all 0 < τ < 1/2. Then [Nb − E(Nb)]/n
3/2 d−→ N(0, σ2) for some σ2 < ∞.
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Proof. Let K(x, y) = 1|x−y|<b and wi ≡ 1. By Lemma 5, for each ` there exists an

`-variate measurable function F`(·) such that (18) holds. Next we shall verify that (18)

together with (21) implies that δ` = O(`−κ), which is summable and thus completes the

proof in view of (ii) of Theorem 6. To this end, let u = r(α)1/(2α) < 1. Then by (18)

and the Markov inequality, ‖1|X0−X̃0|≥u`‖2 ≤ u−α`E|X0 − X̃0|α ≤ Cr(α)`/2, where, as usual,

X̃i = X̃i,`. For any 0 < u < 1 observe that

‖[K(X0, Xi)−K(X̃0, X̃i)]1max(|X0−X̃0|, |Xi−X̃i|)<u`‖
≤ P 1/2(b− 2u` ≤ |X0 −Xi| ≤ b) + P 1/2(b ≤ |X0 −Xi| ≤ b + 2u`)

which, by (21), is bounded by 2C1/2 log−κ(2u`)−1 = O(`−κ). Since |K| ≤ 1,

‖[K(X0, Xi)−K(X̃0, X̃i)]‖ ≤ ‖[K(X0, Xi)−K(X̃0, X̃i)]1max(|X0−X̃0|, |Xi−X̃i|)<u`‖
+ ‖[K(X0, Xi)−K(X̃0, X̃i)]1max(|X0−X̃0|, |Xi−X̃i|)≥u`‖
= O(`−κ) + O[r(α)`/4],

proving that δ` = O(`−κ). ♦

Example. Let Xn = (Xn−1 + εn)/2, where εn are i.i.d. Bernoulli random variables

with success probability 1/2. Then Xn admits uniform(0,1) as a stationary distribution.

This process is not strong mixing. Now we show that (21) is satisfied. Assume j ≥ 1.

Let U =
∑j

i=1 εi/2
j−i. Then U is uniformly distributed over {0, 1/2j, . . . , (2j − 1)/2j} and

Xj = X0/2
j + U . Hence (21) holds in view of

P (x < X0 −Xj ≤ x + τ) = EP [(x + U)/(1− 2−j) < X0 ≤ (x + τ + U)/(1− 2−j)|U ]

≤ τ/(1− 2−j) ≤ 2τ.

The process Xn is related to the doubling map Tx := 2x mod 1 in the following way.

Let Y0 be a uniform(0,1) random variable and define recursively Yi = 2Yi−1 mod 1 for

i ≥ 1. Then (X1, . . . , Xn) has the same distribution as (Yn, . . . , Y1) and hence Nb and

Mb =
∑n

i,j=1 1|Yi−Yj |<b are identically distributed. The limiting distribution of the empirical
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U -process {Mb, 0 ≤ b ≤ 1} was discussed in Borovkova et al. (2001); see Section 6 therein.

♦

Our Theorems 6 and 7 are closely related to certain results by Borovkova et al. (2001),

which considered non-weighted U -statistics for two-sided processes Xn = F ((εn+k)k∈Z),

where (εn)n∈Z is stationary and absolutely regular (or weak Bernoulli). To make a specific

comparison, we state here their Theorem 7, a central limit theorem. Let

βk = 2 sup
n
{sup{P (A|ε1, . . . , εn)− P (A) : A is σ(εn+k, εn+k+1, . . . )-measurable}}

be the mixing coefficients, αk = [2
∑∞

i=k dk(1)]1/2 with dk(1) defined by (20), and K(·, ·) be

a bounded, symmetric function such that

sup
1≤k≤∞

E{|K(X0, Xk)−K(X ′, Xk)|1|X0−X′|≤τ} ≤ φ(τ)

with limτ→0 φ(τ) = 0, where X ′ is identically distributed as X0 and X∞ is interpreted as an

independent copy of X0. See Definitions 1.2, 1.4 and 2.12 in Borovkova et al. (2001). Then

the asymptotic normality of Un holds provided

∞∑

k=1

k2(βk + αk + φ(αk)) < ∞. (22)

This result has a number of similarity with our Theorem 6 above. However, the two results

do not imply one another. Theorem 6 assumes one-sided processes with i.i.d. innovations

while their result allows the innovations to be two-sided and weakly dependent; on the other

hand, Theorem 6 allows unbounded K, general weights wi, and process Xk for which the

mean is infinite, whereas their result requires K to be bounded, wi = 1 and E|X0| < ∞. Let

us make a more specific comparison in the context of Theorem 7 of the present paper where

both results are applicable. Applying the central limit theorem in Borovkova et al. (2001)

to Nb for one-sided processes with i.i.d. innovations satisfying (18) with α = 1 and (21), we

have βn = 0 and αn ≤ Cρn for all n ≥ 1, where ρ ∈ (0, 1). By Example 2.2 in Borovkova et

al. (2001),

φ(τ) = sup
1≤k≤∞

P (b− τ ≤ |X0 −Xk| ≤ b + τ) ≤ 2C log−2κ τ−1.
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Thus condition (22) is reduced to
∑∞

k=1 k2 log−2κ(1/ρk) < ∞, namely κ > 3/2, which is

stronger than the condition κ > 1 imposed in Theorem 7.

4. Short-memory linear processes. Let (an)n≥0 be square summable, (εn)n≥0 be

i.i.d. random variables with mean 0 and finite variance and

Xn =
∞∑
i=0

aiεn−i. (23)

If
∑∞

i=0 |ai| < ∞, then the covariance function Γ(n) = E(X0Xn) is summable and we say that

Xn is short-memory. In this section, let Yi,j = K(Xi, Xj)− EK(Xi, Xj). For short-memory

processes, we shall utilize the linearity structure and provide conditions on K(·, ·) such that

(3) and (7) hold by computing the quantities θi,j in (2) and θ̂i,j in (7). In Section 5 we

shall discuss the case when Xn is long-memory, which has a very different flavor. Note that
∑∞

`=0 δ` < ∞ is not guaranteed by
∑∞

i=0 |ai| < ∞, and we need more refined computations,

which is feasible by the linearity of Xn.

Let ãi = aiI(i < `), X̃n =
∑∞

i=0 ãiεn−i and Ỹi,j = K(X̃i, X̃j) − EK(X̃i, X̃j). Also define

X ′
i,j1,j2

= Xi,j1,j2 − aiε0 + aiε
′
0, where the truncated process

Xi,j1,j2 =





∑
j1≤j≤j2

ai−jεj −∞ ≤ j1 ≤ j2 ≤ ∞

0 −∞ ≤ j2 + 1 ≤ j1 ≤ ∞.

Define the convolutions

Ki1,i2,j(x1, x2) = EK(x1 + Xi1,j+1,∞ , x2 + Xi2,j+1,∞),

Ki1,j(x1, x2) = EK(x1 + Xi1,j+1,∞ , x2), x1, x2 ∈ R. (24)

Let K̃i1,i2,j, K̃i1,j, X̃i,j1,j2 and X̃ ′
i,j1,j2

be similarly defined as Ki1,i2,j, Ki1,j, Xi,j1,j2 and X ′
i,j1,j2

with Zi replaced by Z̃i.

Proposition 8 Assume that supi,j ‖K(Xi, Xj)‖ < ∞ and supi,j,` ‖K(X̃i, X̃j)‖ < ∞.

Further, assume that there exist n0 ∈ N and C < ∞ such that for all i1, i2, ` ≥ n0,

‖K̃i1,i2,0(X̃
′
i1,−∞,0, X̃

′
i2,−∞,0)− K̃i1,i2,0(X̃i1,−∞,0, X̃i2,−∞,0)‖ ≤ C(|ai1|+ |ai2|) (25)

12



and

sup
k≤−1

‖K̃i1,0(X̃
′
i1,−∞,0, Xk)− K̃i1,0(X̃i1,−∞,0, Xk)‖ ≤ C|ai1|. (26)

Then the following hold.

(i)

θ̂i,j ≤





C(|ai|+ |aj|) i, j ≥ n0,

C|ai| i ≥ n0, j < 0.

(ii) There exists some constant C ′ < ∞ such that

sup
k≥0

∞∑
i=0

θi,i−k ≤ C ′
∞∑
i=0

sup
j≥i

|ai|,

and for any ε > 0,

sup
k≥0

∞∑
i=0

min(θ̂i,i−k, ε) ≤ C ′
[
ε +

∞∑
i=0

min(sup
j≥i

|ai|, ε)
]

.

Proof. Fix i1, i2 ≥ n0. First we remark that if ` < n0 then the left-hand sides of (25)

and (26) are both equal to 0 so that the inequalities trivially hold. Writing

E[K̃i1,i2,0(X̃
′
i1,−∞,0, X̃

′
i2,−∞,0)|Z0] = K̃i1,i2,−1(X̃i1,−∞,−1, X̃i2,−∞,−1),

we have by Cauchy’s inequality that

‖P0K(X̃i1 , X̃i2)‖ = ‖K̃i1,i2,0(X̃i1,−∞,0, X̃i2,−∞,0)− K̃i1,i2,−1(X̃i1,−∞,−1, X̃i2,−∞,−1)‖
= ‖E[K̃i1,i2,0(X̃i1,−∞,0, X̃i2,−∞,0)− K̃i1,i2,0(X̃

′
i1,−∞,0, X̃

′
i2,−∞,0)|Z0]‖

≤ ‖K̃i1,i2,0(X̃
′
i1,−∞,0, X̃

′
i2,−∞,0)− K̃i1,i2,0(X̃i1,−∞,0, X̃i2,−∞,0)‖.

Similarly, ‖P0K(X̃i1 , X̃k)‖ ≤ ‖K̃i1,0(X̃
′
i1,−∞,0, Xk) − K̃i1,0(X̃i1,−∞,0, Xk)‖, which completes

the proof of (i) in view of (25) and (26).

The first inequality in (ii) follows simply from

∞∑
i=0

θi,i−k =
k−1∑
i=0

θi,i−k +
∞∑
i=0

θi+k,i ≤ C ′ + 2
∞∑

i=n0

sup
j≥i

|ai|

13



whereas the second inequality there can be derived similarly. ♦

Remark. Note that X̃ ′
i1,−∞,0− X̃i1,−∞,−1 = ai1(ε

′
0− ε0), conditions (25) and (26) can be

interpreted as the “Lipschitz continuity” of K̃i1,i2,0 and K̃i1,0. Discontinuous functions K are

allowed since these are convolutions of K and the distribution functions of (X̃i1,1,∞, X̃i2,1,∞)

and (X̃i1,j+1,∞, 0), resp. For example, if K is a bounded function and fε, the density function

of ε1, satisfies
∫ |f ′ε(t)|dt < ∞, then it is easily seen that (25) and (26) hold. Observe that

degree of smoothness of the distributions of the above random vectors increases with i1, i2.

Thus, by only requiring (25) and (26) to hold for large i1, i2, an additional dimension of

flexibility is in place.

Proposition 8 together with Theorems 1 and 3 immediately yield

Theorem 9 Assume that
∑∞

i=1 supj≥i |aj| < ∞. Also assume that supi,j ‖K(Xi, Xj)‖ <

∞ and supi,j,` ‖K(X̃i, X̃j)‖ < ∞ and that the regularity conditions (25) and (26) hold.

(i) If
∑∞

i=0 |wi| < ∞, then

n−1/2

n∑
i,j=1

wi−j[K(Xi, Xj)− EK(Xi, Xj)]
d−→ Normal (0, σ2)

for some σ2 < ∞.

(ii) Suppose that
∑∞

i=1 |wi| = ∞ with lim infn→∞ WnPn
i=0 |wi| > 0 and

∑n
k=0(n − k)w2

k =

o(nW 2
n). Assume also that lim`→∞ δ` = 0. Then

(nW 2
n)−1/2

n∑
i,j=1

wi−j[K(Xi, Xj)− EK(Xi, Xj)]
d−→ Normal (0, σ2)

for some σ2 < ∞.

Remark. Consider the special case in which an = n−β for n ≥ 1 and β > 1 and εi are

i.i.d. standard normal random variables. Then by (20), dn(1) ∼ c1n
1/2−β for some c1 > 0.

Here γn ∼ βn is meant as limn→∞ γn/βn = 1. So αn ∼ c2n
3/4−β/2 and the condition (22) of
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Borovkova et al. (2001) necessarily requires
∑∞

n=1 n2αn < ∞, or β > 15/2. In comparison,

our Theorem 9 only imposes β > 1.

5. Long-memory linear processes. In (23), let aj = j−βL(j)I(j ≥ 1) for some

β ∈ (1/2, 1) and slowly varying function L. Thus, aj is regularly varying at ∞ with index

−β. This represents a rich class of processes. In particular, it contains the important time

series model fractional autoregressive integrated moving average (FARIMA) process. See

Granger and Joyeux (1980). Note that {Xi} is long-range dependent in the sense that the

covariances are not summable (cf. Beran, 1994).

Let K = {0} ∪ {kkk = (k1, . . . , kr) : r = 1, 2, . . . , ki ∈ {1, 2}} and |kkk| be the length of kkk

(|0| = 0). We assume throughout the section that integer ρ ≥ 1 satisfies

∞∑
n=1

n−β(ρ+1)+ρ/2|L(n)|ρ+1 < ∞. (27)

Condition (27) allows simultaneous consideration of two cases: (i) (ρ + 1)(2β − 1) > 1 and

(ii) (ρ+1)(2β−1) = 1 and
∑∞

n=1 |Lρ+1(n)|/n < ∞. Case (i) has been widely studied (see Ho

and Hsing (1997)), while the boundary case (ρ + 1)(2β − 1) = 1 has been overlooked in the

literature. Our approach allows us to investigate the boundary case for which the limiting

behavior depends on the growth of the slowly varying function L.

Denote by Cρ(R2) the class of all functions g such that the partial derivatives Dkkkg =

∂rg/∂xk1 · · · ∂xkr exist for all kkk = (k1, . . . , kr) ∈ K for which |kkk| ≤ ρ. For each i1, i2, let

Yi1,i2 = K(Xi1 , Xi2)−
ρ∑

r=0

∑

|lll|=r

DlllKi1,i2,−∞(0, 0)
∑

j1>···>jr

r∏
s=1

ails−jsεjs

and Li1,i2 = wi1−i2Yi1,i2 . Let Ỹi,j, L̃i,j be defined as Yi,j, Li,j with ãi = aiI(i < `) replacing ai.

Let Ki1,i2,j, Ki1,j, Xi,j1,j2 , K̃i1,i2,j, K̃i1,j, and X̃i,j1,j2 be defined as in section 4.

Write

Un =
n∑

i1,i2=1

Li1,i2 +

ρ∑
r=0

Zn,r. (28)
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where

Zn,r :=
∑

|lll|=r

n∑
i1,i2=1

wi1−i2DlllKi1,i2,−∞(0, 0)
∑

j1>···>jr

r∏
s=1

ails−jsεjs .

Observe that Zn,r, 1 ≤ r ≤ ρ, are well-structured, and can be shown to follow non-central

limit theorems under mild regularity conditions on the DlllHi1,i2,−∞(0, 0). Our main results

Theorems 10 and 11 below show that the normalized
∑n

i1,i2=1 Li1,i2 follows a central limit

theorem under mild conditions. These two pieces of information will then combine to give

a comprehensive picture of the asymptotic behavior of Un. We refer to
∑n

i1,i2=1 Li1,i2 and
∑ρ

r=1 Zn,r, respectively, as the short and long-memory components of Un.

We now state the technical conditions for our main results. In the following let

Ai(k) =
∞∑
j=i

ak
j , k = 2, 4, i ≥ 0.

(K1) There exists n0 ∈ N such that Ki1,i2,0(·, ·) ∈ Cρ(R2) when i1, i2 ≥ n0, and for all

kkk ∈ K with |kkk| ≤ ρ,

E[DkkkKi1,i2,0(Xi1,−∞,0, Xi2,−∞,0)|Z−1] = DkkkKi1+1,i2+1,0(Xi1,−∞,−1, Xi2,−∞,−1). (29)

(K2) For i1, i2 ≥ n0, there exists C < ∞ such that for all kkk ∈ K with |kkk| < ρ,

‖DkkkKi1,i2,0(Xi1,−∞,0, Xi2,−∞,0)−DkkkKi1,i2,−1(Xi1,−∞,−1, Xi2,−∞,−1)

−〈∇DkkkKi1,i2,−1(Xi1,−∞,−1, Xi2,−∞,−1), (ai1ε0, ai2ε0)〉‖ ≤ C
(
a2

i1
+ a2

i2

)
, (30)

and, for |kkk| = ρ,

‖DkkkKi1,i2,0(Xi1,−∞,0, Xi2,−∞,0)−DkkkKi1,i2,−1(0, 0)‖2 ≤ C[Ai1(2) + Ai2(2)]. (31)

(K3) For i1 ≥ n0, there exists C < ∞ such that

sup
k≤−1

‖P0K(Xi1 , Xk)‖ = sup
k≤−1

‖Ki1,1(Xi1,−∞,0, Xk)−Ki1,0(Xi1,−∞,−1, Xk)‖ ≤ C|ai1|. (32)
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Similarly we define

(K4) There exists n0 ∈ N such that for each y, Ki,0(·, y) ∈ Cρ(R) when i1 ≥ n0, i2 ≤ −1,

and for all k ≤ ρ,

E[K
(k,0)
i1,0 (Xi1,−∞,0, Xi2)|Z−1] = K

(k,0)
i1+1,0(Xi1,−∞,−1, Xi2). (33)

(K5) For i1 ≥ n0, i2 ≤ −1, there exists C < ∞ such that for all k < ρ,

‖K(k,0)
i1,0 (Xi1,−∞,0, Xi2)−K

(k)
i1,i2,−1(Xi1,−∞,−1, Xi2)

−K
(k+1,0)
i1,−1 (Xi1,−∞,−1, Xi2), ai1ε0‖ ≤ Ca2

i1
, (34)

and, for all k ≤ ρ,

‖K(k,0)
i1,0 (Xi1,−∞,0, Xi2)−K

(k,0)
i1,−1(0, Xi2)‖2 ≤ CAi1(2). (35)

(K6)

lim
`→∞

sup
j≥1

‖K(X1, Xj)−K(X̃1, X̃j)‖ = 0. (36)

Remark. The conditions (K1) and (K4) state that we can interchange the order of differen-

tiation and integration. The other conditions are smoothness conditions on Ki1,i2,0 and Ki1,0

for large i1, i2. For the latter, the remarks following Proposition 8 are still relevant. These

conditions are left in the form in which they are directed applied in the proofs. Finding suf-

ficient conditions that are easy to work with in specific contexts should be straightforward.

See Ho and Hsing (1997), Koul and Surgailis (1997), and Giraitis and Surgailis (1999).

In the following we consider two special cases of
∑

i |wi| < ∞ and
∑

i |wi| = ∞. Gener-

alizations are possible at the expense of additional details.

Theorem 10 Assume that
∑∞

i=1 |wii
1−βL(i)| < ∞, E(ε4

1) < ∞ and supj ‖K(X0, Xj)‖ <

∞. Then under the regularity conditions (K1)-(K3), we have n−1/2
∑

1≤i1,i2≤n Li1,i2
d−→

Normal(0, σ2) for some σ2 < ∞.
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Theorem 11 Let wi ≡ 1, and assume that E(ε4
1) < ∞, and supi,j ‖K(Xi, Xj)‖ < ∞,

supi,j,` ‖K(X̃i, X̃j)‖ < ∞. Then under the regularity conditions (K1)-(K6), we have

n−3/2
∑

1≤i1,i2≤n Li1,i2
d−→ Normal(0, σ2) for some σ2 < ∞.

We conjecture that Theorems 10 and 11 can be more made general by dropping the

restrictions on the wi. While that generality is not achieved in this paper, the two theorems

do already cover a wide range of interesting results. In particular, numerous limit theorems

for the partial sum in the context of long-memory linear process (cf. Ho and Hsing, 1997)

are special cases.

As explained earlier, the asymptotic distribution of Un is determined by one term or

a combination of terms on the right of (28). The asymptotic behavior of Un is described

by Theorems 10 and 11, while those for the “non-central” terms Zn,r are typically more

straightforward but must be considered case by case. Let’s take any l1, . . . , lr ∈ {1, 2} with

1 ≤ r ≤ ρ and (r1, r2) = (p, q), and consider two special cases for the purpose of illustration.

First let’s consider the case where |wt| is summable. Note that under general conditions

we expect

K0,t,−∞(x1, x2) → G(x1, x2) := EK(X̂1 + x1, X̂2 + x2)

where X̂1, X̂2 are i.i.d. that have the same distribution as X1. Hence we assume that the

wtDl1,... ,lrK1,t,−∞(0, 0) are absolutely summable in t and

lim
n→∞

(
w0Dl1,... ,lrK1,1,−∞(0, 0) + 2

n∑
t=1

wtDl1,... ,lrK0,t,−∞(0, 0)

)
= C ∈ (−∞,∞).
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Then it is not difficult to see (cf. Surgailis, 1982, Major, 1980) that

‖
∑

1≤i1,i2≤n

wi1−i2Dl1,... ,lrKi1,i2,−∞(0, 0)
∑

j1>···>jr

r∏
s=1

ails−jsεjs‖2

=
∑

j1>···>jr

( ∑
1≤i1,i2≤n

wi1−i2Dl1,... ,lrKi1,i2,−∞(0, 0)
r∏

s=1

ails−js

)2

∼ C2
∑

j1>···>jr

[ n∑
t=1

r∏
s=1

at−js

]2

∼ C2n2−r(2β−1)L2r(n)

∫

u1>···>ur

[ ∫ 1

x=0

r∏
s=1

(x− us)
−β
+ dx

]2

du1 · · · dur

and

n−1+r(β−1/2)L−r(n)
∑

1≤i1,i2≤n

wi1−i2Dl1,... ,lrKi1,i2,−∞(0, 0)
∑

j1>···>jr

r∏
s=1

ails−jsεjs

d−→ |C|
∫

u1>···>ur

[ ∫ 1

x=0

r∏
s=1

(x− us)
−β
+ dx

]
dB(u1) · · · dB(ur) (37)

where the limit is expressed in the form of a multiple Wiener-Ito integral with B denoting

standard Brownian motion and y+ = max(y, 0). Note that applying Theorem 10, the rate of
∑n

i1,i2=1 Li1,i2 in this case is n1/2 which is lower than that of
∑

1≤i1,i2≤n Dl1,... ,lrHi1,i2,−∞(0, 0)
∑

j1>···>jr

∏r
s=1 ails−jsεjs .

As a second example, we consider an application in connection of Theorem 11 by assuming

wi ≡ 1 and Dl1,... ,lrK0,t,−∞(0, 0) → C ∈ (−∞,∞). (38)

Under this assumption,

‖
∑

1≤i1,i2≤n

Dl1,... ,lrKi1,i2,−∞(0, 0)
∑

j1>···>jr

r∏
s=1

ails−jsεjs‖2

∼ C2n4−r(2β−1)L2r(n)

∫

u1>···>ur

[ ∫ 1

x1=0

∫ 1

x2=0

r∏
s=1

(xls − us)
−β
+ dx1dx2

]2

du1 · · · dur

and

n−2+r(β−1/2)L−r(n)
∑

1≤i1,i2≤n

Dl1,... ,lrKi1,i2,−∞(0, 0)
∑

j1>···>jr

r∏
s=1

ails−jsεjs (39)

d−→ |C|
∫

u1>···>ur

[ ∫ 1

x1=0

∫ 1

x2=0

(x2 − x1)
−β

r∏
s=1

(xls − us)
−β
+ dx1dx2

]
dB(u1) · · · dB(ur).
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Now Theorem 11 implies that the rate of
∑n

i1,i2=1 Li1,i2 is n3/2, which is dominated by that

of
∑

1≤i1,i2≤n Di1,... ,irKi1,i2,−∞(0, 0)
∑

j1>···>jr

∏r
s=1 ails−jsεjs .

In view of these examples and Theorems 10 and 11, in (28) one can refer to
∑n

i1,i2=1 Li1,i2

the short-memory component, and
∑ρ

i=1 Zn,r the long-memory component of Un.

Numerous applications result from these two simple cases. The following are some illus-

trations.

(a) Sample covariance function

Suppose

Un =
n∑

i=1

T (Xi)T (Xi+k)

where T is some function. n−1Un is an estimator of E[T (X1)T (X1+k)]. So Hi1,i2(x1, x2) =

wi1−i2K(x1, x2) where w|i1−i2| = I(|i1− i2| = k) and K(x1, x2) = T (x1)T (x2). Thus Theorem

10 applies, where the asymptotic distribution rests on T . Let’s consider an example by

assuming k ≥ 2, T (x) = x2 and E(X1X
j
1+k) = 0, j = 1, 2. It is easy to see that

wtDl1,... ,lrK0,t,−∞(0, 0) = 2E(X2
1 ) if t = k and (l1, . . . , lr) = (1, 1) or (2, 2)

= 0 otherwise.

If β ∈ (3/4, 1) then
∑ρ

i=1 Zn,r = 0 and hence

1√
n

(Un − EUn)
d−→ Normal (0, σ2).

If β ∈ (1/2, 3/4) then
∑ρ

i=1 Zn,r is dominated by the term

Zn,2 =
∑

1≤i1,i2≤n

(D1,1 + D2,2)Hi1,i2,−∞(0, 0)
∑

j1>···>jr

r∏
s=1

ails−jsεjs

= 8E(X2
1 )

n−k∑
i=1

∑
j1>jr

ai−j1ai+k−j2εj1εj2 .
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Hence (37) and the discussion leading to it give

[8E(X2
1 )]−1n−1+2(β−1/2)L−2(n)(Un − EUn)

d−→
∫

u1>u2

[ ∫ 1

x=0

[(x− u1)+(x− u2)+]−βdx
]
dB(u1)dB(u2).

(b) U and V -statistics

The asymptotic distribution of statistics of the form

∑

1≤i1 6=i2≤n

K(Xi1 , Xi2) or
∑

1≤i1,i2≤n

K(Xi1 , Xi2)

can be considered using Theorems 10 and 11. Note that the partial-sum theory developed in

Ho and Hsing (1997) is readily recovered here by letting K(x1, x2) = (h(x1) + h(x2))/2. We

give another example here, the Wilcoxon one-sample statistic and the signed-rank statistic,

for which the asymptotic distribution is not seen elsewhere.

Let

Ki1,i2(x1, x2) = I(x1 + x2 > 0).

Then [n(n− 1)]−1
∑

1≤i1 6=i2≤n K(Xi1 , Xi2) is called the Wilcoxon one-sample statistic. Let’s

assume for simplicity that εj has a normal distribution and that the marginal of {Xi} is

standard normal. Simple calculations give

Ki1,i2,−∞(x1, x2) = P (Xi1 + Xi2 > −(x1 + x2)) = 1− Φ

(
− x1 + x2√

2(1 + ρi1−i2)

)

where ρn = EX1X1+n and φ is the standard normal pdf. Hence,

K
(1,0)
i1,i2,−∞(0, 0) =

1√
2(1 + ρi1−i2)

φ(0) → 1

2
√

π
as |i1 − i2| → ∞.

With C = 1/(2
√

π) in (38), it follows from (39) that for each β ∈ (1/2, 1),

nβ−5/2L−1(n)(Un − EUn)
d−→ 1√

π

∫

u∈<

∫ 1

x=0

[(x− u)+]−βdxdB(u) (40)
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which has a normal distribution. A related statistics is the signed-rank statistic

Wn =
n∑

i=1

ΨiR
+
i

where Ψi = sign of Xi and R+
i = the rank of |Xi| among |X1|, . . . , |Xn|. It can be shown

(cf. Randles and Wolfe, 1979) Wn = Un(1 + op(1)) and hence the asymptotic distribution

can be derived in exactly the same way.

There are situations where
∑n

i1,i2=1 Li1,i2 as well as Zn,r, 1 ≤ r ≤ ρ all equal zero.

Then the asymptotic distribution will be determined by the lowest-order non-trivial Zn,r.

This is exemplified by certain U -statistics with degenerate kernels, kernels which satisfy
∫

x1
K(x1, x2)dF (x1) = 0 for all x2. See Dehling and Taqqu (1989, 1991) and Ho and Hsing

(1996). The approach in those references overlaps and complements the approach described

here.

6. Proofs.

Proof of Theorem 1. Let ξm(Zt) =
∑t+m

i=t−m Lt,i and Sn(ξm) =
∑n

t=1 ξm(Zt), m ≥ 1.

Then (5) implies

∞∑
t=0

‖P0(ξm(Zt))‖ ≤
∞∑

t=0

t+m∑
i=t−m

|wt−i|θt,i ≤
∞∑

t=0

m∑

k=−m

|wk|θt,t−k < ∞

which entails Sn(ξm)/
√

n ⇒ N(0, σ2
m) for some σ2

m < ∞ by Theorem 1 in Woodroofe (1992)

(see also Lemma 5 in Wu (2003)). Let LIM be lim supm→∞ lim supn→∞. It remains to verify

that

LIM
1√
n

∥∥∥∥∥
∑

1≤i1,i2≤n

Li1,i2 − Sn(ξm)

∥∥∥∥∥ = LIM
1√
n

∥∥∥∥∥
∑

|i1−i2|>m, 1≤i1,i2≤n

Li1,i2

∥∥∥∥∥ = 0. (41)

To this end, note that the projections Pt are orthogonal and hence

∥∥∥∥∥
∑

|i1−i2|>m, 1≤i1,i2≤n

Li1,i2

∥∥∥∥∥

2

=
n∑

t=−∞

∥∥∥∥∥∥
Pt

∑

|i1−i2|>m, 1≤i1,i2≤n

Li1,i2

∥∥∥∥∥∥

2
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≤
n∑

t=−∞


 ∑

|i1−i2|>m, 1≤i1,i2≤n

‖PtLi1,i2‖



2

≤ 2

(
n∑

t=1

+
0∑

t=−∞

)[
n∑

i2=1

n∑
i1=i2+m+1

‖PtLi1,i2‖
]2

. (42)

Making use of the fact that PtLi1,i2 = 0 for t ≥ i1 ∨ i2,

n∑
t=1

(
n∑

i2=1

n∑
i1=i2+m+1

‖PtLi1,i2‖
)2

=
n∑

t=1

[
n−1∑

k=m+1

n−k∑

i=t−k

‖PtLi+k,i‖
]2

=
n∑

t=1

[
n−1∑

k=m+1

n−t∑
i=0

|wk|θi,i−k

]2

≤ n

[
n−1∑

k=m+1

n∑
i=0

|wk|θi,i−k

]2

(43)

and similarly,

0∑
t=−∞

[
n∑

i2=1

n∑
i1=i2+m+1

‖PtLi1,i2‖
]2

=
0∑

t=−∞

[
n−1∑

k=m+1

n−k∑
i=1

‖PtLi+k,i‖
]2

≤
∞∑

t=0

[
n−1∑

k=m+1

n−k∑
i=1

|wk|θi+k+t,i+t

]2

≤ C

∞∑
t=0

n−1∑

k=m+1

n−k∑
i=1

|wk|θi+k+t,i+t ≤ C

∞∑

k=m+1

n∑
i=1

∞∑
t=0

|wk|θi+k+t,i+t

≤ C

∞∑

k=m+1

n∑
i=1

∞∑
j=0

|wk|θj,j−k = Cn

∞∑

k=m+1

∞∑
j=0

|wk|θj,j−k, (44)

in view of

n−1∑

k=m+1

n−k∑
i=1

|wk|θi+k+t,i+t ≤
∞∑

k=1

|wk|
∞∑
i=1

θi+k+t,i+t ≤
∞∑

k=1

|wk|
∞∑

j=1

θj,j−k =: C < ∞.

Hence (41) follows from from (3), (42)-(44). ♦

Proof of Theorem 2. By Cauchy’s inequality, we have ‖P0(Li1,i2−L̃i1,i2)‖ ≤ |wi1−i2|δ`.

By the triangle and Cauchy’s inequalities, we also have

‖P0(Li1,i2 − L̃i1,i2)‖ ≤ C|wi1−i2|θ̂i1,i2 .
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Thus there exists a C > 0 such that for all i1, i2, ` such that

‖P0(Li1,i2 − L̃i1,i2)‖ ≤ C|wi1−i2|min(θ̂i1,i2 , δ`). (45)

In the sequel let LIM stand for lim sup`→∞ lim supn→∞, and C stand for a constant which

may vary from line to line. By the proof of Theorem 1, we have

∆ := LIM
1

nW 2
n

∥∥∥∥∥
∑

1≤i1,i2≤n

(Li1,i2 − L̃i1,i2)

∥∥∥∥∥

2

≤ I + II

where

I = LIM
C

nW 2
n

n∑
t=1

[
n−1∑

k=0

n−t∑
i=0

|wk|min(θ̂i,i−k, δ`)

]2

II = LIM
C

nW 2
n

∞∑
t=0

[
n−1∑

k=0

n+t∑

i=1+k+t

|wk|min(θ̂i,i−k, δ`)

]2

.

By the assumptions, we have

I ≤ C lim sup
`→∞

sup
k≥0

∞∑
i=0

min(θ̂i,i−k, δ`) = C lim
δ→0

sup
k≥0

∞∑
i=0

min(θ̂i,i−k, δ) = 0,

and

II ≤ LIM
C

nW 2
n

∞∑
t=0

(
n−1∑

k=0

n+t∑
i=1+t

|wk|min(θ̂i,i−k, δ`)

)(
n−1∑

k=0

∞∑
i=1

|wk|min(θ̂i,i−k, δ`)

)

≤ C lim
δ→0

(
sup
k≥0

∞∑
i=0

min(θ̂i,i−k, δ)

)2

= 0.

Thus ∆ = 0 follows. ♦

Proof of Theorem 3. The plan of the proof is to show that for every fixed ` ≥ 1,

(nW 2
n)−1/2

∑
1≤i1,i2≤n

L̃i1,i2
d−→ Normal (0, σ̃2) as n →∞ (46)

for some finite σ̃2. It follows then from Theorem 2 that σ̃2 is Cauchy in ` and hence converges

to a finite constant as ` → ∞. By this and another application of Theorem 2, we conclude
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that (9) holds with σ2 = lim`→∞ σ̃2 ∈ (0,∞). Thus, we will focus on proving (46) for a fixed

`. Observe that

∥∥∥
∑

1≤i1,i2≤n,|i1−i2|≤`

L̃i1,i2

∥∥∥ = O

(
√

n
∑̀

k=0

|wk|
)

= o[(nW 2
n)1/2]

since Wn →∞. Thus it suffices to show that

(nW 2
n)−1/2

∑

1≤i1,i2≤n,|i1−i2|>`

L̃i1,i2
d−→ Normal (0, σ̃2) as n →∞ (47)

for some finite σ̃2. Fix i1, i2 with |i1 − i2| > `, observe that Z̃i1 and Z̃i2 are i.i.d. Now define

J̃i1,i2(Z̃i1) = E[L̃i1,i2|Z̃i1 ] and

R̃i1,i2 = L̃i1,i2 − J̃i1,i2(Z̃i1)− J̃i1,i2(Z̃i2).

Let i1 = r1 + q1` and i2 = r2 + q2`, where integers 0 ≤ r1, r2 ≤ `− 1 and 0 ≤ q1 6= q2 ≤ q =

bn/`c. Since R̃r1+q1`, r2+q2` are uncorrelated for different pairs q1 < q2,

∥∥∥∥∥
∑

1≤q1<q2≤q

R̃r1+q1`, r2+q2`

∥∥∥∥∥

2

≤ C
∑

1≤q1<q2≤q

w2
r1+q1`−r2−q2`,

which in conjunction with Cauchy’s inequality by summing over r1, r2 = 0, . . . , `− 1 yields

that
∥∥∥∥∥∥

∑

1≤i1,i2≤n,|i1−i2|>`

R̃i1,i2

∥∥∥∥∥∥

2

≤ C
∑

1≤r1,r2≤`

∑
1≤q1<q2≤q

w2
r1+q1`−r2−q2`

= C
∑

1≤i1,i2≤n

w2
i1−i2

≤ C

n∑

k=0

(n− k)w2
k = o(nW 2

n).

So (47) will follow from

(nW 2
n)−1/2

∑

1≤i1,i2≤n,|i1−i2|>`

J̃i1,i2(Z̃i1)
d−→ Normal (0, σ̃2) as n →∞ (48)

for some finite σ̃2, which can be easily shown to hold by the Central Limit Theorem for

`-dependent processes. ♦

25



Proof of Theorem 10. We verify (3). By (c) of Lemma 12 and Lemma 13 below, we

have for k ≥ 0,

∞∑

i=k

θi,i−k ≤ C

∞∑

i=k

ψi−k = C

∞∑
i=0

ψi < ∞.

Next for i ≥ 0 and j ≤ −1, we have by (K3) that ‖P0K(Xi, Xj)‖ = O(|ai|) uniformly. It is

easily seen that for the “well-structured” part K(Xi, Xj)−Yi,j, we also have ‖P0[K(Xi, Xj)−
Yi,j]‖ = O(|ai|) uniformly. Hence, for k ≥ 0,

k−1∑
i=0

θi,i−k ≤
k−1∑
i=0

|ai| ≤ Ck1−βL(k)

by Karamata’s Theorem. Hence

∞∑

k=0

|wk|
k−1∑
i=0

θi,i−k ≤ C

∞∑

k=0

|wk|k1−βL(k) < ∞.

♦

Proof of Theorem 11. For each i1 ≥ i2, let

Yi1,i2 = K(Xi1 , Xi2)−
i1∑

t=i2+1

ρ∧(t−i2)∑
r=1

K
(r,0)
i1,i2,i2

(Xi1,−∞,i2 , Xi2)
∑

t=j1>···>jr≥i2+1

r∏
s=1

ai1−jsεjs

−
ρ∑

r=0

∑

|lll|=r

DlllKi1,i2,−∞(0, 0)
∑

i2≥j1>···>jr

r∏
s=1

ails−jsεjs

and Yi1,i2 = Yi2,i1 if i1 < i2. We first apply Theorem 3 to show that

1

n3/2

n∑
i1,i2=1

Yi1,i2
d−→ Normal(0, σ2) (49)

for some σ2 < ∞. For the process {Yi,j}, it follows easily from (36) that lim`→∞ δ` = 0.

Hence we focus on verifying the condition (7). Observe that for i1 ≥ i2, PtYi1,i2 is equal to

PtK(Xi1 , Xi2)−
ρ∧(t−i2)∑

r=1

H
(r,0)
i1,i2,i2

(Xi1,−∞,i2 , Xi2)
∑

t=j1>···>jr≥i2+1

r∏
s=1

ai1−jsεjs
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if i2 < t ≤ i1, and equal to PtYi1,i2 if t ≤ i2. Hence by Lemmas 12 and 14 below, for

i1 ≥ max(0, i2),

θ̂i1,i2 = sup
`≥0

P0Ỹi1,i2 ≤





Cξi1,i2 i2 < 0 ≤ i1

Cψi2 i2 ≥ 0.

Note that ξi1,i2 = ψi1 if i2 ≤ −ρ. Thus

∞∑
i=0

min(θ̂i,i−k, ε) =
k−1∑
i=0

min(θ̂i,i−k, ε) +
∞∑
i=0

min(θ̂i+k,i, ε)

≤ C

(
ε +

∞∑
i=0

min(ψi, ε)

)
→ 0 as ε → 0

since the ψi are summable by Lemma 13 below. Hence the condition (7) is proved for {Yi,j}
and the proof for (49) is complete.

Next observe that

Yi1,i2 = Yi1,i2 + Wi1,i2 := Yi1,i2 +

ρ∑
r=1

Ri1,i2,r

i1∑
t=i2+r

∑
t=j1>···>jr≥i2+1

r∏
s=1

ai1−jsεjs

where

Ri1,i2,r = K
(r,0)
i1,i2,i2

(Xi1,−∞,i2 , Xi2)−
ρ−r∑

r′=0

∑

|lll|=r′
DlllK

(r,0)
i1,i2,−∞(0, 0)

∑
i2≥j1>···>jr′

r′∏
s=1

ails−jsεjs .

Hence the conclusion of the theorem follows from (49) and Lemma 15 below. ♦

For kkk ∈ K with |kkk| ≤ ρ, define

M
(kkk)
i1,i2

= DkkkKi1,i2,0(Xi1,−∞,0, Xi2,−∞,0)

−
ρ−|kkk|∑
r=0

∑

|lll|=r

DlllDkkkKi1,i2,−∞(0, 0)
∑

0≥j1>j2>···>jr

r∏
s=1

ails−jsεjs .

Lemma 12 Assume that E(ε4
1) < ∞, and (K1) and (K2) hold. Then there exists a

constant C, independent of i1, i2 ≥ n0, such that

(i) for all kkk ∈ K with |kkk| ≤ ρ− 1,

‖P0M
(kkk)
i1,i2

‖2 ≤ C
[
a4

i1
+ a4

i2
+ a2

i1
‖M (1,kkk)

i1,i2
‖2 + a2

i2
‖M (2,kkk)

i1+1,i2+1‖2
]
;

27



(ii) for all kkk ∈ K such that |kkk| ≤ ρ,

‖M (kkk)
i1,i2

‖2 ≤ C
[
Ai1(4) + Ai2(4) + A

ρ−|kkk|+1
i1

(2) + A
ρ−|kkk|+1
i2

(2)
]
;

(iii) ‖P0Yi1,i2‖2 ≤ C(ψ2
i1

+ ψ2
i2
), where ψi = |ai|[|ai|+

√
Ai+1(4) + Aρ

i+1(2)].

Proof. We first prove (i). Define

Bkkk(i1, i2) =

ρ−|kkk|∑
r=1

∑

|lll|=r

DlllDkkkKi1,i2,−∞(0, 0)
∑

0=j1>j2>···>jr

r∏
s=1

ails−jsεjs ,

B1,kkk(i1, i2) =

ρ−|kkk|∑
r=1

∑

|lll|=r−1

DlllD1,kkkKi1,i2,−∞(0, 0)
∑

−1≥j2>···>jr

r∏
s=2

ails−jsεjs ,

B2,kkk(i1, i2) =

ρ−|kkk|∑
r=1

∑

|lll|=r−1

DlllD2,kkkKi1,i2,−∞(0, 0)
∑

−1≥j2>···>jr

r∏
s=2

ails−jsεjs .

Then Bkkk(i1, i2) = ai1ε0B1,kkk(i1, i2) + ai2ε0B2,kkk(i1, i2). Observe that for ι = 1 and 2,

‖Dι,kkkKi1,i2,−1(Xi1,−∞,−1, Xi2,−∞,−1)−Bι,kkk(i1, i2)‖ = ‖M (ι,kkk)
i1+1,i2+1‖.

Hence by the triangle inequality,

‖〈∇DkkkKi1,i2,−1(Xi1,−∞,−1, Xi2,−∞,−1), (ai1ε0, ai2ε0)〉 −Bkkk(i1, i2)‖ (50)

≤
2∑

ι=1

|aiι|‖Dι,kkkKi1,i2,−1(Xi1,−∞,−1, Xi2,−∞,−1)−Bι,kkk(i1, i2)‖ =
2∑

ι=1

|aiι|‖M (ι,kkk)
i1+1,i2+1‖.

By (29) and the triangle inequality,

‖P0M
(kkk)
i1,i2

‖ ≤ ‖DkkkKi1,i2,0(Xi1,−∞,0, Xi2,−∞,0)−DkkkKi1,i2,−1(Xi1,−∞,−1, Xi2,−∞,−1)

−〈∇DkkkKi1,i2,−1(Xi1,−∞,−1, Xi2,−∞,−1), (ai1ε0, ai2ε0)〉‖
+‖〈∇DkkkKi1,i2,−1(Xi1,−∞,−1, Xi2,−∞,−1), (ai1ε0, ai2ε0)〉 −Bkkk(i1, i2)‖,

from which (i) follows in view of (30) and (50).

To establish (ii) we will adopt a backward induction argument. First for |kkk| = ρ, since

M
(kkk)
i1,i2

= DkkkKi1,i2,0(Xi1,−∞,0, Xi2,−∞,0) − DkkkKi1,i2,−∞(0, 0), (ii) follows from (31). Next we
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make the induction assumption that (ii) holds for all kkk with |kkk| = m ≥ 1 and we wish to

show that it holds for all |kkk| = m− 1. By (i) we have for any kkk with |kkk| = m− 1,

‖P0M
(kkk)
i1,i2

‖2 ≤ C
[
a4

i1
+ a4

i2
+ a2

i1
‖M (1,kkk)

i1,i2
‖2 + a2

i2
‖M (2,kkk)

i1+1,i2+1‖2
]
.

Since the projections Pt are orthogonal and PtM
(kkk)
i1,i2

= 0 for t ≥ 1,

‖M (kkk)
i1,i2

‖2 =
0∑

t=−∞
‖PtM

(kkk)
i1,i2

‖2 =
∞∑

t=0

‖P0M
(kkk)
i1+t,i2+t‖2

≤ C

(
[Ai1(4) + Ai2(4)] +

∞∑
t=0

(a2
i1+t + a2

i2+t)[Ai1+t(4) + Ai2+t(4)]

+
∞∑

t=0

(a2
i1+t + a2

i2+t)[A
ρ−m+1
i1+t (2) + Aρ−m+1

i2+t (2)]

)

by the induction assumption. Now the induction is complete since
∑∞

t=0 a2
i+tAi+t(4) =

o[Ai(4)] and
∑∞

t=0 a2
i+tA

ρ−m+1
i+t (2) = O[Aρ−m+2

i (2)].

Finally, (iii) follows readily from parts (i) and (ii) of this lemma by noting that PtYi1,i2

and P0Yi1−t,i2−t = P0M
(0)
i1−t,i2−t have the same distribution. ♦

Lemma 13 If ρ and L(·) satisfies (27), then
∑∞

i=1 ψi < ∞.

Proof. By Karamata’s theorem,

An(k) = O(nak
n) for k ≥ 2. (51)

So the lemma easily follows from (27) after elementary calculations. ♦

For all i1 ≥ 0 ≥ i2, define

N
(k)
i1,i2

=
0∑

t=i2+1

PtN
(k)
i1,i2

where PtN
(k)
i1,i2

is equal to

PtK
(k,0)
i1,i2,t(Xi1,−∞,t, Xi2)−

(ρ∧(t−i2))−k∑
r=1

K
(k+r,0)
i1,i2,i2

(Xi1,−∞,i2 , Xi2)
∑

t=j1>···>jr≥i2+1

r∏
s=1

ai1−jsεjs

if 0 ≤ k ≤ ρ ∧ (t− i2) and 0 otherwise. The following lemma is very similar to Lemma 12.
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Lemma 14 Assume that E(ε4
1) < ∞ and conditions (K4) and (K5) hold. Let i1 ≥ n0 >

0 > i2 and write ρ′ = ρ ∧ (−i2). Then there exists a constant C, independent of i1, i2, such

that

(i) for all 0 ≤ k ≤ ρ′ − 1,

‖P0N
(k)
i1,i2

‖2 ≤ C
[
a4

i1
+ a2

i1
‖N (k+1)

i1+1,i2+1‖2
]
;

(ii) for all 0 ≤ k ≤ ρ′,

‖N (k)
i1,i2

‖2 ≤ C
[
Ai1(4) + A

ρ′−|kkk|+1
i1

(2)
]
;

(iii) ‖P0Yi1,i2‖2 ≤ Cξ2
i1,i2

, where ξi1,i2 = |ai1|[|ai1|+
√

Ai1+1(4) + Aρ′
i1+1(2)].

Proof. We first prove (i). Fix k ≤ ρ′ − 1. By the triangle inequality and (33),

‖P0N
(k)
i1,i2

‖
≤ ‖K(k,0)

i1,i2,0(Xi1,−∞,0, Xi2)−K
(k,0)
i1,i2,−1(Xi1,−∞,−1, Xi2)− ai1ε0K

(k+1,0)
i1,i2,−1(Xi1,−∞,−1, Xi2)‖

+‖ai1ε0K
(k+1,0)
i1,i2,−1(Xi1,−∞,−1, Xi2)

−
ρ′−k∑
r=1

K
(k+r,0)
i1,i2,i2

(Xi1,−∞,i2 , Xi2)
∑

0=j1>j2>···>jr≥i2+1

r∏
s=1

ai1−jsεjs‖.

The first term on the right is bounded by C|wi1−i2|a2
i1

by the assumption (34). The second

term on the right is bounded by

|ai1|‖K(k+1,0)
i1,i2,−1(Xi1,−∞,−1, Xi2)−K

(k+1,0)
i1,i2,i2

(Xi1,−∞,i2 , Xi2)

−
ρ′−k−1∑

r=1

K
(k+1+r,0)
i1,i2,i2

(Xi1,−∞,i2 , Xi2)
∑

−1≥j1>···>jr≥i2+1

r∏
s=1

ai1−jsεjs‖

≤ |ai1|‖N (k+1)
i1+1,i2+1‖+ |ai1|‖Wi1,i2,k −N

(k+1)
i1+1,i2+1‖

where

Wi1,i2,k = K
(k+1,0)
i1+1,i2+1,0(Xi1+1,−∞,0, Xi2+1)−K

(k+1,0)
i1+1,i2+1,i2+1(Xi1+1,−∞,i2+1, Xi2+1)

−
ρ′−k−1∑

r=1

K
(k+1+r,0)
i1+1,i2+1,i2+1(Xi1+1,−∞,i2+1, Xi2+1)

∑
0≥j1>···>jr≥i2+2

r∏
s=1

ai1+1−jsεjs‖.
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Observe that

‖Wi1,i2,k −N
(k+1)
i1+1,i2+1‖

≤
0∑

t=i2+1

ρ′−k−1∑

r=(ρ∧(t−i2))−k+1

‖K(k+1+r,0)
i1+1,i2+1,i2+1(Xi1+1,−∞,i2+1, Xi2+1)

∑
t=j1>···>jr≥i2+2

r∏
s=1

ai1+1−jsεjs‖

≤ C|ai1|.

Hence (i) follows.

To establish (ii) we will adopt a backward induction argument. First for k = ρ′, (ii)

follows from (35) in view of

N
(ρ′)
i1,i2

= K
(ρ′,0)
i1,i2,0(Xi1,−∞,0, Xi2)−K

(ρ′,0)
i1,i2,i2

(Xi1,−∞,i2 , Xi2)

Next we make the induction assumption that (ii) holds for k = m ≥ 1 and we wish to show

that it holds for k = m− 1. By (i) we have

‖P0N
(m−1)
i1,i2

‖2 ≤ C
[
a4

i1
+ a2

i1
‖N (m)

i1,i2
‖2

]
.

Since the projections Pt are orthogonal,

‖N (m)
i1,i2

‖2 =
0∑

t=i2+1

‖PtN
(m)
i1,i2

‖2 =

−i2−1∑
t=0

‖P0N
(m)
i1+t,i2+t‖2

≤ Cw2
|i−j|

(
Ai1(4) +

∞∑
t=0

a2
i1+tAi1+t(4) +

∞∑
t=0

a2
i1+tA

ρ′−m+1
i1+t (2)

)

by the induction assumption. Now the induction is complete since
∑∞

t=0 a2
i+tAi+t(4) =

o[Ai(4)] and
∑∞

t=0 a2
i+tA

ρ′−m+1
i+t (2) = O[Aρ′−m+2

i (2)].

Finally, (iii) follows readily from parts (i) and (ii) of this lemma by noting that PtYi1,i2

and P0Yi1−t,i2−t = P0N
(0)
i1−t,i2−t have the same distribution. ♦

Lemma 15 Under the conditions of Theorem 11,

n−3/2

n∑
i,j=1

Wi1,i2

p−→ 0.
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Proof. Recall that

Ri1,i2,r = K
(r,0)
i1,i2,i2

(Xi1,−∞,i2 , Xi2)−
ρ−r∑

r′=0

∑

|lll|=r′
DlllK

(r,0)
i1,i2,−∞(0, 0)

∑
i2≥j1>···>jr′

r′∏
s=1

ails−jsεjs

and hence we have for i1 ≥ i2 ≥ 0,

‖P0Ri1,i2,r‖ = ‖P0M(r,0)
i1,i2

‖ ≤ C|ai2|
[
|ai2|+

√
Ai2+1(4) + Aρ−r

i2+1(2)

]

∼ Cai2(iai2)
ρ−r
2 ∼ i2

−δLρ−r+1(i2) =: ηi2 ,

where δ = (ρ − r + 1)(β − 1/2) + 1/2 by Lemma 12 and (51). Projecting iteratively, we

obtain

‖
n∑

i1≥i2=1

Ri1,i2,r

∑
i2+r≤t≤i1

∑
t=j1>···>jr≥i2+1

ai1−j1

r∏
s=1

ai1−jsεjs‖2

=
∑

n≥t1>···>tr≥1

‖
n∑

i1=t1

tr−1∑
i2=1

r∏
s=1

ai1−tsRi1,i2,r‖2

=
∑

n≥t1>···>tr≥1

tr−1∑

t′=−∞
‖

n∑
i1=t1

tr−1∑

i2=1∨t′

r∏
s=1

ai1−tsPt′Ri1,i2,r‖2

≤ C
∑

n≥t1>···>tr≥1

tr−1∑

t′=−∞
(

n∑
i1=t1

tr−1∑

i2=1∨t′

r∏
s=1

ai1−tsηi2−t′)
2.

Now approximating summations by integrals, the last expression can be seen to be asymp-

totically equal to Cnr+5−2(rβ+δ)(L(n))2(ρ−r+1) × INT for large n, where

INT =

∫

1>t1>···>tr>0

∫ tr

t′=−∞

(∫ 1

x=t1

r∏
s=1

(x− ts)
−β

)2 (∫ tr−1

y=0∨t′
(y − t′)−δ

)2

.

Since

r + 5− 2(rβ + δ) = 4− (ρ + 1)(2β − 1) ≤ 3,

where the equality holds only if L(n) → 0 by (27), the result will follow if we can show that
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INT < ∞, which is what we will do. First

∫ 1

x=t1

r∏
s=1

(x− ts)
−βdx ≤ (t1 − t2)

−(rβ−1)

∫ ∞

0

x−β(x + 1)−β

r∏
s=3

(
x +

t1 − ts
t1 − t2

)−β

dx

≤ (t1 − t2)
−(rβ−1)

r∏
s=3

(
t1 − ts
t1 − t2

)−β ∫ ∞

0

x−β(x + 1)−βdx

≤ C(t1 − t2)
−(2β−1)

r∏
s=3

(t1 − ts)
−β.

Hence we have

INT ≤ C

∫

1>t1>···>tr>0

(t1 − t2)
−2(2β−1)

r∏
s=3

(t1 − ts)
−2β

∫ tr

t′=−∞

(∫ tr−1

y=0∨t′
(y − t′)−δ

)2

.

Writing

∫ tr

t′=−∞

(∫ tr−1

y=0∨t′
(y − t′)−δdy

)2

dt′ =
(∫ −1

t′=−∞
+

∫ 0

t′=−1

+

∫ tr

t′=0

)(∫ tr−1

y=0∨t′
(y − t′)−δdy

)2

dt′,

it is easy to see that all three integrals are uniformly bounded since 1/2 < δ < 1. Also,

integrating iteratively from tr to t3, we obtain

∫

t2>···>tr>0

r∏
s=3

(t1 − ts)
−2βdt3 · · · dtr ≤ C(t1 − t2)

−(r−2)(2β−1).

Since r(2β − 1) < 1,

∫

1>t1>···>tr>0

(t1 − t2)
−2(2β−1)

r∏
s=3

(t1 − ts)
−2βdt1 · · · dtr

≤ C

∫ 1

t1=0

∫ t1

t2=0

(t1 − t2)
−r(2β−1)dt1dt2 < ∞.

Hence we conclude that INT < ∞ and the proof is complete. ♦
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