Master’s Thesis Presentation

Matthew Yang
Department of Statistics
The University of Chicago

“Latent Denoising Diffusion Probabilistic Models”

Thursday, February 15, 2024, at 3:00 PM
Jones 111, 5747 S. Ellis Avenue

Abstract

Variational Autoencoders (VAEs) have been widely used in the fields of representation learning and generative modeling. However, VAEs often fall short in generating high-quality samples when compared to other generative models like Generative Adversarial Networks (GANs) and Denoising Diffusion Probabilistic Models (DDPMs). In this paper, we propose a novel approach that integrates the strengths of DDPMs into the VAE framework. Traditional VAEs constrain the encoder to learn encodings that follow a certain prior distribution, however our model uses DDPMs to learn a flexible distribution over compressed representations of data samples. The advantage of our approach lies in its efficiency compared with GANs and DDPMs--our model learns distributions over a low-dimensional latent space instead of the full data space. Our model's efficacy is demonstrated through experiments conducted on three benchmark datasets: MNIST, Fashion MNIST, and CIFAR-10. Our model outperforms several existing autoencoder-based methods and is competitive with other generative models based on FID scores.

For information about building access for persons with disabilities, please contact Keisha Prowoznik at 773.702-0541 or send an email to kprowoznik@uchicago.edu. If you wish to subscribe to our email list, please visit the following website: https://lists.uchicago.edu/web/info/statseminars.