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Modern data curators seek to meet two goals at once:

1. To disclose key statistics/use cases of the database, in accordance with its

legal, policy, and/or ethical mandates.

2. To protect the privacy of individuals with provable guarantees.

For example, the U.S. Census Bureau is constitutionally mandated to enumerate

the population for apportionment every ten years. At the same time it is bound by

Title 13 of U.S. Code to protect the confidentiality of respondents.
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The U.S. Census Bureau Adopts Di�erential Privacy (Abowd, 2018)
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I Statistical disclosure limitation mechanisms compliant with di�erential

privacy guarantees protection with provability.

Definition. (Dwork et al., 2006). A random function M is ε-di�erentially private if

for all neighboring datasets {(D,D′) : d (D,D′) = 1},

Pr
(
M
(
D′
)
∈ A
)
≤ eεPr (M (D) ∈ A) ,

for all A ∈ B(Rp). Here, ε is called the privacy loss budget.

I The probabilistic specification of the mechanism M can be fully transparent
(examples to follow), which makes good statistical inference possible.

But possible 6= easy!

? Can data analysts adapt their statistical models to privatized data?

? Can data curators deliver the promised full transparency?
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In their Summary of the CNSTAT Workshop, Hotz & Salvo (2020) wrote:

With some exceptions, applications demonstrated that the variability of

small-area data (i.e., blocks, block groups, census tracts) compromised
existing analyses...[C]omparisons of 2010 Census data under the old DAS

to 2020 Census data under DP may well show inexplicable trends.

In addition, they noted:

...[U]nexpected issues with the post-processing of the proposed DAS,

arising from the Bureau’s need to hold some data cells invariant to
change (e.g., total population at the state level).
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Do not ignore a privacy mechanism

Posit a simple linear model between two vector counts (x, y):

y = β0 + β1x + e.

OLS produces consistent estimators

β̂0 −→ β0, β̂1 −→ β1.

Protect the confidential counts with the ε-DP mechanism:

xdp = x + u, y
dp

= y + v, u, v ∼ Lapn
(
ε−1
)

Naïvely fi�ing the original model to di�erentially privatized data

y
dp

= β0 + β1xdp + e,

results in least squares estimates that are both biased (a�enuated):

b̂0 → β0 +

(
1− V (x)

V (x) + σ2

u

)
E (x)β1︸ ︷︷ ︸, b̂1 → β1−

σ2

u

V (x) + σ2

u
β1︸ ︷︷ ︸,

with inflated regression residual variance

V
(
y

dp
| xdp

)
= σ2 +β2

1
σ2

u + σ2

v︸ ︷︷ ︸ .
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Figure: Naïve fi�ing with xi ∼ Pois (10), yi = −5 + 4xi + ei , ei ∼ N
(
0, 52

)
, n = 10, at

privacy budget levels ε = 0.5, 0.2, 0.1, and∞ (no privacy). Smaller ε induces more misguided

confidence regions for (β0, β1). Each panel depicts 20 simulations.
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Transparent privacy is principled privacy

A model adequate for the confidential data s = (x, y) will almost certainly be

inadequate if naïvely fi�ed to the privatized data sdp = (xdp, y
dp

):

y = β0 + β1x + e ��=⇒ y
dp

= β0 + β1xdp + e.

Instead, augment the original model to include the privacy mechanism:

Likelihood for β based on privatized data sdp is integrated over the confidential

data s, with respect to the privacy mechanism:

L (β; sdp) =

∫
ηdp (sdp | s)︸ ︷︷ ︸

privacy mechanism

π (s | β)︸ ︷︷ ︸
original model

∂s

I The full transparency of ηdp (· | ·) is necessary to ensure unbiased inference

for all questions for β using private data;

I Inference that respect L (β; sdp) will be termed exact.
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On behalf of data users...

How can data analysts adapt their statistical models to privatized data ?

I Approximate computation (ABC, Monte Carlo EM) can be systematically

adapted to produce exact statistical inference with transparent privacy;

How can data curators deliver the promised full transparency ?

I If invariants are mandated, the congenial design of the privacy mechanism

via standard probabilistic conditioning is a principled alternative to

optimization-based post-processing.
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Approximate Bayesian computation (ABC)

A Bayesian model is posited:

I prior: θ ∼ π0(θ)

I likelihood: x | θ ∼ π(x | θ)

I posterior:

π (θ | x) ∝ π0 (θ)π (x | θ)

Sampling from the posterior via Monte Carlo requires that it at least can be

evaluated. This is not the case for complex models (e.g. intractable or implicit

likelihood).
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Approximate Bayesian computation (ABC)

Algorithm 1

Input: observed data x0, integer N > 0;

Iterate: for i = 1, . . . ,N :

step 1, simulate θi ∼ π0(θ);

step 2, simulate xi ∼ π(x | θi);

step 3, accept θi if xi = x0, otherwise go to step 1;

Output: a set of parameter values {θi}N
i=1

.

Algorithm 1 draws θi ∼ π(θ | x0), i.i.d.

Exact matching xi = x0 isn’t practical, if x0 is high-dimensional or continuous.
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Approximate Bayesian computation (ABC)

Algorithm 2

Input: observed summary data s0 = s(x0), integer N > 0,

a kernel density η with bandwidth h > 0;

Iterate: for i = 1, . . . ,N :

step 1, simulate θi ∼ π0(θ);

step 2, simulate si ∼ π(s(x) | θi);

step 3, accept θi with probability cη ((si − s0) /h)

where c−1 = max{η(·)}, otherwise go to step 1;

Output: a set of parameter values {θi}N
i=1

.

Two layers of approximation

θi ∼ πABC (θ | s0)
η(·) and h
L9999K π (θ | s0)

s(·)
L9999K π (θ | x0)
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Adapting a Bayesian model to DP queries

The Bayesian model is modified to:

I prior: θ ∼ π0(θ)

I confidential query likelihood: s | θ ∼ π(s | θ)

I privacy mechanism

(additive):

sdp | s,Aθ ∼ ηdp (sdp | s) ← ignorability

sdp (D) := s (D) + hu, u ∼ η, h = h (ε, δ, s) > 0

I observed/private posterior:

π (θ | sdp) =
π0 (θ)

∫
ηdp(sdp | s)π (s | θ) ds∫

π0 (θ)
∫
ηdp(sdp | s)π (s | θ) dsdθ

.
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Adapting a Bayesian model to DP queries

The Bayesian model is modified to:

I prior: θ ∼ π0(θ)

I confidential query likelihood: s | θ ∼ π(s | θ)

I privacy mechanism (additive): sdp | s,Aθ ∼ η ((sdp − s) /h)

sdp (D) := s (D) + hu, u ∼ η, h = h (ε, δ, s) > 0

I observed/private posterior:

π (θ | sdp) =
π0 (θ)

∫
η ((sdp − s) /h)π (s | θ) ds∫

π0 (θ)
∫
η ((sdp − s) /h)π (s | θ) dsdθ

.
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ABC produces exact posterior draws for DP data

Algorithm 3

Input: private query sdp, integer N > 0, perturbation

mechanism w/ density η and bandwidth h(ε, δ, s) > 0;

Iterate: for i = 1, . . . ,N :

step 1, simulate θi ∼ π0(θ);

step 2, simulate si ∼ π(s | θi);

step 3, accept θi with probability cη ((sdp − si) /h)

where c−1 = max{η(·)}, otherwise go to step 1;

Output: a set of parameter values {θi}N
i=1

.

Theorem (G. 2019)

Algorithm 3 draws θi ∼ π(θ | sdp), i.i.d.

* Noisy ABC (Fearnhead & Prangle, 2012);

* ABC under the assumption of model error (Wilkinson, 2013).
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Exact likelihood inference with Monte Carlo EM

Expectation-Maximization (Dempster et al., 1977) for private data:

I complete data is (s, sdp);

I missing data is s, where s | θ ∼ π(s | θ); ← data analyst

I observed data is sdp, where sdp | s ∼ ηdp(· | s). ← data curator

Iterate till convergence:

– E-step:

Q(θ; θ(t)) = E
(

log L(θ; s, sdp) | sdp, θ
(t)
)

= E
(

log π(s | θ) | sdp, θ
(t)
)

+ const.

– M-step:

θ(t+1) = argmaxθQ(θ; θ(t)).
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Exact likelihood inference with Monte Carlo EM

E-Step via Importance Sampling

Iterate: for i = 1, . . . ,N :

step 1, simulate si ∼ π(s | θ(t)); ← data analyst

step 2, assign weight ωi = ηdp (sdp | si); ← data curator

Output: a set of weighted samples {si, ωi}N
i=1

.

N∑
i=1

ωib (si)/
N∑

i=1

ωi
p→ E

(
b(s) | sdp, θ

(t)
)
, as N →∞.

Take b(s) to be:

I su�icient statistic for θ, if π(s | θ) is exponential family;

I log π(s | θ) in general;

I ∇θ log π(s | θ) and∇2

θ log π(s | θ), towards estimating observed score

function and Fisher information.
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Numerical example: privatized count data

I Likelihood for confidential query s | θ ∼ Pois (θ);

I Privacy mechanism sdp | s ∼ ε−1Lap(1) with ε = 0.2;

I With prior θ ∼ Gamma (25, 1), exact posterior is

π
(
θ | sdp

)
∝ θα−1e−(β+1)θ

Γ
(⌈
sdp

⌉
, θ+
ε

)
Γ
(⌈
sdp

⌉) eθ
+
ε −εsdp +

γ
(⌈

sdp

⌉
, θ−ε

)
Γ
(⌈
sdp

⌉) eθ
−
ε +εs

dp



I Monte Carlo EM gives θ̂dp = 37.237, Îdp = 1.582× 10
−2

;

I If naïvely treat sdp = 37.4 as confidential: Î = 2.674× 10
−2 ≈ 169%× Îdp.
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Takeaway

The analogy at play here:

approximate computation on exact data

m
exact computation on approximate data

The statistical tradeo� (utility vs privacy) becomes aligned with the computational

tradeo� (approximation vs exactness).

· · ·
Up next – Invariants: the roadblock to fully transparent privacy mechanisms
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Privacy under mandated disclosure

I The data curator may be mandated to release privatized data congruent with

invariants, a set of exact statistics computed from the confidential

micro-data (Ashmead et al., 2019).

I e.g. state population total, voting age population total, total housing units,

non-negativity of counts, etc.

I Let X ∗ ⊂ X be the set of dataset x’s that obey the invariants. It restricts the

value the query must satisfy to be

S∗ =
{

s (x) ∈ Rd : x ∈ X ∗
}
.

Note, S∗ : X ∗ → σ
(
Rd
)

is a set-valued function of the confidential dataset x∗.

I Challenge: how to find a mechanism, M̃, that satisfies the mandated

disclosure:

M̃ (x) ∈ S∗, ∀x ∈ X ∗,

while preserving the provability and transparency of di�erential privacy?
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Curator’s post-processing may not be innocent post-processing

A common practice to construct invariant-respecting mechanisms is through

optimization-based post-processing of an otherwise unconstrained ε-DP

mechanism M:

f (M;S∗) := argmins∈S∗∆ (M, s) ,

for ∆ some discrepancy measure.

This operation does not fall under the post-processing theorem!
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Curator’s post-processing may not be innocent post-processing

Theorem (Dwork & Roth, 2014)

If M is an ε-DP mechanism and g an arbitrary function, then g ◦M is also ε-DP.

I Indeed for any g-measurable set B, the two events

g(M (x)) ∈ B ⇔ M (x) ∈ g−1(B)

are equivalent, thus equiprobable according to M.

I However, S∗ : X ∗ → σ
(
Rd
)

is a set-valued function of the confidential data.

For an f -measurable set B and any x ∈ X , the equivalent events are

f (M (x) ;S∗ (x)) ∈ B ⇔ M (x) ∈ f−1 (B;S∗(x)) ,

noting that the inverse map f−1

now depends on x .

I For x, x ′ neighboring datasets, the f -probability ratio

P (f (x) ∈ B)

P (f (x ′) ∈ B)
=

P
(
M(x) ∈ f−1(B;S∗(x))

)
P (M(x ′) ∈ f−1(B;S∗(x ′)))

may not be exp(±ε)-bounded.
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Invariant-respecting DP design via standard probabilistic conditioning

Let M be an unconstrained ε-di�erentially private mechanism based on the

deterministic query s : X → Rd
, and S∗ be the set of query values conformal to

the invariant X ∗. Propose an invariant-respecting mechanism M∗, such that

M∗ (x)
L
= M (x) | M (x) ∈ S∗.

Theorem (G. and Meng, 2020)

For all (x, x ′) ∈ X ∗ ×X ∗ such that d (x, x ′) = k, there exists a real-valued

γ ∈ [−1, 1] such that for all B ∈ B
(
Rd
)
,

P (M∗ (x) ∈ B) ≤ exp ((1 + γ) kε) P
(
M∗
(
x ′
)
∈ B
)
.

Note. The theorem always holds when taking γ = 1. For specific M and S∗, it is

possible to find γ ∈ [−1, 1). Examples are available for which γ = 0,−1/2,−1.

21 / 27



Conditioning preserves statistical intelligibility

The meaning of unconditional DP. Let {Mε : ε > 0} be a class of ε-DP mechanisms.

For every B ∈ B
(
Rd
)

and every prior π the analyst harbors about xi ,

π (xi = ω | Mε (x) ∈ B) ∈
[

exp (−ε)π (xi = ω) , exp (ε)π (xi = ω)

]
.

The meaning of conditional DP. Let {M∗ε : ε > 0} be a class of ε-DP mechanism

that respect the invariant X ∗. For all x ∈ X ∗ such that ∃x ′ ∈ X ∗ so that

d (x, x ′) = 1, and ∀B ∈ B (S∗), the analyst’s posterior probability

π (xi = ω | x ∈ X ∗,M∗ε (x) ∈ B) ∈[
exp (− (1 + γ) ε)π (xi = ω | x ∈ X ∗) , exp ((1 + γ) ε)π (xi = ω | x ∈ X ∗)

]
.

The structural resemblance between the two statements is due to the conditional

nature of M∗, which allows for statistical information from privacy mechanisms

(constrained or otherwise) to be interpreted in the same – hence congenial – way.
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A Monte Carlo implementation

We demonstrate a generic Metropolized Independent Sampler (MIS; Liu, 1996) for

when the mandated invariants are expressed as a consistent system of linear

equalities and inequalities

S∗ =
{

s ∈ Rd : As = a,Bs ≥ b
}
.

The proposal is applicable to both discrete and continuous privatization schemes,

and does not require knowing the normalizing constant.
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Metropolized Independent Differentially Private Sampler with Invariants

Input: unconstrained privacy mechanism p,

confidential query s∗, invariant parameters (A, a,B, b),

proposal distribution q, proposal index set I ,

initial value s(0) ∈ S∗, integer nsim;

Iterate: for t = 0, 1, . . . , nsim− 1, at t + 1:

step 1, propose s̃:

1-1. sample s̃I ∼ q;

1-2. solve for s̃Ic in A[I] s̃I + A[Ic ] s̃Ic = a;

1-3. write s̃ = (̃sI , s̃Ic );

step 2, compute α(s(t), s̃) = min

{
1,

p(̃s)1(Bs̃≥b)q
(

s(t)
I

)
p(s(t))q(̃sI )

}
;

step 3, set s(t+1) = s̃ with probability α(s(t), s̃),

otherwise set s(t+1) = s(t)
.

Output: a set of draws {s(t)}, t = 1, . . . , nsim.
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Example: sex-by-age contingency table with invariants

< 5 6-10 11-15 16-17 18-19 20 21 22-24 25-29 30-34 35-39 40-44 45-49 50-54

Female 8 6 3 6 4 4 4 8 5 7 7 6 1 5

Male 3 4 5 8 6 4 5 5 5 6 10 7 3 2

55-59 60-61 62-64 65-66 67-69 70-74 75-79 80-84 85+ Total

Female 4 4 9 6 2 8 8 8 7 130
Male 5 11 6 4 7 4 5 3 8 126

Voting 43 213 256

< 5 6-10 11-15 16-17 18-19 20 21 22-24 25-29 30-34 35-39 40-44 45-49 50-54

Female 6 6 4 3 2 10 2 5 6 7 5 6 0 5

Male 9 4 5 6 3 4 5 5 3 4 7 8 5 3

55-59 60-61 62-64 65-66 67-69 70-74 75-79 80-84 85+ Total

Female 4 5 10 8 3 8 8 12 5 130
Male 2 23 8 2 6 3 0 3 8 126

Voting 43 213 256

A confidential sex × age contingency table (top) and its corresponding constrained

DP-release (bo�om), subject to 1) total population, 2) proportion female

population, 3) voting age population, and 4) nonnegative integer constraints.

Constructed using a Double Geometric mechanism w/ ε = 0.5 per cell.
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Figure: Average L1 (top) and L2 (bo�om) distances of a simulated confidential dataset from its

privatized releases using four processing methods: a) raw Double Geometric w/ ε = 1; b) raw

(ε = 1) followed by nonnegative L2 onto S∗; c) proposed S∗-conditional algorithm w/

ε0 = 0.5; d) raw Double Geometric w/ ε = 0.5. Note that this comparison does not suggest

relative accuracy between the nonnegative L2 and the conditional mechanisms, as the

e�ective privacy guarantee that either mechanism enjoys is undetermined.
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Future Research

I Finding be�er γ: e�ective privacy determination for given M and M∗

I Combating computational complexity without compromising privacy, e.g.

when non-perfect Markov chain Monte Carlo is employed

I The real dark side of invariants is its ability to disrupt, even destroy, the

neighborhood structure of databases, i.e.{(
x, x ′

)
∈ X ∗ ×X ∗ : d

(
x, x ′

)
= 1

}
= ∅,

and {(
x, x ′

)
∈ X ∗ ×X ∗ : d

(
x, x ′

)
≥ 1

}
= ∅.

How to prevent privacy from becoming a (near)-vacuous promise?
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Thank You
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In case you ask...
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Monte Carlo EM for simple linear regression
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Figure: Correct model (green) fi�ed via Monte Carlo EM vs. naïve model (gray) on six

instances of DP protected datasets (ε = 0.2). Displayed 95% confidence ellipses are based on

normal approximations at the MLE.
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Performance Diagnostics of the MIS Algorithm

The acceptance rate is shown as a function of the proposal inverse scale parameter

ε̃ . The acceptance rate is the highest in this example when ε̃ is set to 0.6, just

slightly larger than the privacy loss budget of the unconstrained privacy

mechanism (ε = 0.5 per cell). The acceptance rate achieved is about 1.68%.
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Performance Diagnostics of the MIS Algorithm

Traceplots of 10, 000 draws from the Algorithm of respectively the second (in

proposal index set I) and the first (not in proposal index set I) cells of the

constrained di�erentially private contingency table, when ε̃ = 0.6.
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A case of γ = 0: trivial invariants

Consider the trivial case where the set of invariants does not actually impose any

restriction, i.e., X ∗ = X . It is then necessarily true that S∗ = S , and the

“constrained” di�erentially private mechanism is identical in distribution to the

unconstrained one: M∗
L
= M. In this case, γ = 0 and M∗ is ε-di�erentially private.
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A case of γ = −1: rounding

Let x be an indicator vector of length n, and the query is

s(x) = d
∑

xi/10e.

Suppose the invariant set mandated for disclosure is

X ∗ =
{

(x1, . . . , xn) ∈ {0, 1}n :
∑

xi ∈ [41, 50]
}
,

or equivalently, S∗ = {5}. For any M, the implied constrained privacy mechanism

M∗ is equivalent to a degenerate distribution: P (M∗ (x) = 5) = 1 for all x ∈ X ∗.
Furthermore, for all neighboring datasets (x, x ′) ∈ X ∗ ×X ∗, and any B a

measurable subset of N,

P (M∗ (x) ∈ B) = exp (0) P
(
M∗
(
x ′
)
∈ B
)

=

 1

0

if 5 ∈ B

otherwise.

Therefore in this particular instance, M∗ is in fact 0-di�erentially private,

corresponding to γ = −1, i.e. for those databases conformal to the invariant X ∗,
M∗ supplies no discriminatory information among them whatsoever.
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A case of γ = −1/2: two-bin histogram with fixed sum

Suppose x is a binary vector, and the query s = (s1 (x) , s2 (x)) tabulates the 0s and

1s in x . Employ the Laplace mechanism as the unconstrained mechanism, i.e.

M (x) = (m1 = s1 + u1,m2 = s2 + u2) , ui
i.i.d.∼ Lap(2ε−1),

expending a total of ε budget. Suppose that

S∗ (x) =
{

(a1, a2) ∈ R2 : a1 + a2 = s1 (x) + s2 (x)
}
.

The congenial M∗ (x) follows the conditional distribution

(s1 + u1, s2 + u2) | u1 + u2 = 0, which has density

p (m1 = m,m2 = n− m) =
ε

2

exp {−ε |m− s1|} ,

which is equivalent to drawing a u from Lap(ε−1) and release

(m1 = s1 + u,m2 = s2 − u), thus maintaining the same ε guarantee as the

unconstrained mechanism. However, when the sum is fixed, k must be set to 2 or

greater because the nearest neighboring vectors (x, x ′) must have d(x, x ′) = 2.

Hence the ε privacy bound implies k(1 + γ) = 2(1 + γ) = 1, yielding γ = −0.5.
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