SUMIT MUKHERJEE

Department of Statistics
Columbia University

Global Testing for Dependent Bernoullis

MONDAY, March 1, 2021 at 4:00 PM
Via Zoom (session information will be e-mailed to subscribers)

ABSTRACT

Suppose (X_1, \ldots, X_n) are independent Bernoulli random variables with $\mathbb{E}(X_i) = p_i$, and we want to test the global null hypothesis that $p_i = \frac{1}{2}$ for all i, versus the alternative that there is a sparse set of size s on which $p_i \geq \frac{1}{2} + A$. The detection boundary of this test in terms of (s, A) is well understood, both in the case when the signal is arbitrary, and when the signal is present in a segment.

We study the above questions when the Bernoullis are dependent, and the dependence is modeled by a graphical model (Ising model). In this case, contrary to what typically happens, dependence can allow detection of smaller signals than the independent case. This phenomenon happens over a wide range of graphs, for both arbitrary signals and segment signals.

This talk is based on joint work with Nabarun Deb, Rajarshi Mukherjee, and Ming Yuan.

For further information and inquiries about building access for persons with disabilities, please contact Jonathan Rodriguez at 773.702.8333 or send him an email at jgrodriguez@galton.uchicago.edu. If you wish to subscribe to our email list, please visit the following website: https://lists.uchicago.edu/web/subscribe/statseminars.