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There will be two lectures. In the first we present a general overview concerning
adaptive estimation using total variation regularization. Our main tool will
consist of so-called “interpolating vectors” which we introduce in the first lecture
for the noiseless case. In the second lecture, we discuss the noisy case in more
detail for some special cases. The second lecture will not require knowledge
from the first one.

Total variation regularization, part 1

Let Y ∈ Rn be a vector of independent observations with unknown mean f0 :=
IEY . We consider the estimator f̂ = f̂D that solves the “analysis problem”

min
f∈Rn

{
‖Y − f‖22/n+ 2λ‖Df‖1

}
,

where D ∈ Rm×n is a given matrix and λ > 0 is a tuning parameter. An
example for D is the difference operator

(Df)i = fi − fi−1, i ∈ [2 : n]

in which case ‖Df‖1 = TV(f) is the total variation of f . Other examples
include higher order discrete derivatives, total variation on graphs and total
variation in higher dimensions. Our aim is to show that the estimator f̂ is
adaptive. For example, when f0 is a piecewise linear function, we show that
the analysis estimator f̂D, with D the second differences operator, adapts to the
number of kinks of f0. As is the case with the Lasso, the theory for the analysis
estimator f̂ requires a form of “restricted eigenvalue” condition. We will show
that this can be established using interpolating vectors. We will illustrate this
(with drawings) for the various examples.

Total variation regularization, part 2

Let Y ∈ Rn be a vector of independent observations with unknown mean f0 :=
IEY . For f ∈ Rn, let TV(f) :=

∑n
i=2 |fi − fi−1| or, more generally, let TV(f)

be total variation over a graph. It may also be a version of total variation in
higher dimensions. We consider the total variation regularized estimator

f̂ := arg min
f∈Rn

{
‖Y − f‖22/n+ 2λTV(f)

}
,

where λ > 0 is a tuning parameter. We aim at showing that f̂ adapts to the
number of constant pieces of f0. To this end, we will introduce the concept
“effective sparsity” (which plays a role similar to “restricted eigenvalue”) and
show how it can be derived. This requires some bounds from empirical process
theory. We will moreover use combinatorial arguments such as counting paths
on graphs.
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There will be two lectures. In the first we present a general overview concerning
adaptive estimation using total variation regularization. Our main tool will
consist of so-called “interpolating vectors” which we introduce in the first lecture
for the noiseless case. In the second lecture, we discuss the noisy case in more
detail for some special cases. The second lecture will not require knowledge
from the first one.

Total variation regularization, part 1

Let Y ∈ Rn be a vector of independent observations with unknown mean f0 :=
IEY . We consider the estimator f̂ = f̂D that solves the “analysis problem”

min
f∈Rn

{
‖Y − f‖22/n+ 2λ‖Df‖1

}
,

where D ∈ Rm×n is a given matrix and λ > 0 is a tuning parameter. An
example for D is the difference operator

(Df)i = fi − fi−1, i ∈ [2 : n]

in which case ‖Df‖1 = TV(f) is the total variation of f . Other examples
include higher order discrete derivatives, total variation on graphs and total
variation in higher dimensions. Our aim is to show that the estimator f̂ is
adaptive. For example, when f0 is a piecewise linear function, we show that
the analysis estimator f̂D, with D the second differences operator, adapts to the
number of kinks of f0. As is the case with the Lasso, the theory for the analysis
estimator f̂ requires a form of “restricted eigenvalue” condition. We will show
that this can be established using interpolating vectors. We will illustrate this
(with drawings) for the various examples.

Total variation regularization, part 2

Let Y ∈ Rn be a vector of independent observations with unknown mean f0 :=
IEY . For f ∈ Rn, let TV(f) :=

∑n
i=2 |fi − fi−1| or, more generally, let TV(f)

be total variation over a graph. It may also be a version of total variation in
higher dimensions. We consider the total variation regularized estimator

f̂ := arg min
f∈Rn

{
‖Y − f‖22/n+ 2λTV(f)

}
,

where λ > 0 is a tuning parameter. We aim at showing that f̂ adapts to the
number of constant pieces of f0. To this end, we will introduce the concept
“effective sparsity” (which plays a role similar to “restricted eigenvalue”) and
show how it can be derived. This requires some bounds from empirical process
theory. We will moreover use combinatorial arguments such as counting paths
on graphs.

1The results can be extended to other loss functions, for instance logistic loss
when Y is a vector of binary observations. In that case we place the total
variation penalty on the log-odds ratio.
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