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Abstract

We describe an extensive ichnofossil assemblage from the likely Cenomanian-age ‘lower’ and ‘upper’ units of the ‘Kem Kem
beds’ in southeastern Morocco. In the lower unit, trace fossils include narrow vertical burrows in cross-bedded sandstones
and borings in dinosaur bone, with the latter identified as the insect ichnotaxon Cubiculum ornatus. In the upper unit,
several horizons preserve abundant footprints from theropod dinosaurs. Sauropod and ornithischian footprints are much
rarer, similar to the record for fossil bone and teeth in the Kem Kem assemblage. The upper unit also preserves a variety of
invertebrate traces including Conichnus (the resting trace of a sea-anemone), Scolicia (a gastropod trace), Beaconites (a
probable annelid burrow), and subvertical burrows likely created by crabs for residence and detrital feeding on a tidal flat.
The ichnofossil assemblage from the Upper Cretaceous Kem Kem beds contributes evidence for a transition from
predominantly terrestrial to marine deposition. Body fossil and ichnofossil records together provide a detailed view of
faunal diversity and local conditions within a fluvial and deltaic depositional setting on the northwestern coast of Africa
toward the end of the Cretaceous.
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Introduction

The likely Cenomanian-age Upper Cretaceous ‘Kem Kem

beds’ are exposed along the face of a limestone-capped escarpment

extending some 250 km in length in southeastern Morocco [1,2]

(Figure 1). They comprise a 150–200 m thick sequence of fluvial

siltstones and sandstones divided informally into ‘lower’ and

‘upper’ units [1,2] (Figure 2). First extensively explored in the

1950s by French paleontologist René Lavocat, the Kem Kem beds

have been subject to renewed interest and fieldwork since the mid

1990s [1,3]. The diverse vertebrate assemblage described from the

Kem Kem beds includes elasmobranchs, bony fishes (actinopter-

ygians, coelacanths, lungfish), turtles, crocodylomorphs, ptero-

saurs, non-avian dinosaurs, and birds [1,3–12]. The rich

ichnological record preserved alongside these body fossils [1,13],

however, has not been thoroughly described. Although footprints

of Jurassic and Cretaceous age have been recorded at a few other

sites in Morocco [14–16], the Upper Cretaceous Kem Kem beds

provide by far the greatest range of ichnofossil evidence that

impacts recorded biological diversity and the interpretation of

depositional settings (Figure 2B–D).

Geologic Setting
The Kem Kem beds rest unconformably on Paleozoic

(Cambrian through Silurian) marine strata and are capped by a

cliff-forming Cenomanian-Turonian-age marine limestone

[1,2,11,17–20] (Figure 2A). The Kem Kem beds comprise a

fining-upwards sequence that reflects decreasing gradient and

increasing marine influence [20]. The ‘lower’ unit is dominated by

coarse sandstones and occasional conglomerates. The ‘upper’ unit

is finer-grained, composed of thinly-bedded sandstones, siltstones,

mudstones, and rare evaporites that represent overbank, lacus-

trine, and tidal-flat paleoenvironments.

Although radioisotopic dating of the Kem Kem beds has not

been possible, a minimum relative age of Cenomanian (ca.

95 Mya) has been inferred from the elasmobranch taxa within the

beds and from the ammonite Neolobites in the overlying

Cenomanian-Turonian limestone [1,21].

The trace fossils described below come from several horizons in

the Kem Kem beds, with the majority found in the middle portion

of the upper unit at the Gara Sbaa locality [1] (Figure 1B, 2B). The

ichnofossil assemblage is exposed in patchy outcrop amid the

limestone debris that covers most of the scarp slope (Figure 2B).

Materials and Methods

The ichnofossil assemblage either was collected or photo-

graphed during expeditions to southeastern Morocco in 1995 from

the University of Chicago (led by PCS) and in 2008 from

University College Dublin (led by NI). For permits and support of
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Figure 1. Geographical location of the Kem Kem ichnofossils. A, Location of Morocco (left corner of Africa map) and the Kem Kem outcrops
shown in red, modified from Sereno and Larsson (2009) [56]. B, Close-up of Kem Kem localities located near the main ichnofossil site, Gara Sbaa (area
shown as rectangle in A.)
doi:10.1371/journal.pone.0090751.g001

Figure 2. Geological context of the Kem Kem ichnofossils. A, Simplified section through the Kem Kem sequence, modified from Martill et al.
(2011). B, Debris-covered slope of Gara Sbaa, at the main collecting level for dinosaur footcasts. C, Main track horizon, marked by arrow. D,
Ichnofossils collected on the same horizon (burrowing structures?) Scale bar equals 8 cm in D.
doi:10.1371/journal.pone.0090751.g002
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our fieldwork we thank the Ministère de l’Energie, des Mines, de

l’Eau et de l’Environnement (previously Ministère de l’Energie et

des Mines) and the Faculté des Sciences Aı̈n Chock Casablanca in

Morocco. Collected specimens are curated primarily at the

University of Chicago (UCRC I 173, 252–264 and 1995,

temporary collection, see Table 1 for abbreviations), with one

specimen in a collection at the Faculté des Sciences Aı̈n Chock of

Casablanca (see Table 1). Footprint outlines were traced from

photographs of specimens. Measurements were taken in the field

and in collections (see also Figure S1). Locality data is accessioned

at the Faculté des Sciences Aı̈n Chock (Morocco), the University of

Chicago (USA) and the University of Portsmouth (UK). The

individual shown on Figure 2 in this manuscript (lead author) has

given written consent to appear in this publication.

Results

Burrows, Crawling Tracks, Borings
Vertical Burrows (Lower Unit):. Relatively straight, cylin-

drical burrows with irregular cementation of their infilling and

neighboring sand occur rarely in cross-stratified sandstones of the

lower unit of the Kem Kem beds (Figure 3A, B). Burrow

dimensions typically measure approximately 1.5 to 2 cm in

diameter and over 30 cm in length. These burrows may represent

aquatic dwelling traces or escape passages [22]. The lack of

internal structure prevents a more definitive interpretation.

Bone Borings (Lower and Upper Units):. Vertebrate bone

fragments are common in the lower unit and lowermost portion of

the upper unit. Large bone fragments that exceed 5 cm in length

frequently exhibit two postmortem features: fracturing from

subaerial weathering and insect borings (Figure 3C, D). Borings

usually take the form of gently arched tubes with a subcircular

diameter ranging from 2.5–5.0 mm and a length up to 3 cm. Most

borings enter the bone surface at a low angle. Some enter at a

higher angle and form U-shaped tunnels. In all cases, the

curvature of the boring is restricted to a single plane, and borings

with an oval cross-section have the greater diameter in the same

plane as the boring trace. When abundant, borings often crosscut

one another. Several aspects of these borings argue for a subaerial,

rather than aquatic, trace-maker. The borings do not exhibit the

flask-shaped form that characterizes Gastrochaenolites and Teredolites,

which are attributed to clams. The borings are restricted to bone

from terrestrial vertebrates that show subaerial weathering and do

not occur on crocodilian or fish bone. Dimensions and overall

form closely match bone borings described from the Upper

Cretaceous of Madagascar and assigned to Cubiculum ornatus, which

are regarded as traces of necrophagous or osteophagous insects

[23].

Horizontal Meniscate Burrows (Upper Unit):. Horizontal

to subhorizontal, back-filled burrows are common in select

horizons in the upper unit of the Kem Kem beds (Figure 4A–

C). These unbranched, sinuous burrows are subcircular to

elliptical in cross-section with a maximum diameter ranging from

2.0 to 6.5 mm. They lack expanded chambers and have no surface

ornamentation, a distinct wall, or a regular pattern of backfill. In

general, the menisci are irregular and homogenous. The

meandering burrows typically have lengths between 2.0 and

7.0 cm. Rarely, these burrows occur as sparse epichnia in

association with ripples and siltstone beds. Typical preservation

is as hypichnia with semirelief and hyporelief on thin to medium

Table 1. Measurements of tridactyl tracks from the Kem Kem beds.

UCRC I # (only rows 1–15) ML MW MDe LD II LD III LD IV DII-DIII 6 DII/IV

250 310 187 / 230 310 200 167 50

251 374* 275 90 300 370 280 272 48

252 225 178 80 165 225 150 162 63

253 310 161 95 185* 310 180 148* 53

254 190* 175* 110 155* 190* 135* 161* 57*

255 245 272 / 180 245 180 260 88*

256 370 255 80 255 365 250 240 54

257 335 225 178 185 335 180 190 60

258 430 301 120 240 390 240 260 57

259 285* 265* 95 185* 285* 165* 230* 79

260 377 309 60 235 345 230 250 59

261 370 250 85 220 340 215 230 58

262 318 245 80 165 240 165 225 80

263 178 187 40 130 178 130 183 77

264 291 204 65 160 260 150 160 41

FSAC-KK12 272 227 / 186 272 181 180 58

FS1 343 246 / 296 343 268 250 53

FS2 333 283 / 266 333 270 233 60

FS3 361 323 / 294 361 300 308 67

FS4 525 510 80 385 525 385 472 70

Abbreviations: De, depth, DII-IV, digits II to IV; FS, field specimen (i.e. not collected); FSAC-KK, Faculté des Sciences Aı̈n Chock Kem Kem collection; L, length; M,
maximum; UCRC I, University of Chicago Research collection ichnofossil; W, width;u angle; * rough estimate because of substantial missing parts. Second column from
the left records distance between digits II and III. Measurements in mm. Note that the poor definition and outline of the specimens mean that the values are estimates
and approximate. See supporting information (Figure S1) for examples of measurements.
doi:10.1371/journal.pone.0090751.t001
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beds of fine sandstone or siltstone overlying mud- or claystone.

These beds generally erode out as float slabs on the steep

weathering slopes of the Kem Kem escarpment. Abundances

range from common to nearly 100% coverage of the beds base.

These horizontal burrows commonly occur in varying abundances

with short, blunt-ended vertical burrows (see below).

A variety of organisms including arthropods and priapulid,

sipunculid, and oligochaete worms can produce back-filled

burrows in marine, non-marine aquatic, and subaerial settings

[24–30]. The absence of additional markers (distinct burrow wall,

surface ornamentation, heterogenous or packeted backfill) pre-

vents a more specific assignment to the ichnogenera Ancorichnus,

Scoyenia, Keckia, Laminites, and Naktodemasis [24–27]. The horizontal

burrows are most similar to the ichnotaxon Beaconites antarcticus

from the Lower Cretaceous of England [28].

Subvertical Burrows (Upper Unit):. These are short,

relatively straight, cylindrical burrows that taper to rounded,

blunt ends in a subvertical orientation (Figure 4C). As with the vast

majority of horizontal meniscate burrows, these traces occur as

hypichnia on the base of fine-grained sandstone or siltstone beds

that overlie mudstone deposits in the upper unit of the Kem Kem

beds. Their irregular walls and occasional offsets suggest that they

were made in a soft, muddy substrate, and later compacted and

distorted due to sediment loading. Compaction likely greatly

reduced the overall length of the burrows. Cross-sectional shape

varies from subcircular to more strongly elliptical, with approx-

imately one-third of the burrows with an asymmetrical ovoid

cross-section. The long axis ranges from 14–55 mm, and the ratio

of long-to-short axes averages approximately 1.5:1 (Figure 4D).

The uniform burrow fill lacks internal structure, e.g. spreiten, and

suggests an open structure representing a dwelling trace.

Subvertical burrows are often densely packed (690–760 bur-

rows/m2) and intermingled with horizontal meniscate burrows,

covering much of the surface of a bedding plane.

The subvertical burrows have an average diameter (,40 mm)

considerably greater than that typical for the vertical dwelling

burrows attributed to the ichnogenus Skolithos [31]. They most

closely resemble the burrows in marginal marine deposits

attributed to decapod crabs (figure 12–2 in [32]). The steeply

inclined burrows of the extant sand fiddler crab (Uca pugilator) are

simple in form and range from 10–20 mm in diameter and 6–

20 cm in depth [33]. The varying cross-sectional shape of

subvertical burrows in the Kem Kem beds might reflect sexual

dimorphism, given that burrow diameter differs by sex in Uca

pugilator [33]. The asymmetric cross-section could also correspond

to a bivalve, and we can not rule out this possibility, but the

Figure 3. Traces of the lower Kem Kem beds. A, B, Vertical burrows within thickly-bedded cross-bedded (A) and planar-bedded (B) sandstones.
C, D, Heavily bored dinosaur bone fragment. The outer cortex of this bone shows deep longitudinal cracks and a loss of the most external bone (C)
indicative of stage 4 weathering of Behrensmeyer (1978) [77]. Bone fragment also shows moderate amounts of abrasion. Borings, Cubiculum ornatus,
are most prevalent in the bone interior (D). Hammer is 33 cm long in A; scale bar equals 5 cm in B and 5 cm in C and D.
doi:10.1371/journal.pone.0090751.g003
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uniformity of dimensions through the entirety of the burrow length

would argue against a bivalve origin. A decapod crab of

appropriate size for these burrows has been discovered in a

lakebed facies within the upper unit of the Kem Kem beds.

Large-Diameter Traces (Upper Unit):. Traces with a

maximum diameter ranging from 8–15 cm occur within thin- or

medium-bedded siltstones in the upper unit of the Kem Kem beds

(Figure 5A–C) most abundantly about 50 km northeast of the

locality Gara Sbaa near the village of Er Remlia. Several

specimens as long as 18 cm have weathered out of the beds as

burrow casts. Above the funnel-shaped base, the trace increases

more gradually in diameter. The fill exhibits irregular, bedding-

parallel to subparallel laminations with occasional ripple cross-

bedding that comprise a stack of concave-upward structures.

A few large-diameter burrows are exposed on the upper surface

of siltstone beds in association with ripple marks and gastropod

trails (Figure 5C). Most show evidence of nested laminae. The infill

of some, however, has no internal structure and may represent a

distinct type of trace (Figure 5E).

The stacked laminae of increasing diameter suggest that these

large-diameter traces were occupied by a relatively sessile, radially

symmetrical, growing organism keeping apace with sediment

aggradation (Figure 5A–C). These cubichnia are most similar to

the ichnotaxon Conichnus conicus, which have been interpreted as

the resting or dwelling traces of actinarian anthozoans, or sea

anemones [34,35]. The absence of clear medusoid symmetry

distinguishes these traces from the similar Bergaueria and Conostichus

[34–36].

Subcircular burrows on bedding surfaces that lack laminae

could represent lungfish burrows [37]. Their uniform fill suggests a

large sediment-filled hollow, and lungfish tooth plates are common

in the lower and middle sections of the Kem Kem beds. No flask-

shaped structures were observed in cross-section, however, and

such structures characterize lungfish burrows [38]. So these more

uniform filled large-diameter burrows may reflect a weathering

variant of Conichnus conicus.

Conichnus occur in a variety of depositional environments

including estuarine, fluvial- and tidal-dominated deltas, foreshore

and offshore settings [34,39–42]. The infilling of large-diameter

burrows may provide a means of gauging sedimentation rate by

comparing known growth rates of sea anemones as measured by

changes in basal disk area. With this rate, one could compare the

change in cross-sectional area in the Kem Kem traces versus the

height (i.e. the amount of sediment accumulated during this period

of growth).

Crawling Traces (Upper Unit):. At least two varieties of

crawling traces (repichnia) occur as rare traces in the upper unit of

the Kem Kem beds. The first is known from a single specimen and

includes a cylindrical burrow 1 cm in diameter connected to a trail

0.8 cm wide and 14 cm long (Figure 5D). The trail shifts from

convex semi hyporelief near the burrow to full hyporelief. The trail

consists of two parallel rows of low, rounded, and asymmetric

bumps, which are gently sloped away from the burrow and steeply

sloped toward the burrow. Within each row, the bumps are spaced

3 mm apart and the parallel rows of bumps are offset so they

alternate from one side to the other (see figure 2 in [43]). The

portion of the trace closely resembles Saerichnites, which has been

interpreted as a mollusk [44]. Away from the burrow, the trail

gradually transitions into a series of fine striations that form a

chevron pattern that diverges from a central ridge.

The second track, which occurs with greater frequency, is

developed as concave epirelief on fine sandstones and siltstone

beds (Figure 5E, 6A). The trail has a deep central furrow between

raised edges. Several trails of this kind appear in association with

large circular traces discussed below. Others are preserved on a

single slab. These traces likely represent Scolicia sp., which is widely

regarded as a crawling gastropod [30].

Figure 4. Horizontal meniscate and subvertical burrows of the upper Kem Kem beds. These burrows are preserved as convex hyporelief
most commonly observed together on the undersides of weathered-out siltstone and sandstones slabs. Coverage can reach nearly 100% of the slabs.
Relative abundances vary from slabs dominated by horizontal meniscate burrows (A), to more even mixes (B), and slabs dominated by subvertical
burrows (C). D, Close-up of mixed assemblage showing the oval to asymmetric cross-sections of the subvertical burrows. Scale bars equal 10 cm in A–
C and 4 cm in D.
doi:10.1371/journal.pone.0090751.g004
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Coprolites
Coprolites occur rarely in the middle of the section of the Kem

Kem beds—the upper one-half of the lower unit and the lower

one-half of the upper unit. They range in size from 2–5 cm to

larger specimens over 10 cm in length (Figure 6B–E). Large

specimens exhibit a concave end and a sinusoidal axis, which

characterize the excrement of extant crocodyliforms e.g., [45,46].

The smaller coprolites may have been generated by elasmo-

branchs or actinopterygians.

Figure 6. Examples of small ichnofossils from the Kem Kem sequence. A, UCRC PI714. B, coprolite FSAC-KK 935. C, FSAC-KK 936. D, FSAC-KK
2871 and E, FSAC-KK 2838. See Table 1 for institutional abbreviations. Scale bars equal 5 cm in A and 5 cm in B–E.
doi:10.1371/journal.pone.0090751.g006

Figure 5. Crawling and resting traces of the upper Kem Kem beds. A–C, Lateral (A, B) and bedding plane (C) views of Conichnus conicus traces
interpreted as sea anemone resting traces. Note the concave relief in plan view and the irregular planar to cross-bedded spreite in lateral view.
Ripples and faint Scolicia trails are visible on the bedding surfaces in B. D, Large diameter burrow in plan view with one prominent and several less
discrete Scolicia trails. The large burrow could represent the opening of a lungfish burrow or alternatively could represent a differently preserved
Conichnus. E, Crawling trace leading to a vertical burrow. The alternating series of bumps of the proximal portion to burrow is reminiscent of
Scerichnites. Scale bars equal 4 cm in A, B and D, and 9 cm in C and E.
doi:10.1371/journal.pone.0090751.g005
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Dinosaur Footprints
In 1996, Sereno et al. [1] cited the existence of a ‘‘footprint

zone’’ approximately 80 m in thickness in the upper unit of the

Kem Kem beds, mentioning in particular the presence of

theropod, sauropod, and ornithopod footprints both as impres-

sions and natural casts. In 2008, additional impressions and

natural casts were discovered in the same footprint zone during an

expedition led by one of us (NI). More recently, other researchers

have commented on the presence and composition of Kem Kem

footprints [13].

At least three track-bearing horizons occur in the upper unit of

the Kem Kem beds, as best documented in a section near the

village of Er Remlia, where footprints were discovered approxi-

mately 90, 60, and 10 m below the Cenomanian-Turonian

limestone that overlies the Kem Kem beds (Figure 2A). The last

horizon, the one closest to the limestone cap, preserves by far the

greatest number of footprints. The locality Gara Sbaa (Figure 1B)

preserves the greatest number of footprints, some of which have

broken free at their attachment or are preserved still attached to

slabs of sandstone on cliff-face talus (Figure 2B). Smaller specimens

were collected, whereas others on larger slabs were documented

with photographs (Figures 7, 8). Additional footprints were found

at the locality Iferda Timenkherin, approximately 35 km north-

esast of Er Remlia, and a few footprints were found at other sites in

the same zone (see also [13]).

Most of the footprints are preserved as natural sandstone casts

infilling footprint impressions in an underlying soft mudstone

(Figures 7, 8, 9, 10, and 11). These natural casts are hanging, or

detached, from the bottom surface of the sandstone bed. As a

result, there are no broad exposures of the footprint horizon;

footprints are exposed in situ near the edge of the exposed

sandstone bed and on the talus slope on overturned slabs and as

single, detached footprint casts.

Sandstone casts that have infilled crisscrossed mudcracks suggest

that the dinosaurs were walking across muddy substrates, which

may have partially dried before or after passage of the track-

makers. Occasional footprint impressions were found in the

Figure 7. Examples of dinosaur footprints found at Gara Sbaa. A, B, Natural casts of theropod tracks (not collected). C, True track of a
theropod (not collected). D, Superimposed natural casts of theropod tracks (not collected). Scale bars equal 8 cm in B–D.
doi:10.1371/journal.pone.0090751.g007

Figure 8. Theropod footprints at Gara Sbaa. A, Large isolated
natural cast of theropod track (not collected). B, Relatively poorly
defined natural cast of a theropod track (not collected). Scale bar equals
10 cm in B.
doi:10.1371/journal.pone.0090751.g008
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sandstone layer itself, suggesting that conditions after initial

deposition of sands over the mudstone were also favorable for

the preservation of footprints.

Theropod Tracks:. The great majority of footprints col-

lected and documented in the footprint zone of the upper unit are

tridactyl and can be attributed to theropod dinosaurs on the basis

Figure 9. Removal of a plaster cast of a probable theropod footprint. A, Removal of a plaster cast left behind by the 1995 University of
Chicago expedition. B, Appearance of the track after removal of the plaster. C, Plaster cast, now catalogued as FSAC-KK 12. Scale bar equals 8 cm in B.
doi:10.1371/journal.pone.0090751.g009

Figure 10. Ichnomorphological diversity of theropod tracks. A, UCRC I 160. B, UCRC I 252. C, UCRC I 260. D, UCRC I 258. E, UCRC I 253. F, UCRC
I 259. G, Image of the block that contained UCRC I 260 identified during 2008 UCD/UoP/FSAC expedition. H, Image of the block that contained UCRC I
258, identified during 2008 UCD/UoP/FSAC expedition. Scale bars equal 10 cm in A-F and 8 cm in G and H.
doi:10.1371/journal.pone.0090751.g010
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of the pointed or narrow shape of the ungual impressions [1,13].

Approximately 30 of these were too large to collect (Figure 10G,

H). These tridactyl footprints are not diagnostic in any way

beyond attribution to theropod trackmakers, and we do not refer

them to particular ichotaxa.

The footprint impressions show considerable relief (4.0–

17.8 cm), indicating that the feet of the trackmakers sank deeply

into a wet substrate. A wide range of preservation is apparent.

Some tracks are poorly defined, with individual digital impressions

indistinct (Figure 10D), as is often the case in deeper prints [47–

49]. In one particularly deep natural cast (Figure 11H), the

movement of the pes exiting the sediment is preserved. The path

of the digits and their unguals are cast in wedge-shaped relief with

striations indicative of passage out of the mud. The formation of

deep footprints of this sort (Figure 11G, H) has been described

elsewhere [48,49]. In some specimens, claw, toe and heel

impressions are preserved (Figure 11D). The exposure of the

principal track-bearing horizon is not great enough to observe

trackways. On some particularly large overturned slabs of

sandstone, there are many overlapping footprints of different size

(Figures 7D, 10G).

Pedal digit III is longer than digits II and IV (Figures 10, 11, 12),

and total length and width range from 18–51 cm and 14–47 cm,

respectively (Table 1). Some are proportionately narrow footprints

with a relatively low divarication angle between pedal digits II and

IV (Table 1). Width-to-length ratios are also variable, ranging

from 0.67–1.05. The regular scaling between both maximum

width and length of digit IV versus maximum length of the pedal

Figure 11. Large theropod footprints. A, UCRC I 250. B, UCRC I 251. C, UCRC I 256. D, UCRC I 261. E, UCRC I 262. F, UCRC I 264. G, H, UCRC I 255 in
(G) ventral view and (H) dorsal view. Scale bar equals 20 cm.
doi:10.1371/journal.pone.0090751.g011

Figure 12. Likely digit morphology of selected Kem Kem dinosaur tracks. A, UCRC I 252. Track photo shown in Figure 10B. B, UCRC I 260.
Track photo shown in Figure 10C. C, UCRC I 258. Track photo shown in Figure 10D. D, UCRC I 259. Track photo shown in Figure 10F. E, UCRC I 250.
Track photo shown in Figure 11A. F, UCRC I 256. Track photo shown in Figure 11C. G, UCRC I 262. Track photo shown in Figure 11E. H, UCRC I 264.
Track photo shown in Figure 11F. I, UCRC I 263. Track photo shown in Figure 16B. Preserved digit impressions in black, track outline in grey. Outlines
not to scale; see Figures 10, 11 and 16 for size of specimens.
doi:10.1371/journal.pone.0090751.g012
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print suggests that the suite of tracks may have been made by a

single theropod ichnotaxon (Figure 13). A plot of maximum width

against maximum length, however, shows that footprint width

decreases with increasing footprint length (r = 0.84; Figure 13A).

Thus smaller footprints have a width-to-length ratio of 0.92

compared to 0.74 for larger footprints. The length of pedal digits

II and IV also appear to scale in a consistent manner with

footprint dimension (Figure 13B). The exceptionally deep footprint

cast UCRC I 257 is a notable exception, which may have been

influenced by the very soft substrate.

Among Kem Kem theropods (Carcharodontosaurus, Spinosaurus,

Deltadromeus, an abelisaurid), information on the osteology of the

pes is limited to Deltadromeus [1]. As adults, all of the aforemen-

tioned theropods, with the possible exception of the unnamed

abelisaurid, possibly referable to Rugops, would have generated

footprints at the very largest end, and likely larger, of the size

range observed in the footprint zone. The size range is

approximately 2.5 times, from smallest to largest (Table 1). Most

of the footprints, therefore, were generated by subadult individuals

of the aforementioned theropod genera or smaller-bodied

theropods that remain very poorly documented as body fossils.

Sauropod Tracks:. Sauropod footprints are extremely rare

in the footprint zone, despite the occurrence of rebbachisaurid

sauropod bone fragments among body fossils recovered in the

Kem Kem beds. Two sauropod footprint casts have been

identified [1] and a possible sauropod manus-pes pair of footprints

was observed in cross-section northeast of Gara Sbaa near the

locality Gour Lembech.

A right manual footprint cast (UCRC I 1995) that is 23 cm in

depth was found about 8 km northeast of Gara Sbaa, measuring

53 cm in width and 31 cm in length (Figure 14). The footprint has

nearly vertical sides marked by shallow grooves or sulci with a

subtle texture of low vertical ridges. (Figure 14B). The ridges

probably were created when the manus was pulled out of the

footprint impression. Five distinct lobes are best seen in ventral

view of the footprint cast (Figure 14C). They represent the distal

ends of metacarpals 1–5 generated by the near vertical metacarpus

of a neosauropod. On the medial side of the manus footprint cast,

the portion attributable to metacarpal 1 has a subtriangular shape

and projects more prominently than the others. The casts left by

Figure 13. Dinosaur tracks: Width/Length and Digit IV/Maxi-
mum length graphs. Measurements in mm.
doi:10.1371/journal.pone.0090751.g013

Figure 14. Sauropod-manus print cast (UCRC I 1995). Natural
cast of sauropod left manus track in dorsal (A), anterior (B), and ventral
views (C). Note the straight grooved sides of the track in anterior view
(B), the five lobes corresponding to the tightly bound digits I–V, and the
absence of any divergent phalanges or unguals. Scale bar equals 10 cm.
doi:10.1371/journal.pone.0090751.g014
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the ends of metacarpals 2, 3, and 4 are broadly convex and

subequal in width (,17 cm). The cast for the end of metacarpal 5

is approximately the same width but has a more strongly arched

perimeter with its central axis projecting posterolaterally

(Figure 14C).

Although this Kem Kem track shares a crescentic outline

somewhat similar to those of Tetrapodosaurus and Stegopodus,

footprints typically associated with armored dinosaurs [50–52],

the Moroccan track differs in two key features. The Kem Kem

track is very deep with vertical sides, and its toe impressions are

reduced to digital pads that project only minimally from the body

of the track. Instead, this track suggests an animal lacking or with

greatly reduced digits, and thus is unlikely to represent a

thyreophoran. The crescentic form, shorter than wide proportions

and inwardly directed digit I is more consistant with the manus

impression of Deltapodus [53], and suggests that it was made by a

neosauropod with a transversely arched, digitigrade manus [54].

The absence of any indication of unguals on digits I–III or of

phalanges on any of the digits suggests that the trackmaker was

possibly a titanosaurian sauropod [55], but we note that the

apparent complete absence of unguals or phalanges is not

uncommon in sauropod trackways. The Kem Kem print is

proportionately broader and less arched than many neosauropod

manual footprints [54], although to which degree manual

footprints are arched has not been regarded as a reliable

taxonomic indicator [55].

The natural cast of a sauropod pedal footprint (UCRC I 173)

measures 81 cm and 68 cm for major and minor axes (Figure 15).

There are distinct claw impressions on the inner three digits

(Figure 15A) that appear to be angled anterolaterally (Figure 15B).

The pedal footprint cast is not as diagnostic as the manual

footprint cast and could have been generated by a diversity of

neosauropods [54,55].

Ornithopod Tracks:. Ornithopod pes tracks are rare in the

Kem Kem. Thus far, only one definitive, and one possible

ornithopod print have been found (FS4, see Table 1, Figure 16).

These tracks can be recognized as ornithopods by their three

divergent and subequal digit impressions that form cloverleaf–

shaped outline [1,56]. The larger, definitive ornithopod track

specimen (Figure 16A) was discovered in 1995. It is noteworthy for

its clear outline and considerable size (ca 50650 cm), in which the

digits are rounded terminally and relatively short (Table 1). The

maximum depth of the impression is approximately 8.0 cm. A

second track, UCRC I 263, was possibly made by an ornithopod

trackmaker. Although there are some similarities to theropod

tracks, the rounded edges of the digits and the proportionally

broad and large digit imprints favor an interpretation as a small

ornithopod (Figure 16B). It would represent a much smaller

individual than the one described above. In size and shape the

large Kem Kem ornithopod track is comparable to those typically

attributed to Iguanodon [56], suggesting that an ornithopod of

similar size frequented the Kem Kem area.

Belvedere et al. ([13]: 54, fig. 2D–F) recently reported three

tracks from Gara Sbaa they regarded as made by ornithopods,

Figure 15. Isolated neosauropod track (UCRC I 173). A, Vental view. B, Anterior view, arrows showing claw marks. Scale bar equals 10 cm.
doi:10.1371/journal.pone.0090751.g015

Figure 16. Ornithopod tracks. A, Definitive ornithopod track (not
collected). B, Possible ornithopod track (UCRC I 263). Measurements of
the track in (A) are provided in the text. Scale bar equals 10 cm in B.
doi:10.1371/journal.pone.0090751.g016

Ichnofauna from the Cretaceous Kem Kem Beds

PLOS ONE | www.plosone.org 11 March 2014 | Volume 9 | Issue 3 | e90751



identifying them based on their broader interdigital angle and thus

proportionately broader track width. By themselves, these are not

reliable features to distinguish ornithopod from theropod track-

makers. In the single track they figured, pedal digit III has a clearly

marked, narrow, deep impression made by a trenchant pedal claw.

The claw impression is clearly visible and this feature does not

appear to have been caused by susbtrate deformation such as

sediment collapse around the edges of digit impressions. This track

cannot be attributed with any confidence to an ornithopod

trackmaker.

Discussion

Footprint Zone
The Kem Kem beds record the transition from full subaerial

exposure and erosion of the underlying Paleozoic rocks to fully

marine conditions in the overlying echinoid-rich limestone. Traces

are uncommon within the coarse, sandstone-dominated lower

unit. Besides rare vertical burrows within cross-bedded sandstones,

the most abundant traces are those of osteophagous invertebrates

on subaerially exposed bones deposited within channel lags.

The upper Kem Kem unit exhibits an overall fining upward

sequence likely reflecting a combination of lowered overall

gradient, decrease in clastic input, and a rise in eustatic sea level.

Marine influence is increasingly represented up section by the

presence of mud-drapes, ‘‘flaser bedding’’, and inclined hetero-

lithic bedding. The suite of traces reflects the decreasing energy of

the system as well as the increasing marine influence. The

invertebrate traces of the upper Kem Kem include Conichnus, a

suggested sea-anemone resting trace; Scolicia, gastropod trails;

horizontal meniscate burrows possibly representing Beaconites

antarcticus; and short, sub-vertical burrows, dwelling traces of

possibly fiddler-crab or similar organisms. These last two burrows

often occur together in extreme abundances representing nearly

100% coverage. Respectively, these two traces likely represent

feeding and dwelling traces of tidal flat detritivores. Their

occurrence high in the formation likely reflects a shift from a

fluvial system to a low energy coastal setting. The persistence of

dinosaurs as represented by common tracks within the upper Kem

Kem reflects the transitional aspect of the sequence.

The prevalence of ichnofossils in the upper unit of the Kem

Kem beds may be a consequence of its finer-grained, more

heterogeneous sedimentology (interbedded mudstones, siltstones,

fine sandstones) that may have facilitated preservation. The

footprint horizons, which vary from one to three in sections of the

upper unit and are not laterally continuous for kilometers,

represent local conditions conducive to preservation of traces

fossils.

Vertebrate Trackmakers
Tracks other than those pertaining to non-avian dinosaurs are

rare. We question the recent identification of pterosaur and

crocodyliform tracks. Belvedere et al. reported ‘‘probable ptero-

saur’’ pedal tracks with ‘‘up to four short digit impressions’’ ([13]:

56, fig. 2M–O). Clear digital impressions, however, are not

apparent, nor is there any indication in these impressions of the

diagnostic manual track and sprawling trackway that characterize

pterosaurs. Belvedere et al. identified another ‘‘partial print’’ as

pertaining to a crocodyliform ([13]: 56, fig. 2J–L) by its sharp claw

impressions and the fact that digit III is the longest of the digital

impressions. These track features, however, are not diagnostic for

crocodyliforms, although a crocodyliform trackmaker cannot be

ruled out. A great diversity of crocodyliforms are known from the

Kem Kem beds, including large aquatic species and more

terrestrial notosuchians. Belvedere et al. argued, furthermore, that

the track may have been made by a crocodyliform similar to

Laganosuchus or Sarcosuchus, which they stated to be ‘‘well known

from the Kem Kem beds’’ ([13]: 56). The specialized flat-skulled

genus Laganosuchus, however, is known only from single or

fragmentary portions of the lower jaw in the Kem Kem beds

and in likely Cenomanian-age beds in Niger [57]. Likewise,

diagnostic remains of the large-bodied genus Sarcosuchus are lacking

in the Kem Kem beds; current evidence for this genus in Africa is

limited to Aptian-Albian age beds in Niger [7]. The identification

of the vertebrate trackmaker of this partial print in our opinion

remains entirely uncertain.

Belvedere et al. reported turtle tracks from the upper unit ([13]:

55, fig. 2G–I). Turtle tracks are rare in the fossil record, and these

resemble turtle tracks created in the laboratory [58]. Belvedere et

al. reported that they were the second most common track type in

the Kem Kem. In our extensive survey of the footprint zone,

however, we have yet to encounter a single turtle track. They most

likely occur rarely or in isolated areas of the Kem Kem footprint

zone. Belvedere et al. suggested that the Kem Kem tracks

resemble the turtle ichnogenus Emydhipus from the Late Creta-

coeus of Spain, [58], although they did not cite any identifying

features. The Kem Kem tracks are particularly large, in some

cases exceeding 10 cm in length and width. These dimensions are

nearly twice those of the Spanish turtle tracks [58]. Several

subaquatic turtles, which often have sharp claws, are known from

body fossils in the Kem Kem. None of the known chelonian body

fossils could reasonably be expected to have left manual or pedal

tracks 10 cm in length [11]. This chelonian trackmaker may not

be represented among known body fossils.

The single large ornithopod footprint (FS4, Figure 14A) most

likely was made by a taxon close in size to Iguanodon [56,59] with a

body length of approximately 9–11 meters. To date no definitive

ornithopod body fossils have been reported from the Kem Kem

beds. Belvedere et al. [13] incorrectly stated that ornithopod body

fossils were cited by Sererno et al. [1].

Most of the Kem Kem tracks are small- to medium-sized

theropod tracks (see Table 1) with a body length of approximately

4–6 m (Figures 7, 8, 9, 10, 11, 12). Small- to medium-sized

theropod taxa known from body fossils in the Kem Kem beds

include dromaeosaurids and abelisaurids [60–62], the former a

tentative identification based only on isolated teeth. As dromaeo-

saurids are functionally didactyl, there are no tracks in the Kem

Kem assemblage that can be referred to this family [63]. The

pedal anatomy of the Kem Kem theropod Deltadromeus is known

but would not generate a tridactyl track distinguishable from many

other theropods. Because of substantial variability introduced by

substrate material properties, pedal movement and speed, and

individual variation, we prefer not to identify or make specific

reference to ichnogenera here. Belvedere et al. ([13]: 55) suggested

some tracks might be referable to ‘‘cf. Megalosauripus’’, an

ichnogenus based on Late Jurassic footprints from Germany. No

specific features were identified for this referral, which we regard

as questionable. Large three-toed tracks consistent with the

estimated adult body size of the Kem Kem genera Carcharodonto-

saurus, Deltadromeus, or Spinosaurus are conspicuously absent [1].

Such tracks would likely equal those attributed to Tyrannosaurus

[64].

Kem Kem Track Record
Belvedere et al. ([13]: 52) suggested a ‘‘novel ichnological

approach’’ that accepts the taxa recorded in a footprint horizon as

‘‘a more precise paleoecological sample’’. Not only is there more

than a single footprint horizon in the Kem Kem beds and,
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therefore, more than a near-instantaneous ichnological record,

discernible trackmakers are relatively few and could not possibly

provide an accurate representation of vertebrate faunal diversity.

Read literally, we might presume that for a substantial period of

time the Kem Kem fauna was dominated by a few small theropod

dinosaurs and a very large turtle taxon.

The trace fossil record, to the contrary, provides an independent

source of information on the presence and abundance of Kem

Kem vertebrates from that obtained from body fossils. It consists

almost exclusively of dinosaur tracks that are dominated by small-

to medium-sized theropods [1]. Track records, however, do not

necessarily accurately reflect faunal abundances, even in better-

sampled ichnological assemblages [65,66].

Abundance of Different Dinosaur Tracks
Although the majority of Cretaceous track sites are pre-

Cenomanian in age [67–69], Cenomanian tracksites have been

reported from Brazil [70], with theropod tracks being the most

abundant. In Argentina [71], Albian-Cenomanian sauropod

tracksites have been reported. In the United States, Lee [72]

reported on Cenomanian avian and non-avian dinosaur (hadro-

saur and theropod) tracks. The Cedar Mountain Formation in the

United States has also yielded diverse Lower Cretaceous trackways

[73], including theropod, sauropod, ornithopod, ankylosaur and

dromaeosaurid tracks. A Cenomanian theropod and ornithopod

tracksite has been reported from the Yukon in Canada [74], and

Cenomanian tracks have also been reported from Croatia and

Italy [75,76], where the track assemblages are dominated by

sauropods, which represent about three quarters of the total tracks

[77].

The Kem Kem, which so far consists almost exclusively of

theropod tracks, appears to be less diverse than some other

assemblages and most similar to the theropod-dominated track

assemblages from the Cenomanian of Brazil (see above). The small

sample size and lack of associated tracks in the Kem Kem

precludes meaningful comparisons; other than that the sequence

appears to be largely dominated by theropod footprints, a trend

also observed in the body fossil record ([1,13,78,79], contra [80]).

Lockley [68] noted that in Lower Cretaceous sites in Brazil,

Bolivia and Texas, theropod tracks also greatly outnumber those

of herbivorous dinosaurs (sauropod, and ornithischians) by a factor

ranging from approximately 2:1 (in Texas) to 7:1 (Bolivia). The

ichnoassemblage of the Kem Kem dinosaurs parallels these

assemblages with a similar prepoderance of theropod tracks

[68,74], but the sample is too small to allow robust comparisons.

Lockley [68] suggested that ornithopod tracks are more abundant

in European sites, whereas theropods tracks are more abundant in

South American sites. Souza Carvalho [70] suggested that

theropods may preferentially inhabit or visit low floodplain areas

to account for the abundance of Cenomanian tracksites in Brazil.

In the Jurassic age Iouaridène Formation in Morocco, theropod

tracks also dominate. Among approximately 800 tracks, stegosau-

rus and sauropods account for only 2 and 200 tracks respectively

[81]. These ichnite abundances may not reflect the relative

abundance of theropods, sauropods, and ornithischians in a given

ecosystem, but rather subtleties in behavior that allow theropods to

contribute more than other dinosaur groups to the ichnological

record.

The re-occurrence of this pattern in geographically and

temporally widespread localities suggests potentially an underlying

biotic or taphonomic origin. In the case of the Kem Kem

ichnological assemblage, the preponderance of theropods may

correspond to the shift to a marginal marine environment that

favors the presence of scavengers and other carnivores over large,

terrestrial herbivores. Factors may include theropod foraging

behavior, the scarcity of suitable vegetation for herbivores, and the

absence of suitably hard substrates for large herbivores.

Supporting Information

Figure S1 Principal distances measured, shown on two
selected specimens. Arrows indicate uncertain end point.

Perpendicular lines indicate well-defined margin.

(TIF)
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3. Lavocat R (1954) Sur les dinosaures du Continental intercalaire des Kem-Kem
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