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Abstract The “great debate” over bird origins may never have transpired had the now-famous furcula-bearing, feathered
dinosaurs from Asia surfaced when the beds in which they were interred were first discovered in the 1920s. Compelling
fossil evidence is now to hand that places birds as a specialized clade within theropod dinosaurs. Major insights include a
more seamless fossil record linking birds and non-avian dinosaurs, clear evidence of an early pre-avian origin for feathers
and other features previously known only among birds, together with an underscoring of the importance of miniaturization
for the evolution of powered flight and a broadening of the functional scenarios for how powered bird flight was first
achieved [ Acta Zoologica Sinica 50 (6): 991 —1001, 2004].
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1 Introduction

1.1 Grabau’s grab-bag

“These fish are often so numerous that a slab
about one foot square will show from 50 to 100 indi-
vidualss 7 remarked Grabau in his 1928 summary of
the Early Cretceous “Jehol fauna” of northern China
(p. 672). A sequence of lakebed deposits more than
a thousand meters in thickness had been discovered
that was literally packed with the remains of the
teleost Lycoptera, soft-bodied invertebrates and
plants (Figs. 1, 2). Now divided into two formations
( Yixian and overlying Jiufotang ) in Liaoning
Province and adjacent areas of Inner Mongolia, the
“Jehol Biota” is of world renown for the feathered di-
nosaurs and primitive birds that came to light during
the 1990s (Chen and Fan, 1999; Chang et al.,
2003; Zhou et al.» 2003).

What if a feathered dinosaur had come to light in
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Grabau’s time? Less than a day’s drive north of Bei-
jing today, this easily accessible outcrop would surely
have witnessed the same accelerated exploration that
followed the first sensational finds in the 1990s. Most
likely, several feathered dinosaurs and toothed birds
would have been uncovered by 1925—about the time
that Heilmann was finishing his influential treatise
concluding that birds were not descendants of di-
nosaurs (Heilmann, 1926).
1.2 Heilmann’s hurdle

The crux of Heilmann’s argument against di-
nosaurian affinity involved the lack of any trace of os-
sified clavicles among dinosaurs then known, and the
presence of co-ossified clavicles—a furcula—in Ar-
chaeopteryr and nearly all other birds ( Witmer,
1991). For Heilmann, re-ossification of the clavicles
posed an insurmountable evolutionary reversal.

Today, ossified clavicles in the form of a median
furcula have been documented in most major non-a-
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Fig.1  Alternating layers of lake mud and volcanic
ash compose much of the Yixian and Jiufotang Forma-
tions in western Liaoning Province and eastern Inner
Mongolia that have yielded hundreds of well-preserved
vertebrates, invertebrates and plants

Splitting layers by hand is typical of quarry operations like this
one in the Jiufotang Formation in southeastern Inner Mongolia
(near Nincheng, People’s Republic of China).

vian theropod clades, including coelophysoids (Ty-
koski et al.» 2002), spinosauroids ( Lipkin and
Serenos in press), allosaurids ( Chure and Madsen,
1996), therizinosaurids (Xu et al. » 1999a; Zhang et
al.» 2001), tyrannosaurids ( Makovicky and Currie,
1998; Lipkin and Sereno, in press), oviraptorosaurs
(Clark et al. » 1999; Zhou et al. > 20005 L, 20020,
and dromaeosaurids (Norell et al.» 1997; Xu et al.
1999b; Burnham et al. » 2000). The furcula, more-
overs is preserved in several theropods ( Beip-
iaosaurus> Caudipteryxs Sinornithosaurus ) from
the “Jehol fauna” in Liaoning (Xu et al. > 1999a, b;
Zhou et al.» 2000; Xu et al.» 1999b), and in two
further theropods ( Oviraptor, Velociraptor ) from
the Mongolia, the latter originally named on less
complete specimens discovered in the early 1920 s
(Norell et al.» 1997; Clark et al.» 1999).

Had any of these specimens come to light when
these localities were first exploreds Hielmann’ s sole
impediment to a link between dinosaurs and birds
would have vanished. Furthermore, several of the

Fig.2 Hand-dug quarries like this one in the Jiu-
fotang Formation dot the lansdscape in southeastern
Inner Mongolia (near Nincheng, People’s Republic of
China)

Dug by local farmers a few years ago, this quarry descends ver-
tically approximately 10 m and then ramifies within the most
productive fossil-bearing level.

furcula-bearing Liaoning theropods ( Caudipteryz
Sinornithosaurus> Microraptor) also preserve shaft-
ed feathers with traces of barbs in a herring-bone ar-
rangement (see below). With dinosaurian furculae
and feathers in hand by the close of the 1920 s,
would the modern “great debate” about bird origins
ever have transpired?

1.2 “Great debate” or just bad timing?

As it happened, paleontologists would wait near-
ly a half-century before recovering enough fossil mate-
rial to piece together the first skeleton of a manirap-
toran theropod close to the origin of birds — Deinony-
chus (Ostrom,> 1969). Ostrom and Deinonychus—
without the benefit of dinosaurian furculae or feathers
— rekindled Huxley’s hypotheses of 1868 Calso
Williston, 1879 linking Archaeopteryer and later
birds to the then recently discovered small coeluro-
saurian Com psognathus. Ostrom’s papers on bird ori-
gins (Ostrom, 1973, 1976a, b) also precipitated the
modern “great debate, ” just as cladistic methodology
was being adopted by a growing number of students
in both paleontology and ornithology. During the
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decade of the 1980 s alones the number of papers on
bird origins exceeds the total on this subject in the
preceding century ( Witmer, 1991), with two op-
posed camps emerging: proponents of an archosaur/
crocodylomorph origin (e.g., Walker, 1972; Mar-
tin, 1983; Feduccia and Wild, 1993; Jones et al.,
2001; Feduccia, 2002; Olsons 2002), and those for
a theropod origin Ce.g.> Gauthier» 1986; Holtz,
1994; Sereno, 1997, 1999; Forster et al., 1998;
Padian and Chiappe, 1998: Xu et al. » 1999b; Norell
etal., 2001).

Witmer (2002) documented well the recent his-
tory and intensity of the debate, which he attributed
to the contrasting inferences to be drawn about non-
osteological features (physiology, feathers, flight),
depending upon where one roots the class Aves.
These issues; however, are surely better understood
as manifestations of fundamental methodological dif-
ferences and collegial allegiances. The most active
members of the two principal camps of the debate
Carchosaur/ crocodylomorph vs dinosaur) almost al-
ways employ mutually exclusive phylogenetic methods
(traditional vs cladistic)» and typically ally them-
selves with different scientific communities Cavian vs
dinosaurian paleontology). The fundamental motor of
the debate is the clash between methodologies and
subdisciplines.

This is well demonstrated in a pair of recent
commentaries from traditional paleo-ornithologists in
a journal devoted to avian biology ( The Auk). One
(Olsons 2002) was a review of a volume on bird ori-
gins in honor of John Ostrom (Gauthier and Gall,
2001), and the other (Feduccia, 2002) a response to
Prum’s (2002) fact-filled perspective on the accumu-
lating phylogenetic, developmental, and reproductive
evidence for the dinosaurian origin of birds. The dra-
matic new data bearing on the debate (summarized
below) has had negligible effect on the small cadre of
paleobiologists staunchly opposed to birds as derived
theropods, as well as characters and parsimony as the
arbiter of homology and relationships (e.g.,» Feduc-
cias 1999; Dodson, 2000). Now this opposition has
seized upon incontrovertibly-feathered dromaeosau-
rids, like Sinornithosaurus, interpreting them as
flightless birds after decades of denigrating Ostrom’ s
structurally identical cousin Deinonychus as anything
remotely resembling a bird.

The purpose of this paper is not to review such
arguments: detailed reviews are available elsewhere
(Padian and Chiappe, 1998; Sumida and Brochu,
20005 Prum, 2002, 2003). Under the rapidly in-
creasing weight of evidence today, the “great debate”
is fast becoming a historical footnote on the road to
understanding the origins of birds, begging the ques-
tion: if dinosaurian furculae and feathers were in hand

by the close of the 1920’ s, and a dinosaurian origin
accepted then by Hielmann, traditional systematists
and paleo-ornithologists, would today” s “ great de-
bate” ever have transpired?

2  Observational evidence

2.1 Birdlike dinosaurs

A trove of “birdlike” dinosaurs (here meaning
“basal maniraptorans”) has been found in the last
decade in Cretaceous rocks in Asia and North Ameri-
ca. The most spectacular specimens include evidence
of the integument and were discovered in a thick
lakebed sequence in Liaoning and Inner Mongolia in
Chinas dated radiometrically to the Early Cretaceous
Cea. 130 — 110 MYA; Zhou et al., 2003). These
include several basal maniraptorans such as the ovi-
raptorosaurian Caudipteryxe (Jiet al.» 1998; Zhou et
al.» 20000, the troodontid Sinovenator (Xu et al.
20020, and the dromaeosaurids Sinornithosaurus
(Xu et al.» 1999b; Xu and Wu, 2001) and Micro-
raptor (Hwang et al., 2002; Xu et al., 2003).
Elsewhere in Asia and North America, dune and flu-
vial deposits have yielded nearly complete skeletons of
dromaeosaurids (Fig. 4) and oviraptorids, filling in
nearly all aspects of their osteology ( Velociraptor:
Barsbold and Osmolska, 1999; Norell and Makovick-
y» 1997, 1999: Bambiraptor: Burnham et al.,
2000; Owiraptor: Clark et al., 1999).

Especially birdlike skeletal characters are re-
vealed in the presence of uncinate processes, furculae;
elongate sternal plates buttressed by squared cora-
coids> and elongate forelimbs with rotary wrist joints
(Fig.3). There are scores of other modifications in
virtually all parts of the skeleton that establish a close
relationship between non-avian theropods and birds
(Serenos 1999).

2.2 Ancient avians

The long-standing gap in the fossil record be-
tween Archaeopteryr and the toothed birds of the
Late Cretaceous, Ichthyornis and the hesperornithi-
forms (Marsh, 1880; Martin, 1980), has now been
filled with a series of basal avians slightly larger than
Archaeopteryx in body size. Those closest to Ar-
chaeopteryx include Jeholornis from Liaoning (Zhou
and Zhang,> 2002a) and Rahonavis from Madagascar
(Forster et al.» 1998), both of which retain a long
bony tail with moderately elongated prezygapophyses
and chevrons like Archaeopterye (Fig.5). Sapeor-
niss also from Liaoning (Zhou and Zhang, 2002b),
is more advanced than Jeholornis and Rahonavis, as
evidenced by its shortened caudal series and terminal
pygostyle. More advanced than the aforementioned a-
vians is Confuciusornis, which exhibits functionally
significant modifications of the wing bones and a well
developed pygostyle (Hou et al. » 1995, 1996) (Fig.
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Fig.3 Major stages in the evolution of modern avian skeletal design and function (from Sereno, 1999)

Many skeletal innovations of critical functional importance for flight arose for other purposes among early theropods, including @ the hollowing of all
long bones of the skeleton (Theropoda); @ removal of pedal digit I from its role in weight support, 3 expansion of the coracoid and sternum for
increased pectoral musculature, plumulaceous feathers for insulation, @ presence of vaned feathers arranged as primariess secondaries and rectrices
for display and/or brooding, & shortening of the trunk and increased stiffness of the distal tail for balance and maneuverability. Archaeopteryx re-
mains a pivotal taxon, documenting © the acquisition of basic flight and perching function before the close of the Jurassic (laterally-facing shoulder
joint, split propulsion-lift wing with asymmetric feathers, reversed hallux). Key refinements of powered flight and perching in later birds include @D
the deep thorax with strut-shaped coracoid and pygostyles ® the triosseal canal for the tendon of the principal wing rotator (the supracoracoideus
muscle), alular feathers for control of airflow at slow speedss rectriceal fan for maneuverability and braking during landing, fully opposable hallux
for advanced perching, and @ the elastic furcula and deep sternal keel for massive aerobic pectoral musculature. Ornithothoracine birds diverged ear-
ly into two clades: Enantiornithes ( “opposite birds”), which prevailed as the predominant avians during the Cretaceous; and Euornithes ( “true
birds”), which underwent an explosive radiation toward the close of the Cretaceous that gave rise to all living avians ( Neornithes, or “new birds”).

3). Now represented by hundreds of specimens, the row-sized enantiornithine birds are now known to
toothless, crow-sized Confuciusornis has fast become have dominated avifaunal diversity from mid through
the best known Mesozoic avian ( Chiappe et al. Late Cretaceous time (Fig.6). Enantiornithines were
1999). first described from Argentina (Walker, 1972; Chi-

Although relatively obscure until recently, spar- appes 1996; Sereno, 2000) and later discovered in
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Fig.4  Silhouette skeletal reconstruction of Velociraptor mongoliensis based on the holotype and many more recently dis-

covered partial skulls and skeletons
Skeletal length approximately two meters.

the Las Hoyas beds in Spain ( Iberomesornis: Sanz et
al.» 1988; Sereno, 2000; Concornis: Sanz et al.,
1995) and Jiufotang Formation in Liaoning ( Sinor-
nis: Sereno et al. » 1993, 2002; Protopteryxr: Zhang
and Zhou, 2000). This toothed clade of basal avians
is now known from rocks around the world, although
best known from lakebeds in central Spain and north-
eastern China.
2.3 Filaments to asymmetric pennaceous feathers
The initial discovery of integumental “fibers” in
the basal coelurosaurian Sinosauropteryr (Chen et
al.» 1998) and the more advanced therizinosaurid
Beipiaosaurus (Xu et al.» 1999a) suggested simple
down-like feathers but remained controversial. The
discovery of longer shafted structures with herring
bone pattern fore and aft removed any doubt that
basal oviraptorosaurians ( Caudipteryx: Ji et al.,
1998: Zhou et al.» 2000) and dromaeosaurids
(Sinornithosaurus: Xu et al.» 1999b, 2001) pos-

sessed pennaceous feathers with barbs on the limbs
and tail> and that this complex feather type, thought
to be unique to birds, arose first among basal mani-
raptorans (Fig.3).

The most remarkable finding is the presence of
long asymmetric vanes on feathers composing primi-
tive wings attached to the trailing edge of the fore and
hind limbs of the small dromaeosaurid Microraptor
(Xu et al.» 2003). Microraptor appears to have
been adapted to a semi-arboreal lifestyle that included
gliding. If its status as a basal dromaeosaurid is con-
firmed (Hwang e al. > 2002), this may have been the
primitive lifestyle for the clade that included other
terrestrial deinonychosaurians and volant birds (Par-
aves; Fig.3).

2.4 Bigger brains

Compared to living reptiles, birds have dramati-
cally larger brain volumes relative to body mass, par-
ticularly in the cerebrum (forebrain). A partial endo-

Fig.5 Silhouette skeletal reconstruction of Archaeopteryx lithographica, based in particular on the Berlin and Eichstatt
skeletons
Auvailable articulated skeletal material suggests that the wrists were unable to flex at an angle less than approximately 90 degrees.
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Fig.6 Silhouette skeletal reconstruction of sparrow-sized Sinornis santensis, based on the holotypic specimen
Enlargements show early avian adaptations in the shoulder girdle and wrist (above) and sternum and tail Chelow).

cast of Archaeopteryx indicates that this increase was
already in place to a considerable degree by the Late
Jurassic (Jerison, 1973; Biihler, 1985). Forebrain
enlargement has long been thought to characterize
theropods closest to birds ( Sues, 1978; Curries
1985, 1995) but has been difficult to quantify for two
reasons: the lack of complete endocasts from any of
the most birdlike dinosaurs and the necessity to estab-
lish scaling relationships due to differences in body
size.

Recent work focused on complete endocasts from
two similar-sized Late Cretaceous theropods ( Car-
charodontosaurus> Tyrannosaurus) at different dis-
tances from birds. Their similar size allowed direct
comparison of brain volumes free of scaling relation-
ships (Larsson et al.» 2000). Tyrannosaurus> an
over-sized coelurosaurian, is phylogenetically much
closer to birds than Carcharodontosaurus, an allo-
sauroid; it has total endocast and cerebral volumes
approximately 50% and 100% greater, respectively,

than in Carcharodontosaurus. The cerebrum in
Tyrannosaurus is one-third, rather than one-quar-
ter> of total endocast volume. Thus, brain and cere-
bral volumes do appear to have been increased signifi-
cantly among theropods ( coelurosaurians) more close-
ly related to birds.

2.5 Invasive air spaces

The respiratory system in birds is characterized
by pneumatic spaces that originate in the nasopharynx
and ramify within many elements of the skull, and in
air sacs from the lungs that penetrate and expand
within skeletal elements. The presence of similar
pneumatic structures in fossils must necessarily be in-
ferred from bony correlates, such as smooth depres-
sions devoid of attachment scars and openings into in-
ternal spaces.

Extensive pneumaticity of antorbital and brain-
case regions has occurred more than once among ar-
chosaurs but is particularly well developed in
neotheropod dinosaurs and birds ( Witmer, 1997).
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Two systems are present, antorbital and otic, often
with comparable subdivisions. Moreover, a well-de-
veloped air sac system along the axial column has
arisen at least twice within dinosaurs—among basal
sauropods ( Wedel, 2003) and in neotheropods and
their avian descendants (Britt> 1993). Air sacs in
non-avian theropods open into spaces within vertebral
centra via pleurocoelss and these have recently been
observed in the cervical column of Archaeopteryx
(Britt et al.» 1998).

2.6 Muscle modifications

Some of the fore and hind limb musculature in
birds is associated with characteristic scars or process-
es on limb and girdle bones which can be traced in ex-
tinct relatives. Two functionally significant sites for
muscle attachment in the avian wing, for example,
are the acrocoracoid process of the coracoid which an-
chors the chief flexor of the forearm (the biceps
brachii), and the extensor tubercle on the medial as-
pect of metacarpal I which provides insertion for the
extensor metacarpi radialis, the chief extensor of the
carpometacarpus (Raikow, 1985). The emergence of
each of these as distinct attachment sites that increase
in relative size and shift in position among non-avian
theropods and basal avians is well documented (Os-
trom, 1976a).

In the pelvic girdle and hind limbs, most of the
muscles are larger and the processes and scars mark-
ing their attachments provide a broader range of com-
parisons. The shift among non-avian theropods from
predominantly tail-anchored femoral retractors to a
less mobile femur with enhanced flexion at the knee
joint is now a well-documented transformation series
(Gatesy> 1995; Hutchinson, 2001).

2.7 Bones and body temperature

Bone histology via thin sections remains the pri-
mary means of inference concerning growth and
standing metabolic rate, two physiological parameters
that are substantially elevated among birds as com-
pared to non-avian reptiles. Highly vascularized fibro-
lamellar bone has been shown to characterize di-
nosaurian embryos, juveniles and adults in a wide va-
riety of taxa, leading to an emerging consensus that
dinosaurs grew at elevated rates comparable to those
in mammals and birds (Horner et al., 2001; Padian
et al.» 2001, Erickson et al.» 2001). Some basal a-
such as enantiornithines, actually show a
slightly slower growth rate with denser, less vascular
bone, which may indicate precocial flight capability
(Chinsamy and Elzanowski, 2001).

Oxygen isotope ratios in bone phosphate are
clearly indicative of metabolic rate among extant
species and also suggest that dinosaurs had elevated
body temperatures and metabolic rates (Barrick and
Showerss 1994). This may ultimately prove to be a

vianss

better assessment of metabolic rate than bone histolo-
gy. In the meantime, the only vertebrates with
growth rates as rapid as those inferred for dinosaurs
from bone histology are those with elevated metabolic
rates (birds, mammals). Consideration of other fac-
tors (body sizes diversity, area of habitation, etc.)
show that dinosaurian herbivores and carnivores grew
to larger body sizes at higher species richness and
within smaller areas of habitation than mammals
(Farlow et al.» 1995). How this was achieved re-
mains largely unresolved.

2.8 Large paired eggs and brooding

The recent identification of ossified embryos
within eggs has put to an end speculation about the
identity of several egg types among non-avian di-
nosaurs. Eggs long held to belong to Protoceratops
actually house embryos of the basal maniraptoran
Oviraptor (Norell et al.» 1994), and eggs have
now been identified from embryos or from nests with
associated adults for select ornithischians, sauro-
podomorphs and theropods (Horner 1999; Varricchio
et al.» 1997; Chiappe et al.» 2001). Two important
features of the eggs in basal coelurosaurs are their
large size relative to body size in adults and their u-
nique shell structure nearly identical to that in birds
(Varricchio et al.» 1997).

The discovery of intact dinosaur nests from sev-
eral kinds of dinosaurs has led to two other remark-
able finds regarding theropods. First, the eggs were
laid serially in pairs in nests belonging to manirap-
toran theropods Ccurrently best known in Oviraptor
and Troodon )s in contrast to other dinosaurs in
which a random arrangement of eggs in nests suggests
that that the eggs were laid at the same time. Varric-
chio et al. (1997) have suggested that maniraptorans
maintained two functioning ovaries but that, like
birdss laid only one egg from each ovary at a time.
Birds have further reduced this pattern of serial clutch
assembly to one egg from only one functioning ovary
at a time. Secondly, the discovery of several intact
Oviraptor skeletons crouched over nests of Ovirap-
tor eggs (Dong and Currie, 1996; Clark et al.,
1999) suggests that at least some basal maniraptorans
brooded their eggs in a manner known elsewhere only
in birds.

2.9 Diagnosing digits

Extant birds have three manual digits, the num-
ber and form of which can be traced through interme-
diates to Archaeopteryx . Like Archaeopteryx, basal
maniraptorans (e.g.,» Sinornithosaurus, Caudipte-
ryx) have three manual digits of nearly identical
form, pennaceous feathers anchored on the middle
digit and ulna, and a carpus shaped to form a rotary
joint. This three-fingered basal maniraptoran hand
and simplified carpus can likewise be traced to earlier



998 | )

¥ 50 &

four- and five-fingered relatives, the latter including
the basal theropods Eoraptor and Herrerasaurus
(Sereno et al. » 1993; Serenos 1993). On this basis,
paleontologists have long identified the manual digits
in birds as [ — [ll following Meckel (1821). Devel-
opmental biologists, on the other hand, have long i-
dentified the same digits as [ — IV based on the con-
served pattern of digital embryogenesis present in
most extant tetrapods (Holmgren, 1955; Hinchliffe,
1985).

Recent work has unequivocally visualized the
embryonic first digit in birds as a small, avascular
condensation of cartilage precursors ( Feduccia and
Nowicki> 2002; Kundrdat et al. » 2002). Now all five
manual digits are accounted for in the early avian limb
bud, with the adult digits developing from the central
three. At the same time, developmental biologists
have now shown that the digital identity of the devel-
oping phalangeal series is not a stable property of con-
densing digital primordia, but becomes fixed during
outgrowth under the influence of molecular position-
ing information (Dahn and Fallon, 2000). The
molecular anterior-posterior positioning information
involves varying concentrations of bone morphogenet-
ic proteins which, with manipulation, can result in
homeotic transformations in the phalanges, where one
phalangeal series takes the form of another.

Wagner and Gauthier (1999) had earlier pro-
posed that homeotic transfer of digital identity might
have occurred within theropods—the “frame-shift”
hypothesis—to explain how the very typical looking
manual digits [ — [l of most theropods and basal
birds could arise from the central three (Il — [V) em-
bryonic primordia in their extant avian descendants.
Kundrat et al. (2002) noted correctly that it remains
to be seen whether developmental plasticity in digital
identity can be extended to the metacarpals and digi-
tal arch, as required by the frame-shift hypothesis.
Then, without supporting evidence, they infer that
basal birds such as Archaeopteryr must have under-
gone digital development as in extant avians and,
therefore; must have descended directly from a five-
fingered ancestor. Other tetrapods (many salaman-
ders) are known to grow typical adult digits from
drastically modified condensation patterns ( Shubin,
1994). The nearly identical hand and feather pattern
in basal maniraptorans (along with shared-derived
features from every other part of the skeleton) sug-
gests; to the contrary, that developmental biologists
are just in the initial stages of understanding the
molecular cues controlling digital identity in tetrapods
and how these cues may be altered.

3  Major insights

3.1 “Avian” adaptations with deeper roots

Many features long held to be characteristic or u-
nique to birds clearly have a more ancient origin a-
mong non-avian, non-volant theropods. As a conse-
quence, they must be viewed as adaptations that orig-
inally evolved for something other than powered flight
and its immediate requirements and constraints
(Prum, 2002).

Skeletal features with more ancient> non-avian
roots include pneumatic spaces within the axial col-
umn, uncinate processes on the ribcage, fusion of the
clavicles (a furcula), increase in size of the coracoid
and sternum, a rotary wrist joint, elongation of the
forelimbs and hands bowing of the ulna, elongation
and enlargement of the second manual digit, retrover-
sion of the pubis; reduction of the caudofemoralis
musculature for retraction of the femur, and shorten-
ing of the tail (Fig.3). Integumental features with
more ancient non-avian roots include a body covering
of plumulaceous feathers rather than scales, and pen-
naceous feathers with barbs projecting from the poste-
rior aspect of the forelimb, hind limb, and tail. Re-
productive and behavioral features with more ancient
non-avian roots include avian-like eggshell structure,
increase in relative egg size, serial egg assembly, and
brooding.

3.2 Body size bottleneck

With few exceptions, non-avian dinosaurs have
body masses estimated at greater than 15 kg:; and
several clades show long-term trends toward increas-
ing body mass. Coelurosaurian outgroups to birds, in
contrast> show a trend toward decreasing body size
(Serenos 1997). Avian flight appears to have first e-
volved in small-bodied species, like Archaeopteryz
with a body mass of less than 1 kg (Elzanowski,
2002). Clearly, powered flight evolved during a body
size bottleneck, when adult body size was well below
that typical for non-avian dinosaurs or the largest liv-
ing volant birds (12 — 14 kg) (Pennycuick, 1989).

Early Cretaceous enantiornithines (Fig.6) were
much smallers on average, than Archaeopteryx
(Fig.5). The perfection of avian powered flight in
terms of locomotor performance (Dial, 2003a) oc-
curred at such small body size and must have been the
motor behind enantiornithine diversification during
the Early Cretaceous, the first global diversification
of birds.

3.3 Evolution of powered flight: multiple scenar-
ios

Hypotheses for the evolution of powered flapping
flight in birds have long been polarized. The “ground-
up” scenarios originally articulated by Nopesa (1907)
and elaborated more recently (Ostrom, 1976b; Gau-
thier and Padian, 1985; Burgers and Chiappe, 1999;
Garner et al.» 1999; Earls, 2000; Gishlick, 2001),

suggests that avian flight originated among non-volant
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terrestrial bipeds. The opposing “ trees-down” sce-
nario, first articulated by Bock (1965, 1986) and e-
laborated by others (Feduccias 1999; Geist and Fe-
duccias 2000, envisages gliding from an elevated
perch as a necessary intermediate stage. Each scenario
has been tied to competing phylogenetic hypotheses of
avian origins, theropod or basal archosaur, respec-
tively. Yet, such a one-to-one relationship between
functional scenario and phylogenetic hypothesis has no
intellectual basiss and clearly the former must be e-
valuated within the framework of the latter (Sumida
and Brochu, 2000; Witmer, 2002).

Recent phylogenetic and functional work demon-
strates these two points. The recent paleontological
discoveries summarized above provide strong and con-
sistent support for birds as derived theropod di-
nosaurs, their many attributes formerly thought u-
nique to them originating at more basal levels within
theropods. Functional scenarios consistent with this
hypothesis, on the other hand, have diversified. Re-
cent functional work, for example, suggests that
flapping may have evolved to enhance hind limb trac-
tion in inclined running as a fundamental avian escape
behavior, as currently employed in a wide variety of
ground birds (Dial, 2003b). Likewises the recent
discovery of the small basal dromaeosaurid Microrap-
tor—with arboreal adaptations and fore and hind limb
wings suitable for gliding—has opened the door to
several possible functional scenarios within the frame-
work of a theropod origin of birds ( Hwang et al.
2002; Xu et al.» 2003).

3.4 Avian powered flight: functional modularity

Broader functional analysis of the evolution of
birds as derived theropods has led to the notion of
functional modularity, i. e., that locomotor function
among birds is organized into three discrete functional
modules (forelimbs, hind limbs, tail) with distinctive
neuromuscular control (Gatesy and Dial, 1996; Dial,
2003a). The evolution of functional independence be-
tween tail and hind limb modules occurred in the
transition from basal coelurosaurian theropods to basal
birds. Variation in the elaboration of each of these
modules, furthermore, has given rise to the diversity
of avian locomotor styles, from non-volant cursors to
small-bodied aerial acrobats with reduced hind limbs

(Dial, 2003a).
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