Singularities of solutions of the Hamilton-Jacobi equation.
A toy model: distance to a closed subset.

by
Albert Fathi
Georgia Institute of Technology

This is a joint work with Piermarco Cannarsa and Wei Cheng.
The distance function d_F to a closed subset F of Euclidean space \mathbb{R}^k is given by

$$d_F(x) = \inf_{f \in F} \|x - f\|.$$

It is a Lipschitz, hence differentiable almost everywhere. We will discuss some topological properties of the set $\text{Sing}(d_F)$ of points where d_F is not differentiable.

More generally, we will discuss properties of the set of singularities of a viscosity solution of the Hamilton-Jacobi equation

$$\partial_t U + H(x, \partial_x U) = 0,$$

when H is a Tonelli Hamiltonian.
We will give applications in Riemannian geometry.
We will explain during the lecture all notions (beyond common knowledge) necessary to understand it.