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Introduction.

We consider a noncollapsed Gromov-Hausdorff limit space,

(Mn
i , di, pi)

dGH−→ (Xn, d, p) ,

where

RicMn
i
≥ −(n− 1)g ,(1)

Vol(B1(pi)) ≥ v .(2)

We will discuss some new (2018) structural results on Xn.

This is joint work with Aaron Naber and Wenshuai Jiang.

Ann. Math. 193 (2021) 407–538.
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Ricci curvature.

A riemannian manifold (Mn, g) has an induced metric space

structure.

The curvature tensor R of (Mn, g) is a 4-linear form on each

tangent space, Mn
p with certain symmetries.

The Ricci tensor RicMn is a symmetric bilinear form gotten

from R by contraction:

Ric(X,Y ) :=
∑
i

R(ei, X, Y, ei) .(3)

We write RicMn ≥ (n− 1)H for RicMn ≥ (n− 1)Hg.

We abreviate (1), (2), to: Xn is a v-noncollapsed limit space.
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Bishop-Gromov inequality/uniform total boundedness.

Let Mn
H denote the simply connected manifold of constant

curvature H and let p ∈Mn
H .

The Bishop-Gromov inequality states that (1) implies

Vol(Br(p))

Vol(Br(p))
↓ .(4)

As Gromov observed, this is essentially an ode result.

In particular, a doubling condition holds:

Vol(B2r(p)) ≤ c(n,H,R) ·Vol(Br(p)) .(5)

A standard consequence of (5) is uniform total boundedness:

For all ε > 0, BR(p) has an ε-dense set with ≤ N(n,H,R, ε)

members.
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Gromov-Hausdorff distance.

For compact metric spaces (X1, d1), (X2, d2), we say

dGH(X1, X2) < ε if there exists f : X1 → X2 such that:

1) For all x1, y1 ∈ X1 |d2(f(x1), f(y1))− d1(x1, y1)| ≤ ε .

2) The range of f is ε-dense.

There is an associated notion of convergence

(Xi, di)
dGH−→ (X∞, d∞).

For noncompact pointed metric spaces (Xi, di, pi) we say

(Xi, di, p1)
dGH−→ (X∞, d∞, p∞) if for all R,

(BR(pi), di)
dGH−→ (BR(p∞), d∞) .(6)
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Gromov compactness.

By a soft diagonal argument using uniform total boundedness:

Theorem(Gromov)

1) The set of (Mn, g) satisfying (1) and diam(Mn) ≤ d is
precompact with respect to dGH .

2) The set of (Mn, g, p) satisfying (1) is precompact with
respect to pointed dGH .

Elements in the completion which are not smooth riemannian

manifolds are analogous to distributions or Sobolev functions.

As in those cases, it is useful for applications to understand

their structure.

A significant application is to Einstein manifolds RicMn = λg.

Jeff Cheeger
NONCOLLAPSED GROMOV-HAUSDORFF LIMIT SPACES WITH RICCI CURVATURE BOUNDED BELOW
6 / 26



Examples of limit spaces in dimension 2.

Flat cylinders, S1
ε × R, satisfy S1

ε × R dGH−→ R as ε→ 0.

Here, the noncollapsing condition (2) doesn’t hold.

The surface of an ice cream cone is a noncollapsed limit space.

Same holds for the boundary ∂∆3 of the standard 3-simplex.

Generalizing this, we can erect a pyramid with small altitude

on each face of ∂∆3 and iterate this infinitely many times.

If the altitudes go to zero sufficiently fast, we get a convex

surface with a countable dense set of nonsmooth points.

In particular, the singular set has Hausdorff codimension 2.
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Tangent cones.

Let (Xn, d) denote a noncollapsed limit space.

If εi → 0, the sequence (Xn, ε−1i d, x) subconverges in the

pointed Gromov-Hausdorff sense to a limit space Xx called a

tangent cone at x.

We say x is a regular point, x ∈ R, if all tangent cones are Rn.

It turns out that x ∈ R if some tangent cone is Rn.

S := Xn \ R is called the singular set.

In our last example, S is a countable dense set and for suitable

finite subsets, Sε ⊂ S, with S =
⋃
ε Sε, the points of Rε := S \ Sε

are at worst, increasingly almost regular as ε→ 0.

Our main results show this example typifies the general case.
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Tangent cones are metric cones.

A metric cone C(Y n−1), on a metric space Y n−1 with

diam(Y n−1) ≤ π is R+ × Y with law of cosines metric:

d((r1, y1), (r2, y2)) = r21 + r22 − 2r1r2 cos(y1, y2) .

Rn = C(Sn−1) is the case in which Y n−1 is the unit sphere.

Theorem(Ch-Colding, 1996) If Xn is a noncollapsed limit

space then every tangent cone Xx is a metric cone.

This comes from the almost equality case of Bishop-Gromov

where, since ε−1i →∞, RicXx ≥ 0 holds in a generalized sense.

Remark. In the collapsed case, tangent cones need not be

metric cones.
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Almost volume annuli are almost metric annuli.

The proof of the Bishop-Gromov inequality actually shows:

Voln−1(∂Br(p))

Voln−1(∂Br(p))
↓ .(7)

Suppose that RicMn ≥ 0 and that for some r1 < r2, the

monotone quantity in (7) is actually constant.

By an ode argument, Br2(p) \Br1(p) is isometric to an annulus

in a metric cone with cross-section the appropriately rescaled
∂Br1(p).

With Colding, we proved a version of this rigidity theorem in

which the hypotheses almost hold in a quantitative sense and

the conclusion almost holds in the Gromov-Hausdorff sense.
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Proof that tangent cones are metric cones.

Put Ai := B2−i(p) \B2−(i+1)(p)

The boundary volume ratio in (7) is monotone.

The v-noncollapsing assumption, (2), implies that

the volume ratio is bounded above and below.

It follows directly that for any ε > 0, at most N(n, v, ε) of the Ai

fail to be ε-almost volume annuli.

By the previous slide, the remaining Ai satisfy

dGH(Ai, Ai) < ε · 2−i ,(8)

for some annulus Ai in a metric cone.

This easily implies that all tangent cones are metric cones.

Jeff Cheeger
NONCOLLAPSED GROMOV-HAUSDORFF LIMIT SPACES WITH RICCI CURVATURE BOUNDED BELOW
11 / 26



Techniques for proving quantitative rigidity.

On a cone, distance from the vertex satisfies ∆r2 = 2n.

In our almost volume cone in Mn
i , we consider r2 with ∆r2 = 2n

and the same boundary values as the Lipschitz function r2.

By (1) and Bochner’s formula, |Hessr2 |2 is controlled.

Passing this control to r2 uses:

Laplacian comparison.

Cheng-Yau gradient estimate.

Quantitative maximum principles.

A cutoff function φ with a pointwise bound |∆φ| < c(n, v).

Finally, the segment inequality, is used to turn integral estimates

on |r2 − r2| into estimates on Gromov-Hausdorff distance.
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Other structural results.

Let Hn denote n-dimensional Hausdorff measure.

Theorem(Ch-Co, 1996) If Xn is a noncollapsed limit

space then:

1) Xn has Hausdorff dimension n.

2) Hn is the limit of the riemannian volumes of the (Mn
i , di).

3) S has Hausdorff dimension ≤ n− 2.

4) S =
⋃
ε Sε ⊂ S where Xn \ Sε is θ(ε)-bi-Hölder equivalent to

a smooth riemannian manifold and θ(ε)→ 1 as ε→ 0.

Next, we briefly indicate of how 3) is proved.
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Stratification and Hausdorff dimension.

Define an increasing filtration S =
⋃n−1
k=0 Sk by:

Sk := {x ∈ X | no Xx splits off a factor Rk+1 isometrically}.

Let dim denote Hausdorff dimension.

Theorem (Ch-Co, 1996)

dimSk ≤ k .(9)

Moreover, S = Sn−2, which implies:

dimS ≤ n− 2 .(10)

Remark. To make (9) plausible, think of the example of a

simplicial complex and its closed skeleta.
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Relation to classical cases.

The filtration Sk and the inequality dimSk ≤ k have

counterparts in the context of minimal submanifolds, where

the pioneers are de Giorgi, Federer, Fleming and Almgren.

Their proofs involved iterated blow up arguments.

In our more highly nonlinear case (with no background metric)

the implementation required new techniques

A classical counterpart of dimS ≤ n− 2 is Simons’ famous

result that for minimizing hypersurfaces, dimS ≤ n− 7.

In his case and ours, one shows that in sufficiently low

codimension, all potential tangent cones don’t actually arise.
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Proving dimS ≤ n− 2.

If x ∈ Sn−1 \ Sn−2 then some Xx splits off Rn−1 isometrically.

It is easy to see that the only possibility is the half space,

Xx = Rn−1×R+ where the cone point x∞ lies on ∂(Rn−1×R+).

This perfectly good cone doesn’t arise as a tangent cone.

If it did, by a diagonal argument, we would have

B1(pi)
dGH−→ B1(x∞) ⊂ Xx,

where B1(pi) ⊂Mn
i are smooth riemannian manifolds.

But in that case, di(pi, ∂B1(pi)) = 1, so x∞ ∈ ∂(Rn−1 × R+) is

implausible (and, by a topological argument, impossible).
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New structural results from [Ch-Ji-Na, 2018].

Theorem.

Hn(Tr(S
n−2
ε ) ∩B1(x)) < c(n, v, ε) · rn−2 .(11)

Theorem. Sk is rectifiable for all k.

Theorem. For Hk-a.e. x ∈ Sk, every tangent cone

satisfies Xx = Rk × C(Y ) isometrically, although C(Y ) may

depend on the (possibly nonunique) Xx. However, tangent

cones are unique Hn−2-a.e.

Remark. Examples of Naber and Nan Li show that

rectifiability is the best one can hope for.
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Rectifiability.

Definition. A subset A of a metric space is called k-rectifiable
if

A = A0 ∪
∞⋃
i=1

Ai

where Hk(A0) = 0 and each Ai is bi-Lipschitz to a positive

measure subset of Rn.
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First quantitive results on singular sets, [Ch-Na, 2013].

[Ch-Na,2013] contained a weaker version of (11), the

volume bound on tubes around singular sets.

Theorem. (Ch-Na, 2013) For all η > 0, there exists

c(n, v, ε, η) such that:

Hn(Tr(S
k
ε ) ∩B1(x)) ≤ c(n, v, ε, η) · rn−k−η .(12)

Crucially, at points of B1(x) \ Tr(Skε ), there is a definite amount

of regularity, specifically, a lower bound on the regularity scale.

For 2-sided Ricci bounds, and in particular for Einstein

manifolds, this is particularly significant.

Remark. Though the techniques from [Ch-Na, 2013] were

novel, they fall far short of what is needed to prove (11).
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New techniques from [Ch-Na, 2013].

The new techniques introduced in [Ch-Na, 2013] provided a

quantitative replacement on a fixed scale for the classical

blow up arguments:

A quantitative version of the stratification.

Quantitative differentiation.

A quantitative version of cone-splitting.

The energy decomposition.

An iterated recovering argument.
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Applications.

The new techniques were extremely flexible.

Jointly in part with Bob Haslhofer and Daniele Valtorta, we

applied them to other nonlinear elliptic and parabolic pde:

Minimal submanifolds.

Harmonic maps.

Mean curvature flow.

Harmonic map flow.

Singular and critical sets of linear elliptic pde.

Others applied them to various different equations as well.
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Classical cone-splitting and its quantitative version.

Cone splitting had already been used for harmonic maps.

In our context it states:

Assume fi : Z → C(Yi), i = 1, 2, are isometries such that

fi(zi) = yi is a vertex of C(Yi).

If z1 6= z2, a line through z1, z2 splits off as an isometric factor.

This fundamental point is basically a nice exercise.

In [Ch-Na, 2013] we proved a quantitative version which

can be iterated if there are more well separated approximate

cone points.
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The energy decomposition.

As noted above, for each fixed x, and δ > 0, at most N(n, v, δ)

of the balls B2−i(x) fail to satisfy the hypothesis of the

almost volume cone implies almost metric cone theorem.

Apart from these bad scales, we have:

dGH(B2−i(x), B2−i(yi)) < δ · 2−i ,(13)

where yi is the vertex of some cone C(Yi).

However, the particular bad scales depend uncontrollably on x.

In the energy decomposition, for each N , we group together

those points Gα,N with the same good scales down to 2−N

Do quantitative cone splitting with δ < δ(ε) on each Gα,N .
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The price of the energy decomposition.

For a particular Gα,N in the energy decomposition, the

(at most N(n, v, δ)) bad scales give rise to a constant,

c(n, v, ε, δ,N1), in front of the estimate for that group.

This follows from the iterated recovering argument.

The number of Gα,N blows up slowly as δ → 0.

By multiplying our estimate for a fixed group by the number of

groups we get the following version of (11):

Hn(Tr(S
k
ε ) ∩B1(x)) ≤ c(n, v, ε, δ) · rn−k−η(δ) .(14)

Here, as δ → 0, we have η(δ)→ 0 but c(n, v, ε, δ)→∞.
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Neck regions and removing the η.

Removing the η, as well the other results in [Ch-Ji-Na, 2018],

requires the theory of neck regions and neck decompositions.

Roughly speaking, neck regions are transition regions between

the regular and singular parts.

This theory was developed in breakthrough papers

of Naber-Valtorta (harmonic maps) and Naber-Jiang

(2-sided bounds on Ricci curvature).

The implementation in the context of [Ch-Ji-Na, 2018] required

a number of new ideas and estimates, leading to the length and

technical complexity of that paper.
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2-sided bounds RicMn ≤ n− 1.

For noncollapsed limit spaces with |RicMn
i
| ≤ n− 1:

1) S is closed. [Anderson, 1989], [Ch-Co, 1996].

2) dimS ≤ n− 4, [Ch-Na, 2015].

3) There is an a priori L2 bound on the full curvature
tensor R, [Ji-Na, 2016]:∫

B1(p)
|R|2 ≤ c(n, v) .(15)

4) In dimension 4, there are at most c(v, d)-diffeomorphism

types with diam(M4) ≤ d; [Ch-Na, 2015].

Remark. Since R4/Z2 is the limit of scaled down Ricci flat

Eguchi-Hansen metrics on TS2, it follows that 2) above is sharp.
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