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Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In
the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflec-
tivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial
feedback; however, a reliable model of pond geometry does not currently exist. Here we show that
a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the
essential features of pond patterns. The only two model parameters, characteristic circle radius
and coverage fraction, are chosen by comparing, between the model and the aerial photographs of
the ponds, two correlation functions which determine the typical pond size and their connected-
ness. Using these parameters, the void model robustly reproduces the ponds’ area-perimeter and
area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation
functions of ponds on several dates, we also find that the pond scale and the connectedness are
surprisingly constant across di↵erent years and ice types. Moreover, we find that ponds resemble
percolation clusters near the percolation threshold. These results demonstrate that the geometry
and abundance of Arctic melt ponds can be simply described, which can be exploited in future
models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic
warming.

Arctic sea ice plays a major role in Arctic climate [1],
ecology [2], and economy. Sea ice’s recent rapid decline
is a hallmark of climate change [3] that global climate
models have systematically underestimated [4]. This is
believed to be largely due to small-scale processes that
cannot be captured accurately by large-scale models [5].
One such process is the formation of melt ponds on the
ice surface during the summer [6]. Melt ponds absorb sig-
nificantly more sunlight than the surrounding ice, mak-
ing ponded ice melt faster, creating a positive feedback
[7, 8]. The central importance of melt ponds was demon-
strated in 2014 by Schroeder et al. [9] who showed that
the September sea ice minimum extent can be accurately
predicted solely based on spring melt pond fraction. Cur-
rent models of melt ponds include comprehensive repre-
sentations of many physical processes and are capable
of reproducing Arctic-scale spatial distributions of pond
coverage [10–13]. However, their complexity and numer-
ous assumptions reduce their ability to provide a funda-
mental understanding of pond evolution, and call into
question their applicability in a changing climate.

Ponds typically evolve through several stages that are
controlled by ice permeability [14, 15]. Early in the sea-
son (typically late spring and early summer), ice is im-
permeable so that melt ponds can exist above sea level
and cover a large portion of the ice. Later in the sea-
son, as ice permeability increases, the ponds drain to the
ocean so that remaining ponds correspond to regions of
sea ice that are below sea level. After drainage, ponds
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have a typical length-scale of several meters, likely de-
termined by the scale of winter snow dunes [16], and are
often connected by channels that form during drainage.
This post-drainage stage is typically the longest part of
melt pond evolution. An aerial photograph of drained
melt ponds is shown in Figure 1a.

Melt pond geometry has been shown to control the
strength of lateral melting of ice by pond water [17],
to impact the pattern of floe breakup [18], and to set
the landscape of available light for the organisms liv-
ing beneath the ice [19]. Several critical observations
have previously been made about pond geometry. Ho-
henegger et al. [20] showed that the fractal dimension,
D, of late-summer melt ponds, which characterizes their
area-perimeter relationship (P / AD/2), transitions from
D ⇡ 1 for small ponds to D ⇡ 2 for large ponds. The size
(area) distribution of melt ponds has also been shown to
be a power law [21]. Although several models reproduce
these observations [22, 23], a basic understanding of the
reason for this behavior is lacking. In this paper we will
explain both of these observations using a simple geo-
metric model without invoking any assumptions about
the dynamics that govern the melt pond evolution.

Our model is a representation of post-drainage melt
ponds. It consists of randomly placing circles of varying
size on a plane and allowing them to overlap. The area
covered by circles in our model represents ice, while melt
ponds are represented by the voids left between the cir-
cles (Figure 1c). Similar models are sometimes used to
study transport properties in inhomogeneous materials,
and are known as “Swiss cheese” models [24]. Physically,
the circles can be thought of as regions where snow dunes
used to be in the winter, and melt ponds fill in the space
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FIG. 1. a) A photograph of melt ponds taken on August 7, 1998 during the SHEBA mission. b) A binarized version of the
same image. c) A void model with a typical circle radius of r0 = 1.8 m, and a coverage fraction of ⇢ = 0.31.

around them. Circle centers are placed with equal prob-
ability throughout the domain. Individual circles have
radii, r, randomly drawn from an exponential probabil-
ity distribution p(r) = 1

r0
e�r/r0 , where r0 is the mean

circle radius and defines the physical scale for the model.
We chose this probability distribution mainly due to its
simple form, but all of our main conclusions are robust to
using other distributions (see Supplementary section S4).
After choosing r0, the model is fully specified by choosing
the fraction of the surface covered by voids, ⇢. To com-
pare our model with melt pond data, we analyzed hun-
dreds of photographs of sea ice taken during helicopter
flights on multiple dates during the SHEBA mission of
1998 and the HOTRAX mission of 2005, and separated
them into ice and pond categories using a machine learn-
ing algorithm (Figures 1a and b, Supplementary section
S1). In order to facilitate comparison with pond images,
we implemented the void model on a grid with the same
resolution and size as the pond images.

We begin the comparison by choosing the model pa-
rameters, r0 and ⇢. To this end, we define two functions
- the two-point correlation function, C(l), and a cluster
correlation function, g(l), and compare them for pond
images and the model. A two-point correlation function
measures the probability that two points separated by a
distance l are both located on some pond, while a cluster
correlation function measures the probability that they
are both located on the same pond. We first estimate r0
using C(l), because we can define it to be largely insensi-
tive to changes in ⇢ (see below). Once we have calibrated
r0 by matching C(l), we can choose ⇢ using g(l).

For two points, x and y, separated by a distance l, the
two-point correlation function can be defined as:

C(l) =
hz(x)z(y)i � ⇢2

⇢(1� ⇢)
, (1)

where z(x) = 1 if a point x is located on a pond, and
z(x) = 0 otherwise, and h...i represents averaging over
di↵erent points and over di↵erent images. Subtracting ⇢2

and dividing by ⇢(1� ⇢) constrains C(l) to vary between
1 and 0, and makes it insensitive to changes in ⇢ (see
Supplementary section S2). The two-point correlation

function determines a typical length scale of variability
in melt pond coverage.

Plotting C(l) for melt ponds on a semi-log plot reveals
that it is approximately a sum of two exponentials (Fig-
ure 2a). Therefore, there are two characteristic length
scales in melt pond images - a small length scale compara-
ble to the size of individual ponds and a large length scale
that is comparable to the size of the image. The large
length scale corresponds to variability of pond fraction
due to large-scale ice features such as ridges or rafted ice
floes. To focus on melt pond features, we have removed
the contribution to C(l) from large scale ice features by
subtracting a fit to an exponential of C(l) for l > 25 m.
We varied this threshold, but found little di↵erence in the
results. After subtracting the fit, we normalized the re-
mainder so that C(0) = 1 (inset of Figure 2a). We show
the resulting functions for all of the available dates and
compare them to the void model in Figure 2b. Ponds of
all dates show similar C(l) dropping by a factor of e af-
ter roughly 3.3m. We found that this is well reproduced
by the void model using r0 = 1.8 m (see Supplementary
section S2). The fact that the void model reproduces
the shape of the two-point correlation function suggests
that our assumption of randomly placing the circles is
reasonable.

Next, we determine ⇢. With this parameter, we wish
to capture the pond geometric features such as the pond
size distribution and the fractal dimension, rather than
simply the pond coverage. For this reason, we do not
set ⇢ equal to the pond coverage fraction of melt pond
images, but instead we use the cluster correlation func-
tion to determine ⇢. Essentially, the cluster correlation
function, g(l), measures the probability that two points
separated by a distance l belong to the same finite pond.
However, there are some technical subtleties in how we
define g(l), and we give a precise definition in Supple-
mentary section S2.

In the model, in the limit of infinite domain size, there
exists a well-defined coverage fraction, ⇢c, the “percola-
tion threshold,” above which infinite clusters exist, and
below which there is a maximum cluster size. The cluster
correlation function in the void model sensitively depends
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FIG. 2. a) An example of the two-point correlation function, C(l), for melt ponds shown on a semi-log plot. Dashed black lines
represent fits to a small length scale exponential and a large length scale exponential. The inset shows C(l) before and after a
fit to the large length scale exponential has been subtracted. b) A comparison between the two-point correlation function for
ponds from 1998 and 2005 (circles), and the void model (dashed line). Ponds on all dates show a similar scale matched by the
void model using r0 = 1.8 m. c) A comparison between the cluster correlation function, g(l), for August 7, 1998 (red circles),
August 14, 2005 (yellow circles), and the void model using the same r0 as in panel b (black dashed lines). Both model lines use
⇢ = 0.31, and the di↵erence between them is due only to di↵ering simulated image sizes. The image size for 1998 is indicated
by a red arrow and the image size for 2005 is indicated by a yellow arrow. The fact that the exponential cuto↵ is set by the
image size indicates that the ponds are roughly at the percolation threshold. The inset shows an independent estimation of
the percolation threshold. Red points show the probability of finding a spanning cluster in the void model implemented on a
grid the same size and resolution as the SHEBA images. The probability of finding a spanning cluster increases from 0 to 1
between ⇢ = 0.28 and ⇢ = 0.31.

on the deviation of the pond fraction from this percola-
tion threshold, |⇢ � ⇢c| (see Supplementary section S2).
Below and above the percolation threshold, the cluster
correlation function is greater than zero up to a cer-
tain distance, after which it exponentially decreases. As
the coverage fraction approaches the percolation thresh-
old, this cuto↵ length grows, and su�ciently close to the
threshold, it is set by the image size. The location of the
exponential cuto↵ quantifies the typical size of the largest
finite connected pond cluster. We discuss the functional
form of g(l) in detail in Supplementary section S6.

Narrow connections between ponds are often missed by
the image processing algorithm so that for many dates
g(l) depends on the artificial threshold parameter used
in the machine learning algorithm to separate ice from
ponds (see Supplementary section S1, for details). The
only dates after pond drainage for which g(l) is stable
against changes in this threshold are August 7 of 1998
and August 14 of 2005. In Figure 2c, we compare the
cluster correlation function for the void model and data
on those dates. Remarkably, the pond clusters for both
dates appear to be organized very near the percolation
threshold, as indicated by the fact that the length scale
of exponential cuto↵ in g(l) is set by the image size. In
Figure 2c we use ⇢ = 0.31 to match the pond data, and
the di↵erence between g(l) for the ponds from 1998 and
ponds from 2005 is solely due to a di↵erent image size.
In fact, using any ⇢ from a range 0.28 < ⇢ < 0.31 pro-
vides an equally good fit to the data, which indicates
that within this entire range the size of the largest pond
is determined by the image size. To independently con-
firm that ponds are well-described by the void model

near the percolation threshold, we ran the void model,
50 times at multiple values of ⇢, and found the probabil-
ity of forming a cluster that spans at least one dimension
of the image (inset of Figure 2c). We found that this
probability increases from 0 to 1 between ⇢ = 0.28 and
⇢ = 0.31, which closely matches the range of coverage
fractions that fit the pond g(l). We note that although
we chose ⇢ to match the cluster structure between the
model and the data, the value we found agrees reason-
ably well with the pond coverage fraction on those dates
(30%±5% on August 7 of 1998, and around 40%±5% on
August 14 of 2005). We discuss the relationship between
the pond coverage fraction and pond geometry in detail
in Supplementary section S6.
It is remarkable that the properties of ponds from 1998

and 2005, which likely developed under very di↵erent en-
vironmental conditions, are so similar: the correlation
functions for both years are well-fit by the void model
using the same r0 and ⇢. This is particularly surprising
since sea ice during the 1998 mission had a large propor-
tion of multiyear ice, whereas ice during the 2005 mission
was predominantly first-year ice.
Having chosen r0 and ⇢, we can proceed to explain

the observations of pond fractal dimension and size dis-
tribution. Following Hohenegger et al. [20], we define
the fractal dimension of the pond boundary as the expo-
nent that relates the area and the perimeter of the pond,
P / AD/2. The fractal dimension can vary between the
fundamental limits of D = 1 for regular shapes such as
circles to D = 2 for space-filling or linear shapes. We
find D as a function of A by fitting a curve to the area-
perimeter data. We explain the details of this fitting
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FIG. 3. a) A comparison between the fractal dimension of pond boundaries for di↵erent dates after pond drainage from 1998
(red curves), 2005 (yellow curve), and the void model with r0 and ⇢ the same as in Fig 2 (black dashed curve). Examples of
ponds (below the curve) and voids (above the curve) of various sizes are also shown. b) Size distribution for ponds on August
7, 1998 (red dots), ponds on August 14, 2005 (yellow dots), and the void model (black dashed line).

procedure in the Supplementary section S3.
In Figure 3a we find D as a function of A for pond data

on all dates from the summer of 1998 after pond drainage
(red curves) and 2005 (yellow curve). Our results are
consistent with Hohenegger et al. [20], with the pond
fractal dimension transitioning from D ⇡ 1 to D ⇡ 2 at
Ac ⇡ 100 m2, and a transition range spanning roughly
2 orders of magnitude. Without any tuning other than
choosing r0 and ⇢ using the correlation functions, the
void model is able to match the observed transition in
pond fractal dimension nearly perfectly (Figure 3a, black
dashed curve).

In the Supplementary section S7, we give an argument
that a transition from D < 2 to D ⇡ 2 is a generic con-
sequence of individual objects connecting and, therefore,
cannot be used as strong support for any particular phys-
ical model of melt ponds. On the other hand, matching
the fractal transition scale and the transition range are
non-trivial, and cannot be reproduced by an arbitrary
model of randomly connecting objects (see Supplemen-
tary section S9). At small sizes, the void model predicts
a dimension slightly larger than 1, likely corresponding
to the fact that small voids are not necessarily simple
smooth shapes. It is possible that small-scale physical
processes in real ponds, such as erosion of pond walls,
are responsible for smoothing small ponds into more cir-
cular shapes with D ⇡ 1.

Finally, we compare the pond size distribution with the
void model in Figure 3b. Again as a result of sensitivity
to the threshold parameter in the machine learning algo-
rithm, we only use pond data for August 7th of 1998 and
August 14th of 2005. At scales larger than roughly 10 m2

the pond size distribution follows an approximate power
law, in agreement with previous findings. The power law
behavior is particularly clear for ponds from 1998, and
the power law exponent (approximately 1.8) is slightly
larger than previously found [21]. Using the same r0 and
⇢ as before, the void model reproduces the pond size dis-
tribution over the entire range of observations, more than

6 orders of magnitude. This matching is highly robust:
the void model matches the pond size distribution even
at the smallest scales regardless of details such as the cir-
cle radius distribution or the shape of the objects placed
randomly (see Supplementary section S4).
We have shown that a simple model of voids surround-

ing overlapping circles captures key geometric patterns
of Arctic melt ponds with high fidelity and robustness,
with only two parameters that can be chosen naturally
by comparing the model and the data. Our model is
purely geometric, and can therefore be used as a bench-
mark against which to test any physical model. This
work shows that much of melt pond geometry can be un-
derstood simply by assuming that melt ponds are placed
randomly and have a typical size. Even though many
models will reproduce the same universal features, our
model is special in that it captures quantitative details
of melt pond geometry beyond what an arbitrary model
of connecting objects is capable of doing. Our work raises
two critical questions about melt pond physics that must
be answered. First, why does the pond scale appear to
be so robust for ponds evolving under di↵ering environ-
mental conditions, and, second, why do ponds seem to be
organized near the percolation threshold? The answer to
the second question may be particularly interesting, as
it may point to self-organized critical behavior in melt
ponds, and may suggest that the pond coverage fraction
is more constrained than previously thought. Answering
these questions may yield deeper insight into melt pond
physics and allow for a better representation of this im-
portant process in global climate models.
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Supplementary Material

S1. Image analysis

We used airborne photographs taken during the SHEBA mission of 1998
and the HOTRAX mission of 2005 (Figure 1a of the main text). Dur-
ing SHEBA, sea ice was regularly photographed from a helicopter, and the
SHEBA photographs are available on eight dates spanning the entire melt
season of 1998. Six of those eight dates were after pond drainage. Helicopter
photographs from the HOTRAX mission that have unfrozen ponds on un-
broken ice floes are only available for August 14th of 2005. SHEBA images
have dimensions of 819 m by 1228 m, with a resolution of roughly 0.2 m
per pixel. HOTRAX images have dimensions of 427 m by 284 m, with a
resolution of 0.14 m per pixel and are higher quality than SHEBA images.
For each available date, we only used images that have few cracks in the ice
and little crushed ice that might be mistaken for melt ponds by the image
classifying algorithm. We also manually removed the regions of open ocean
before running the algorithm. Finally, we separated ice from ponds using
an open access machine learning software “ilastik” (http://ilastik.org/). For
most dates we analyzed more than 105 individual ponds.

We trained the machine learning algorithm using information from images
about color, intensity, color gradient, and texture. The output of the algo-
rithm is a probability matrix characterizing the likelihood that each pixel is
ice or pond. To identify ponds, we chose a threshold probability, pt (usually
0.5), and classified each pixel as a melt pond if the algorithm found it to have
a higher probability than pt. To make sure melt pond features we wish to
describe are robust, we varied the threshold probability. We found that some
characteristics of binarized images depend on pt. For example, pond coverage
fraction varies by as much as 10% between pt = 0.1 and pt = 0.9. For this
reason, in the main text and the remainder of the Supplementary Material,
when referring to the mean pond coverage fraction on particular dates, we
also give a range of coverage fractions that can be obtained by changing pt.
Furthermore, we found that for many dates the cluster correlation function,
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g(l), and the pond size distribution are sensitive to this parameter. There-
fore, we only considered g(l) and the pond size distribution on dates for which
ponds could be clearly distinguished so that these statistics were insensitive
to changes in pt. This was true only for June 22 and August 7 of 1998 and
August 14 of 2005. As June 22 is before complete pond drainage, in the main
text we report g(l) and the pond size distribution only for August 7 of 1998
and August 14 of 2005. This sensitivity of g(l) and the size distribution to pt

is likely due to the fact that these statistics rely on accurately identifying the
narrow connections between the ponds. Images from 2005 were high enough
quality, and August 7 of 1998 had ponds that were dark enough to be easily
distinguished from ice. However, we acknowledge the possibility that the
perceived similarity in the cluster correlation function for the two dates may
be due to this early selection bias.

The size of melt ponds can be accurately estimated by summing all the
areas of individual pixels within a pond. Estimating the pond perimeter is
slightly more challenging (Figure S1). Summing the lengths of all pixel edges
on the pond boundary gives an inaccurate estimate of the perimeter, because
pixels are located on a grid, and cannot take into account the curvature
of the boundary. For example, if we try to estimate the perimeter of a
circle by summing the lengths of all pixel edges on its boundary, we will get
the perimeter of a square enclosing that circle (Figure S1b). We partially
correct for this by considering the nearest neighbor pixels on the boundary:
if the nearest neighbors are positioned diagonally, we add a distance between
them to the total perimeter (Figure S1c). Even with this correction, there is
still a small systematic error in the estimate. This, however, did not a↵ect
our estimates of the pond statistics: di↵erent methods used for finding the
perimeter simply introduced a constant bias in the perimeter of the ponds,
and therefore did not change our estimates of the fractal dimension. Some
objects in nature (a notable example is the coast of Britain [1]) su↵er from
a fundamental di�culty in determining the perimeter, because the length of
the perimeter depends on the length of the measuring stick. In our case this
is not a problem, because small ponds are regular shapes (D

1

⇡ 1) and we
can resolve them easily in our images.

S2. Correlation functions

In this section, we will first give a precise definition of the cluster cor-
relation function, g(l), and then we will explore how the two correlation

2



Figure S1: A diagram explaining how we find the perimeter. a) Blue squares represent

individual pond pixels. The perimeter is estimated as the sum of all boundary pixel edges.

b) Finding the perimeter of a circle as in panel a), we inaccurately estimate it to be

the perimeter of a square surrounding the circle. Estimating the perimeter in this way

is equally inaccurate regardless of how fine the image resolution is. c) The problem is

partially corrected if we take into account the relative positions of the nearest neighbor

boundary pixels. If two nearest neighbor pixels are located diagonally, we add the distance

between them to the total perimeter.

functions, C(l) and g(l), depend on the model parameters r
0

and ⇢.
We define the cluster correlation function, g(l), as the probability that

two points separated by a distance l belong to the same non-spanning pond
given that one of the points is already located on a non-spanning pond. For
both model and data, “spanning ponds” are those ponds that span at least
one dimension of the image. In order to obtain a good fit to the data, it is
necessary to exclude spanning clusters from the computation of g(l). This
is reasonable since in the pond images, ponds are constrained by large scale
features, such as floe edges or ridges, which make the void model inapplicable
above a certain pond size (see also Supplementary section S5). In the void
model, above the percolation threshold, there is typically one spanning pond,
while in the pond images spanning ponds typically do not exist.

We found the parameters r
0

and ⇢ approximately by running the model
at multiple values of of these parameters, and among these runs choosing
the one for which the two-point correlation function, C(l), and the cluster
correlation function, g(l), best agree with the correlation functions of ponds.
Because r

0

is the only length scale in the model (apart from the image size),
all of the characteristic lengths must scale with r

0

. In Figs. S2a and c,
we show how C(l) and g(l) depend on r

0

. We can see that the decay rate
of C(l) for the model is proportional to r

0

, and the model and data agree
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Figure S2: Dependence of correlation functions on model parameters r0 and ⇢. In each

plot, red dots represent data for August 7th,1998. a) Two-point correlation function for

di↵erent values of r0 at ⇢ = 0.3. b) Two-point correlation function for di↵erent values of

⇢ at r0 = 1.8m. c) Cluster correlation function for di↵erent values of r0 at ⇢ = 0.3. d)

Cluster correlation function for di↵erent values of ⇢ at r0 = 1.8m.
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Figure S3: An explanation for the fitting procedure to determine the fractal dimension

curve. a) The black dots represent area and perimeter of individual ponds. The yellow

dots represent a moving average of the perimeter. The red line is a fit of the mean area-

perimeter data to a function f(log(A)) defined in Eq. (S2). b) Fractal dimension, D, as a

function of size, determined as a derivative of the red line in panel a with respect to logA.

Fitting parameters defined in Eq. (2) of the main text are also shown.

well for r

0

= 1.8m. At small l, g(l) is also scaled by r

0

, but at large l, it
is insensitive to changes in r

0

because the cuto↵ length is set by the image
size. In Fig. S2b and d, we show how C(l) and g(l) vary with ⇢ at fixed r

0

.
The two-point correlation function is largely insensitive to changes in ⇢: C(l)
decreases slightly with decreasing ⇢, but this e↵ect only becomes noticeable
at low coverage fraction, ⇢ ⇡ 0.1, beyond the range of coverage fractions we
are considering in this paper. On the other hand, g(l) depends sensitively on
⇢. The cuto↵ length of the cluster correlation function reaches its maximum
close to the percolation threshold (⇢ ⇡ 0.3), and decreases sharply when
⇢ deviates from this threshold. Because we excluded the spanning clusters
from calculations of g(l), the cluster correlation function has the same shape
both above and below the percolation threshold.

S3. Estimating the fractal dimension

The fractal dimension may be obtained from the derivative of the pond
perimeter with respect to pond area in log-log space, D = 2d logP

d logA . In order
to estimate the fractal dimension, we first find the moving average of the
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perimeter of all the ponds that fall into a certain log-area bin, hP i, as a func-
tion of logA. A log-area bin of width � centered on A is defined as a range
from A/� to A�. Log-binning defines a set of points (logA, log hP i). Direct
di↵erencing of these data gives noisy results. Instead, we first fit a function
to the (logA, log hP i) points, and then take its derivative. Anticipating that
the fractal dimension will change from a low to a high value, we choose to
represent it with an error function of log-area

D(A) =
D

2

�D

1

2
erf log (A/Ac)

1/w +
D

2

+D

1

2
, (S1)

where D

1

, D
2

, logAc, and w are fitting parameters and represent the lower
fractal dimension, the upper fractal dimension, the center of the fractal tran-
sition in log-area, and the width of the fractal transition. Assuming this form
of D(A), the fitting function is given by the integral of Eq. S1 (Figure S3a):

f(x) =
D

2

�D

1

4

�
(x�logAc) erf

x� logAc

w

+
wp
⇡

e

� (x�logA

c

)

2

w

2 +
D

2

+D

1

D

2

�D

1

x

�
+C ,

(S2)
where C is a constant of integration, which we regard as another fitting
parameter. The fractal dimension is then found as

D = 2
df(log(A))

d logA
, (S3)

and is given by Eq. S1 (Figure S3b). We found that this method of estimating
D is in good agreement with other similar methods, such as fitting a function
to directly di↵erenced data or smoothing out the directly di↵erenced data.
Log-binning the data before any additional processing was important for two
reasons: 1) it smooths the data, and 2) it assigns equal weights to large and
small ponds during fitting. This latter property is especially important since
there are several orders of magnitude more small ponds than large ponds,
and a fit to data that was not log-binned would be determined nearly entirely
by small ponds.

S4. Robustness of the void model

The void model reproduced the pond data highly robustly, regardless of
details such as the distribution of circle radii, p(r), or the exact shape of
the objects placed. In addition to an exponential distribution of circle radii,
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we tested the model using other distributions, such as Gaussian, Rayleigh,
and Gamma distributions, and found that the correlation functions, fractal
dimension, and size distribution are insensitive to these details. Even in
the limit of no variation in the circle radius, all of the characteristics can be
reasonably well reproduced, although the agreement with the data is a↵ected
somewhat. Real melt ponds are often strongly anisotropic (compare Figures
1b and c of the main text). We tested the e↵ect of anisotropy in our model
by placing randomly sized ellipses with a fixed ratio of semi-major to semi-
minor axis instead of circles. The ellipses had a preferred orientation and
we changed the degree to which they align with this preferred orientation.
None of these changes altered the main conclusions of our model: matching
the correlation functions led to matching fractal dimension curves and size
distributions for the broad range of ellipse parameters used in the simulations.
Some quantities were slightly a↵ected. For example anisotropy decreased the
value of the percolation threshold by several percent.

In addition to the void model, we also explored its negative: a model
where ponds are represented by overlapping circles. The circle model can
also reproduce most of the observations, but the results are less robust. For
example, matching the two correlation functions does not reproduce the cen-
ter of the fractal transition. It is possible to remedy this by placing ellipses
instead of circles, but in this case the range of the transition is a↵ected by
the ratio of the semi-major to semi-minor axis. The circle model also su↵ers
other drawbacks compared to the void model: it reproduces the pond size
distribution over only 4, rather than more than 6, orders of magnitude, it
does not match the cluster correlation function as well, and it matches the
observations at a ⇢ significantly higher than the actual pond coverage (actual
pond coverage fractions for August 7th of 1998 and August 14th of 2005 were
0.3 ± 0.05 and 0.4 ± 0.05, close to the void model ⇢ ⇡ 0.3, and significantly
less than the circle model ⇢ ⇡ 0.7 ). For these reasons, we believe the void
model is a better description of melt ponds than the circle model.

The exponent of 1.8 we found for the pond size distribution is slightly less
than 2.05, which is predicted for the universality class of percolation models.
This is likely due to finite size e↵ects, as the image size is less than two
orders of magnitude larger than the length scale determined by the two point
correlation function. To support this hypothesis, we ran a “site percolation”
model for di↵erent lattice sizes. In this model, each grid point on a lattice is
occupied with a certain probability, and two occupied nearest neighbor sites
are considered connected. We found that the cluster size distribution of site
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percolation on a 100x100 lattice decays with an exponent close to 1.8, while
the exponent approaches 2.05 for large lattices.

S5. Limitations of the void model

When calibrating the circle scale using the two-point correlation function,
we had to remove a long length-scale exponential from the correlation func-
tion. This indicates a limitation of our model: it is unable to represent pond
variability on an arbitrarily large scale, because in real ice there exist large
features, such as ridges, cracks, or floe edges, that are not represented in the
model. One result of this limitation is that the void model predicts infinite
ponds, which are unrealistic, and which we had to remove from the analysis
in order to obtain a good match between the model and the data (see the
definition of the cluster correlation function in section S2). The limit of ap-
plicability of our model can be estimated from the long length exponential
of the two-point correlation function to be several hundred meters.

One of the key assumptions of our model is the random placement of cir-
cles on a plane; however, real melt ponds sometimes violate this assumption.
Examples of ponds that are not randomly placed are shown in Figure S4.
The fact that our model is able to reproduce pond statistics suggests that
these types of ponds were not very prevalent in our data. However, it may
happen that under di↵erent conditions, non-random ponds might become
significant.

S6. Relationship between pond geometry and coverage fraction

The parameter ⇢ in the void model controls both the connectedness of
the voids and the void coverage fraction. A priori, there is no reason to
believe that such a link between coverage fraction and geometry exists in
real melt ponds. For example, ponds may be connected by narrow channels,
thereby increasing the typical pond size while leaving the coverage fraction
virtually unchanged. On the other hand, pond growth by lateral melting
would likely increase the coverage fraction without changing the connections
between ponds much. In the main text, we chose ⇢ in the void model such
that it reproduces the geometry of melt ponds, and did not consider the pond
coverage fraction and whether it is related to geometry. For this reason, in
this section we will show that this relationship also exists in real melt ponds.
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Figure S4: Examples of melt ponds that appear to violate the assumption of random

placement. a) “Banded” melt ponds with clear spacings between melt pond bands. b)

A low pond coverage region of the ice with small melt ponds that seem to be located

non-randomly. c) A long melt pond located along a ridge. d) “Tiger stripe” melt ponds

with clear ordering.
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Figure S5: a) A fit of Eq. S4 (black dashed line) to the cluster correlation function of

ponds on August 7, 1998 (red dots). We set ⇢ equal to the mean pond coverage on August

7, and we treat l0 and ⇠ as fitting parameters. b) Number of images that fall into each

bin of pond coverage fraction for August 7, 1998 (red bars) and August 14, 1998 (yellow

bars). Vertical black dashed lines represent mean coverage fraction on the two dates, while

the vertical red dashed lines represent the estimated coverage fraction of the percolation

threshold for each date. All of the pond coverage fractions were estimated using the

machine learning threshold pt = 0.5. c) Estimated correlation length scaled by the image

size, ⇠/L, as a function of the appropriately scaled distance from the percolation threshold,

(⇢� ⇢c)(L/l0)3/4, for the void model (black dots), August 7, 1998 (red dots) and August

14, 2005 (yellow dots). Values for the percolation threshold used were 0.3 for the void

model, 0.33 for 1998 ponds, and 0.39 for 2005 ponds. Also shown is Eq. S5 (blue dashed

line), consistent with theoretical considerations.
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To avoid confusion, in this section we will call ⇢m the coverage fraction in
the model, and ⇢

p the pond coverage fraction.
The key to understanding pond connectedness is the cluster correlation

function, g(l). We can guess the functional form of g(l) for the void model
solely from considering its asymptotics. Properties of g(l) to note are:

1. At small separation, l, two points located on a pond will most likely
belong to the same pond. So, g(l) should be the same as the two-
point correlation function up to normalization by the coverage fraction.
Therefore, g(l) ⇡ (e�l/l

0(1� ⇢) + ⇢) for l ⌧ l

0

, where e

�l/l
0 is the two-

point correlation function for randomly placed objects.

2. At separations on the order of or larger than the correlation length, ⇠,
g(l) should decay to zero exponentially. So, g(l) ⇡ e

�l/⇠ for l > ⇠.

3. At intermediate separations, l
0

⌧ l ⌧ ⇠, percolation theory predicts a
power law decay with a universal exponent, g(l) / l

�5/24 [2, 3].

A function consistent with these asymptotics is:

g(l) = (e�l/l
0(1� ⇢) + ⇢)(

l

0

+ l

l

0

)�5/24
e

�l/⇠ . (S4)

In Figure S5a, we show that this equation and g(l) for ponds on August 7th,
1998 agree nearly perfectly. Equally good fits can be obtained for 2005 ponds
and for the void model.

The link between coverage fraction and geometry in the void model is
reflected in the fact that the correlation length, ⇠, that measures the size
of the largest voids, is a function of the coverage fraction, ⇢

m. Near the
percolation threshold, ⇢c, percolation theory predicts this dependence to be
of the form ⇠ = ⇠1f( L

⇠1
) [4, 2, 3], where L is the image size, ⇠1 is the

correlation length on an infinite image, and f(x) is a universal function that
scales as f(x) / x for x ! 0, and f(x) ! 1 for x ! 1. The correlation
length on an infinite image, ⇠1, is given by ⇠1 = A±l0|⇢m � ⇢c|�4/3 [2, 3],
where ± stands for ⇢

m
> ⇢c and ⇢

m
< ⇢c, and A± are non-dimensional

numbers with A�/A+

= 2 [5]. To obtain the correct units, the correlation
length must be proportional to the fundamental length scale, l

0

, that can
be estimated from a fit to Eq. S4. A non-dimensional correlation length,
⇠̂ ⌘ ⇠/L, consistent with these asymptotics is

⇠̂ = ⇠̂1

⇣
1� e

� B

ˆ

⇠1

⌘
, (S5)
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where B is a non-dimensional number, and ⇠̂1 = ⇠1/L. Here, we wish to
test whether there is such a relationship between pond coverage, ⇢p, and the
correlation length in real melt pond images.

In Figure S5b, we show the distribution of pond coverage fraction for
images taken on August 7th, 1998 and August 14th, 2005, estimated using
the threshold pt = 0.5, used by the machine learning algorithm to identify
the melt ponds. We can use the fact that there is substantial spread around
the mean pond coverage to test the relationship between ⇠ and ⇢

p. We split
the entire range of pond fractions into bins and find g(l) only for images with
⇢

p that falls into a certain bin. We then use Eq. S4 to fit g(l) for each of
the coverage bins. When fitting, we set the parameter ⇢ = ⇢

p, and treat l
0

and ⇠ as fitting parameters. We also perform the same procedure to the void
model with di↵erent ⇢m.

In Figure S5c, we compare the model, the data, and Eq. S5. The void
model conforms to Eq. S5 except su�ciently far from the percolation thresh-
old where the theoretical prediction for ⇠1 is no longer valid. Melt ponds on
both August 7th, 1998, and August 14th, 2005 also seem to follow the same
trend. These data indicate that the pond coverage fraction controls the pond
geometry in a similar way as in the void model. However, we cannot simply
relate ⇢m in the void model to the pond coverage fraction, because the values
of the percolation threshold di↵er between the two dates and the model. To
obtain a match in Figure S5c, we used ⇢c = 0.3 for the void model, ⇢c = 0.33
for 1998 ponds, and ⇢c = 0.39 for 2005 ponds. In Figure S5b we indicated
these values and compared them to the mean pond coverage fraction. For
both dates, the percolation threshold used in Figure S5c is very close to the
mean coverage fraction, indicating again that the ponds are organized near
the percolation threshold.

Mean pond coverage fraction, and its e↵ect on sea ice albedo, is often the
main quantity of interest in the large scale models. Here we showed that the
mean ⇢

p is very close to the percolation threshold, meaning that ⇢p may be
more constrained than previously thought. Understanding what physically
sets the percolation threshold may be crucial to understanding the evolution
of melt ponds and representing them in large scale models.
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Figure S6: a) Circle centers are placed randomly on a plane (black dots). We segment

the plane into regions, each region being a set of points closest to a circle center. These

regions are polygons and define a natural “grid” for the void model. Sides of the polygons

are bonds of the grid (black lines), and corners of the polygons are nodes of the grid (red

dots). b) Bonds are removed if they pass through a circle. Removed bonds are shown

as black dashed lines. The remaining bonds (solid black lines) all lie within voids and

connected bonds correspond to connected voids. c) Each void can be partitioned into

a sum of contributions from bonds. We can do this in the following way. Every node

(red dots) is associated with three circle centers and, correspondingly, three bonds (solid

pale blue lines). If all three of these bonds belong to a void, we draw three lines from

a node towards its corresponding circle centers. If two bonds belong to a void, but one

intersects a circle, we draw two lines from a node - one along the missing bond and one

towards a circle center not associated with the missing bond. Finally, if a node only has

one bond that belongs to a void, we draw no lines. Lines drawn in this way (white dashed

lines) segment a void in a unique way, with each segment associated with only one bond.

Contributions to area and perimeter segments vary significantly, but have a typical scale.

d) For large enough voids, variability in area and perimeter of segments associated with

each bond tends to average out, making both the total area and perimeter proportional

to the number of bonds in a void.
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S7. A fractal transition is a general consequence of connecting ob-

jects

The void model is not the only model able to produce a transition in
fractal dimension from D < 2 to D = 2. As described above, its negative,
a model of overlapping circles, produces a transition from D = 1 to D =
2. Many other models, such as a model of random topography [6] or the
Ising model [7], also reproduce the same feature. Here we give a qualitative
argument for why this is a general feature of connecting objects.

To understand why the transition happens in the void model, we will
first show that voids may be seen as a collection of connecting objects of a
typical size, and then we will argue that for such systems the upper fractal
dimension should be D ⇡ 2. We will neglect the variation in the circle size,
but a similar argument applies even in the presence of this variation.

If all the circles have the same size, the void model may be mapped onto
a random network of nodes and bonds in the following simple way [8]. We
first segment the entire plane into regions, such that all of the points within a
given region are closest to one of the circle centers (Figure S6a). The regions
obtained in this way are polygons (known as the Voronoi polygons), and
the procedure of segmenting the plane is known as the Voronoi tessellation.
Boundaries of these polygons define a network of nodes (the corners of the
polygons) and bonds (sides of the polygons). We consider two nodes to
be connected if a bond between them does not pass through any of the
circles (Figure S6b). It was shown [8] that if the circles have a constant
radius, nodes that are connected are located within connected voids. This
establishes a mapping from the void model to the network. We can then
segment each void into pieces and assign each piece to a bond of the network
(Figure S6c). In this way, each bond carries some fraction of the total area
and perimeter of the void. Although there is significant variation in how
much area and perimeter each individual bond contributes, there is a typical
scale above which bond contributions generally do not exist. Therefore, we
can imagine that for large enough voids, these variations will average out
and each bond will contribute some average amount to the total area and
perimeter of the void (Figure S6d). Variation in the area and perimeter of
such large voids will be mainly due to di↵ering numbers of bonds, rather
than variation in contributions from individual bonds. Therefore, both the
area and perimeter of the void will be proportional to N , the number of
bonds in a void, P / N and A / N , implying P / A and a dimension of
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D = 2. For small voids consisting of just a single bond, area and perimeter
will vary due to variation in exact placement of the surrounding circles, and
will therefore have a dimension generally less than 2. The beginning of the
fractal transition will occur roughly at an area where a two-bond void is as
likely as a single-bond void of the same size. The fractal transition will end
at a scale where there are enough bonds so that variations due to individual
bonds become negligible.

S8. Ponds before drainage

We have excluded ponds before drainage from our analysis. This is partly
because we do not have reliable data on them: there are only two dates dur-
ing the SHEBA mission that show ponding before complete drainage, June
15 and June 22. June 15 is the very beginning of the melt season showing
only minor pond coverage, while on June 22 only some of the ponds were
undrained, making the data inconclusive. Nevertheless, we can proceed to
calculate the geometric properties for these dates as well. The two point
correlation function shows that both of these dates have roughly the same
scale as ponds after drainage, consistent with pre-melt snow dunes setting
the pond scale (Figure S7a). The cluster correlation function and the pond
size distribution for ponds on June 15th depend on the threshold parameter,
pt, used by the machine learning algorithm to classify the melt ponds, de-
scribed in section S1. For this reason, these quantities can only be reliably
calculated for June 22 (Figures S7b and S7c). Both the correlation function
and the size distribution for June 22nd can be fit using ⇢ = 0.35, slightly
higher than for August 7, and above the percolation threshold. Finally, we
find the fractal dimension, D, as a function of pond size (Figure S7d). We
do this for both June 15 and June 22, although results for June 15 are incon-
clusive since there are not many large ponds, so the estimate for the upper
fractal dimension has a large error. The upper fractal dimension for both
pre-drainage dates is below D = 2, in contradiction with the void model.
This suggests a qualitative change in the pond morphology before and after
drainage. Because of this mismatch and a lack of reliable data, we chose not
to apply the void model to pre-drainage ponds.

S9. Many models of melt pond geometry

Many models other than the void model are capable of reproducing the
geometric features we studied in this paper. These models include a model
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Figure S7: Geometric statistics of ponds before drainage: a) A comparison between a two-

point correlation function for ponds before drainage (blue lines) and ponds after drainage

(red dashed lines). b) A comparison between a cluster correlation function for June 22

(blue circles), August 7 (red circles), and a void model (black dashed lines). c) Pond size

distribution for June 22 (blue circles), August 7 (red circles), and a void model (black

dashed line). d) Fractal dimension curves for ponds before drainage (blue lines) and after

drainage (red lines). Lines end at the maximum pond size found at that date. Examples

of a drained and undrained pond are also shown.
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Figure S8: Examples of large ponds in di↵erent models. a) A real melt pond. b) A void

model. c) A circle model. d) A random topography model. e) A quenched Ising model.

f) A model of coarsening due to repeated dilations of a binary image with random initial

conditions.
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of overlapping circles, a model of random topography [6], and several models
with coarsening dynamics such as the quenched Ising model [9, 7]. We show
examples of large melt ponds derived from these models in Figure S8. All
of these models share a common key feature - they represent melt ponds
as objects of a typical scale connecting randomly. Any model with such
a feature should be able to reproduce the correlation functions, the fractal
transition and the size distribution of melt ponds. These models, however,
cannot necessarily reproduce all of these pond geometric properties without
separately tuning parameters each time. For example, in the complement
of the void model, a model of overlapping circles, matching the correlation
functions does not yield a correct scale for the fractal transition. The void
model is special in that it can robustly match so many pond features with
only two parameters that can be independently determined from the data.

In this paper we only considered the geometry of the melt ponds without
addressing their dynamical evolution. Coarsening models include dynamics,
and are, therefore, beyond the scope of the current investigation. We note,
however, that many of these models (e.g. the quenched Ising model) have the
property that, starting from random initial conditions, the connected clusters
after a certain period of time are organized near the percolation threshold [9].
This occurs due to an intrinsic symmetry present in these models between
e.g. up-spins and down-spins. Although still far from obvious, this may
suggest that some form of coarsening is taking place in melt ponds.
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