

Would the very Fast Photon Detector (LAPPD) Benefit for JUNO and CEPC?

Sen QIAN (钱森), On Behalf of the MCP-PMT Workgroup

Institute of High energy Physics, Chinese Academy of Science

qians@ihep.ac.cn 17th. Mar. 2018

Fermilab-Chicago Timing Planning Meeting

What is LAPPD

Demonstrated characteristics:
single PE timing: ~50ps
multi PE timing: ~35 ps
differential timing: ~5 ps
position resolution < 1 mm

gain > 10⁷

1.0. The overview of JUNO

1.1. The PMTs in JUNO

Characteristics	unit	MCP-PMT (NNVC)	R12860 (Hamamatsu)
Detection Eff.(QE*CE*area)	%	27%, > 24%	27%, > 24%
P/V of SPE		3.5, > 2.8	3, > 2.5
TTS on the top point	ns	~12, < 15	2.7, < 3.5
Rise time/ Fall time	ns	R~2 , F~12	R~5, <7; F~9, <12
Anode Dark Count	Hz	20K, < 30K	10K, < 50K
After Pulse Rate	%	1, <2	10, < 15
Radioactivity of glass	ppb	238U:50 232Th:50 40K: 20	238U:400 232Th:400 40K: 40

The time characteristics of the PMTs in JUNO @ Gain~1X10^7

PMTs	Hamamatsu	MCP-PMTprototype	~300 MCP-PMTs	~1000 MCP-PMTs	~4703 MCP-PMTs
TTS @ FWHM	2.8 ns	13.2 ns	19.2 ns	19.5ns	20.4ns
TTS @sigma	1.19 ns	5.62ns	8.17ns	8.30ns	8.64ns
RT @ Gain~1X10^7	6.7 ns	1.2 ns	1.4 ns	1.4 ns	1.4 ns
FT @ Gain~1X10^7	17.7 ns	10.2 ns	24.4 ns	25.2 ns	25.5 ns

Hamamatsu Prototype

MCP-PMT-prototype

Performance-resolution

If no TTS is considered, the vertex resolution is about 7cm@1MeV.

Corresponding to vertex resolution ~13cm@1MeV (yellow).

The position Resolution is **13cm**;
The TTS of PMTs for JUNO is
about **2~3 ns** is OK, **no need the very fast PMTs.**

1.2. The LS of JUNO

Reactor $\bar{\nu}_e$ are detected via Inverse Beta Decay (IBD)

- Using a recipe inspired from Daya Bay's experience
- Requirements:
 - Long attenuation length > 20 m@430 nm:
 - High light-yield:
 - Good radio purity:

Why it is very difficult to see direct Cherenkov light in LS detector?

Because: more than 90% of original Cherenkov lights would be absorbed by LAB/PPO/bis-MSB;

If absorbed by PPO/bis-MSB, there will be a photon re-emitted.

The re-emitted photon has the same property with scintillation ones.

Total p.e. / MeV	Scintillation contribution	Cherenkov contribution
~1200	~1160	~40

The numbers are not exact.

Direct	Absorbed by LS and re-emitted
~4	~36

At 1 MeV, if all JUNO PMTs are fast, only 4 direct Cherenkov photons can be separated. Difficult to use!

Discussed with Dr. Liangjian Wen
Discussed with Dr. Zeyuan Yu

wenlj@ihep.ac.cn yuzy@ihep.ac.cn

2.0. The overview of CEPC

- CEPC Productivities:
 - 10⁶ Higgs + 10⁸ W + 10¹⁰⁻¹¹ Z Bosons
- Physics requirements
 - Higgs: High efficiency/purity identification and precise measurement of Core Physics Objects (Lepton, Photon, Tau, JET & MET)
 - Z&W:
 - Same requirement for Core Physics Objects
 - Particle ID (identify Kaon, Proton, Pion...)
 - Systematic control
 - High Stability, High homogeneity
 - Calibration & Alignments
 - Luminosity monitoring

the energy of CEPC from 91Gev-240GeV

2.1. The overview of CEPC Detector

Detector structure for CEPC

the reduced graph of the CEPC Detector

http://cepc.ihep.ac.cn

2.2. LAPPD can be used in ECAL?

Two detector options for the CEPC ECAL:

SiW ECAL: consists of layers of active sensors-silicon pads or pixels;

ScW ECAL: scintillator detector with MPPC;

The ECAL sensor interleaved with tungsten absorber plates.

The layer number of the ECL is about 25 in 90mm.

Detector structure of SiW ECAL

Detector structure of ScW ECAL

the resolution (σ /Mean) of reconstructed Higgs boson mass at different tungsten thickness. @120GeV

the layer number of the SiW ECAL with energy resolution

(1) Silicon sensors for ECAL is 3\$/cm2;Total silicon sensors for ECAL is 112M\$. (2)Total thickness of absorber W is 90mm,

Silicon: SiW ECAL: 30 silicon layer; thickness ~ 500um; PCB ~2mm;

Yes! ScW ECAL: 25 scintillator layer; thickness ~ 2mm; PCB ~2mm;

(1)MCP sensor is ? \$/cm²; Total MCP sensor for ECAL is ? M\$.

MCP-PMT?

(2)Thickness of **MCP** at least is **15 mm**, what about PCB? If the silicon is replaced by MCP, the total thickness of ECAL will increase. The cost of magnet will be increased accordingly.

2.3. LAPPD can be used in HCAL?

Yong Liu's talk @LCWS2016

- Analog hadron calorimeter based on scintillator:
 - The absorber: 2cm Stainless steel;
 - Detector cell size: 3cm×3cm (baseline) , 4cm×
 4cm, 5cm× 5cm ?
 - Position Resolution: 5mm?
 - Readout chip: ASIC SPIROC2E
 - The sensitive detector : Scintillator(PS or inorganic scintillator);
 - 40 sensitive layers, total readout channel:
 ≈5 Million (3cm× 3cm)

Scintillator tile wrapped by ESR foil was glued on the PCB

Katja's talk @CHEF2017

- Via mechanical drilling and polishing, a dome-shaped
 cavity in the center of plastic scintillator was made
- The sizes of $30\times30\times3\text{mm}^3$, $30\times30\times2\text{mm}^3$, $40\times40\times3\text{mm}^3$ and $50\times50\times3\text{mm}^3$ were made.
- Scintillator(BC408) were wrapped by ESR foil
- SiPM or MPPC(surface-mounted),
- -MCP-PMT? No!
- ①: 5mm position resolution is enough, the cell size is 30mmX30mm, only copping 1 MPPC;
- 2: the MPPC is cheaper than the MCP-PMT;for 2Million pic, the price of the MPPC:5\$/1pic from Hamamastu; 1.5\$/1pic from BNU

1.4. LAPPD can be used in TOF?

PFA Oriented concept with Calorimeter based ToF measurement

Multi-LAPPD layers could be installed inside HCAL, providing ToF measurements to Hadrons.

Detailed optimization/simulatin study is needed.

the Resolution of the dE/dx with different energy

dEdx & ToF:

complementary performance for PiD

A few Calorimeter Layer Equipped with ToF Sensor (i.e., HPTPMT, Silicon, MRPC...) delta(T) ~ 50 ps

Pid Using TPC dEdx + ToF for the CEPC

combining the dEdx and ToF (~50 ps for each particle) measurements leads to an efficient distinguish between different hadrons. At relevant momentum range for the CEPC Z pole operation, the over all efficiency/purity for the Kaon id could reach 95%/95%.

Condition	n	#σ(π-K / K-p)	Efficiency	Purity
MCTruth	dE/dx only	3.9 / 1.5	88%	86%
	+ TOF	4.0 / 3.2	98%	98%
20% degraded	dE/dx only	3.1 / 1.2	81%	79%
A CHARLES OF THE STATE OF THE S	+ TOF	3.3 / 3.0	96%	96%
50% degraded	dE/dx only	2.4 / 0.9	68%	68%
	+ TOF	2.8 / 2.9	91%	94%

To balance the efficiency & Purity of time measurement...

2.5. The result

- —> Beside the PMTs,MPPC and Si-Sensor, the CEPC Detector need new types Detector for better design.
- —>Combining ToF & dEdx leads to promising PiD performance for the CEPC Z pole physics program, and is highly appreciated (especially for the flavor physics and jet measurements)
- —> LAPPD (**50ps->10ps->1ps?**) is benefit for the CEPC ToF measurements, and could be integrated into the Calorimeter system.
- —> More studies are needed to establish an concept design.

Thank! 谢谢!

Thanks for your attention!

Any comment and suggestion are welcomed!

Why the TTS of MCP-PMT is so Large

The contribution to the TTS

- 1) The distance between the PC to the MCP;
- = = By adjusting the Electronic optical focusing
- 2 The difference between the Trans. & Ref. PC;
- = = No way to adjusting; (for better QE)
- ③ The second electron emission part of the MCP;
- = = No way to adjusting; (for better DE)

The prototype

- --> with Trans. + Ref. PC for better QE;
- --> with special MCP for better DE;

But the TTS will be worse!

CE = 60%
CE = 100%

A Very Fast T0 System for the beam test in IHEP for the BESIII ETOF upgrade

	BC-408	BC-404	BC-420	EJ-204	EJ-230	UPS-95F
$\lambda_{emission}^{max}$ (nm)	425	408	391	408	391	390
λ_{att}^{bulk} (cm)	380	160	110	-	~ 100	-
Light output % Anthr.	64	68	64	68	64	39-45
decay const. (ns)	2.1	1.8	1.5	1.8	1.5	1.2
risetime (ns)	0.9	0.7	0.5	0.7	0.5	0.7
pulse width (FWHM ns)				2.2	1.3	-

Electron T	Anode Pulse Rise Time	-	0.7	=	ns
	Electron Transit Time	_ × _	- 10	_ 8	ns
Kesponse	Transit Time Spread (T.T.S.)	- 5-	0.16	- 6	ns

With the fast PMT (H6533) and Fast scintillator (BC-420), the time resolution of T0 system : 30ps@ Proton; 55ps@ Electron

Time Spectrum of T0

Time Spectrum of TOF

Charge Spectrum of T0 PMT

Charge Spectrum of EMC in the beam end

The PID of the T0 system

This T0 system not only with the 33ps average time resolution, but also can do the particle identification (proton & pion) function as the TOF of beam test system.