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Archer Carbon cycle and natural geochemical processes as basis to understand carbon
removal.

Keith Introductions. Climate in 4 Dimensions. Emissions are peaking. Adaptation.
Climate in Context.

Oct 25 Cael Carbon removal, including ocean alkalinity enhancement, land-based methods,
bioenergy with carbon capture, and direct air capture with storage.

Nov 1 Keith Sunlight Reflection Methods (SRM) Part 1: How to Reflect Sunlight, the history of
SRM, and why stratospheric sulfur aerosols are most plausible now.

Nov 8 MacAyeal & Keith MacAyeal on science of glaciers and interventions to prevent glacial melt. Keith on
developing DAC technologies at Carbon Engineering, and lessons for cleantech.

\ A Shaw & Keith The climate responses to SRM, potential side effects, and what can be learned
from past aerosol pollution, highlighting the limits and uncertainties of experiments.

Keith The future of climate systems engineering, and climate engineering in context.



Tiffany Shaw

Professor, Geophysical Sciences

Physicist and climate scientist interested in understanding the
physical mechanisms controlling the planetary and

regional response to climate changes so that we can have greater
confidence in climate predictions.

Undergraduate: Math and

Earth Science, Some recent work:

U. British Columbia 2004 NATURE 2025 The other climate crisis, Tiffany Shaw, Bjorn
Stevens

PhD: Physics,

SCIENCE ADVANCES 2025 Confronting Earth System Model

U. Toronto 2009 Trends with Observations, Isla Simpson, Tiffany Shaw et al.

Coordinating Lead Author AGU ADVANCES 2024 Anthropogenic aerosols have

for Chapter 2 of the 7t g ; . . L
Assessment Report of the significantly weakgned the reglonal summ_ertlme circulation in
IPCC the Northern Hemisphere during the satellite era, Joonsuk Kang,

Tiffany Shaw, Lantao Sun
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How Climate
Scientists Saw the
Future Before It
Arrived |
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By Zack Savitsky

O ver the past 60 years, climate scientists
have largely succeeded in building a
computer model of the planet, capturing the
most relevant processes of an impossibly A
complex ssystem to see what the future holds.
Now many of their predictions are being
borne out and the impacts of climate change
are becoming inescapable. At the same time,
climate modeling faces threats from those
who don’t like the answers it provides.

How We Came To Know Earth
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Predicting the future requires physics

PRYSICS OF

CLIMATE 2

José P. Peixoto
Abraham H. Oort
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FUTURE TEMPERATURES

WARMING DEPENDS ON CHOICES TODAY
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Predicting the global warming today back in
the 1960s requires physics

Climate model projections vs observations

=== Observations —— Hansen 1988 B (pub 1988)
1.6f Manabe 1970 (pub 1970) - FAR EBM Best (pub 1990)
Rasool Schneider 1971 (pub 1971) —— Manabe stouffer 1993 (pub 1993)
Broecker 1975 (pub 1975) —— SAR EBM Best (pub 1995)
Nordhaus 1977 (pub 1977) —— TAR EBM Best (pub 2001)
14 B, Hansen 1981 1 (pub 1981) —— AR4 MMM Best (pub 2007)
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of Earth’s climate, quantifying interplay of disorder and
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predicting global warming” systems from atomic
to planetary scales”
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Manabe's climate models relied on applying
energy conservation to large-scales

Radiation
I Atmosphere

Convection

Hot air +
latent heat

Nobel committee



Manabe's climate models relied on applying
energy conservation to large-scales

Radiation — Stefan Boltzmann Law,
* 4 Kirchhoff's Law
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Hat i 8 temperature
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Climate models involve the application of
physical laws to large-scales
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Climate model predicts increased CO2 leads to
global-mean surface warming, cooling aloft

Atmospheric energy balance
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Surface warming sensitive to assumptions
about moisture and clouds

h Fixed relative Fixed absolute
Cof a(';n(%: humidity humidity
content Average Average

(ppm) cloudiness Clear cloudiness Clear

300 — 600 +2.36 2.92 4133 +1.36

Manabe & Weatherald (1967)



Climate model predicts turning down the sun
leads to global-mean cooling at all altitudes

Response to turning | 40 km
down the Sun
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Climate models involve the application of

physical laws to large-scales

Global-mean (altitude)
Atmospheric energy balance

Latitude-altitude
Atmospheric energy and
momentum balance

ou

Op
— . — — = I F;
Lat—l-v Vu f'u—i—ax LW+VF+

-

)
g LSD closures

Physical Complexity



Climate models involve the application of
physical laws to large-scales

Atmospheric energy (1st law) and
momentum (2"9 law) balance
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Climate model predict increased COZ2 leads
to polar amplified surface warming

Atmospheric energy  Atmospheric energy (1st law) and
balance momentum (2" law) balance
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Climate models involve the application of
physical laws to large-scales

Latitude-altitude Latitude-longitude-altitude
Global-mean (altitude) Atmospheric energy and Atmosphere & Ocean

Atmospheric energy balance momentum balance energy and momentum balance

Physical Complexity



Climate models involve the application of
physical laws to large-scales

Atmospheric energy (1st law) and
momentum (2"9 law) balance

Atmosphere & Ocean
energy and momentum

ADVECTION balance
. THERMODYNAMICAL € EQUATION
Atmospheric energy balance ARl e T
= A > ATMOSPHERE
0y 9
(o3 r<n f 1
COMPUTATION OF THE MI)(IEG COMPUTATION OF MEAN Ez a THERMODYNAMIC
RATIO OF WATER (Vﬂf’DR. r EMISSIVITY ~ AND iﬁ." o] EQUATION OF EQUATION EQUATION OF
r=.622-h-eg(M/(P-h-eg(1) ABSORPTIVITY 6z z WATER VAPOR " RADIATON MOTION
- RADIATION MOISTURE EQUATION
| La rge cale TRANSFER € AT L EVAPORATION SENSIBLE HEAT SURFACE STRESS
¥ . . e I P, S S N S P S, N AU S, W, S A, N, S A S O S S S S
determinis (LSD) PRECIPITATION RADIATIVE TRANSFER
COMPUTATION OF TEMPERATURE
CHANGE DUE TO RADIATION
TIT” ST (3,_TI )Tr'z At s Sl L THERMODYNAMIC EQUATION OF
ot (2T ICE EQUATION EQUATION MOTION
_ - | T T
PhySICal laws HEAT BALANCE | HYDROLOGY
OF THE EARTH'S SURFACE OCEAN

Manabe & Wetherald (1967) Manabe & Wetherald (1975) Stoutter et al. (1989)

Physical Complexity



Climate models predict increased CO2 leads to
delayed surface warming over the Southern Ocean
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Predicted temperature signals have
emerged across many regions

Observatlons
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60 years later..."\We've gotten better at doing
pretty much the same thing” D. Randall

FAR _ pue®™ The World in Global Climate Models

Mid-1970s Mid-1980s

ivors Overturning——— h
Rivers Circulatioﬁ Intoractive Vegetation

National Academy of Sciences



Dozens of climate model centers around the
world

CMIP5 Modeling Centers
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Climate models given boundary conditions
rom natural sources and human influence

Sulfur dioxide
150 -
Still climbing in
some regions, such
as South Asia
CO2 emissions in CMIPé6 scenarios
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Observed global warming is around 2F
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Physics-based climate models show global mean
warming does not occur due to natural changes
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Source: Modeled natural changes from FAQ 3.1, Figure 1 in IPCC, 2021: Chapter 3. The Physical Science Basis. Observed warming is HADCRUT5.



Physics-based climate models show observed
warming only occurs with human influence
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We are testing the limits of climate prediction Iin
real time

100 m T
7~
/7%’
S,
¥
!
10 km AN A\
& \_‘(\G e,
I \ \S
I y ‘(\a %
: Weather \0/ /; N A %
, N7 @ .
! // Adaptation ... i
1,000 km S . ek
" a\ \\m'.‘ :
I Deterministic P\C,\p’ ———
: / Ie,,,' N\
! LlL-= Climate Y,
\
1’ Predictable ‘
sona | < INItIAl Conditions Boundary -
Days Weeks Years Decades Centuries

Shaw & Stevens (2025, Nature)






Extreme cold gets less cold following an

iIncrease of the average

Past
Climate

Extreme Cool Warm Extreme



Climate predictions with human influence
capture increase of coldest land temperature

- Coldest temperature over NH Land
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Heatwave hotspots have also emerged

ERA5 TXx Trend (Total)
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Aerosol clean up the air since the 1970s is an
intended human intervention

Intervention, i.e.

clean air act
Sulfur dioxide !

Still climbing in
some regions, such
as South Asia

Emissions (10'%g)

1850 1910 1960 2010 2050 2100

*Shared Socioeconomic Pathways (SSP) future emission scenarios from 2015, involving various
mitigation policy measures, are fed into Earth system models to produce climate projections.

Persad et al. (2022)



Heat wave hot spots have been connected to
cleaning up the air since the 1980s

Impact of cleaning up air on
temperature

Schumacher et al. (2024)



Heat wave hot spots have been connected to
cleaning up the air and increased solar radiation

Impact of cleaning up air on

Impact of cleaning up air on
temperature
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Climate predictions capture increase of

European rainfall extremes
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Climate predictions capture increase of
European rainfall extremes
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WARMER AIR

HOLDS MORE MOISTURE

1C increase =
7% more water vapor
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Regional discrepancies have also emerged

Location of known model-observation discrepancies in historical trends
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Temperature intensity Shaw et al. (2024)



Discrepancy in drying trends over US
Southwest
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Many regional discrepancies linked to
atmosphere-ocean coupling

Summertime _
blocking = influenced by atmosphere—
Heatwaves ocean coupling
Heatwaves : : Rainfall Relative
Wintertime Humidit
ROGITE jet stream y
Humidity Rainfall
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Rainfall
Rainfall Relative .
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Humidity Sea Surface Storm track
Temperature intensity

Kang et al. (2024, 2025)



Landscape of regional climate information

Knowledge
Tied to a chain of reasoning
Multiple lines of evidence

Successful prediction
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Knowledge gaps do not justify inaction

Every tonne of CO, emissions adds to global warming

Global surface temperature increase since 1850-1900 (°C) as a function of cumulative CO, emissions (GtCO,)
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