: Tisis THE UNIVERSITY OF
 CHICAGO

how Fundamental science HAS CFANGED THE WORLD

Philipp Windischhofer November 18, 2023

The discovery of radioactivity

The discovery of radioactivity

Henri Becquerel (1896)

The discovery of radioactivity

Marie Skłodowska-Curie Pierre Curie

Quantifying radioactivity

Quantifying radioactivity

A tool for discovery

A tool for discovery

A tool for discovery

The atom has a nucleus!
Geiger, Marsden, and Rutherford (1913)

The nucleus consists of protons! Marsden and Rutherford (1919)

A tool for discovery

A tool for discovery

James Chadwick
(1932)

The nucleus consists of protons and neutrons!

Proton

- Neutron

Electron

Enrico Fermi

Enrico Fermi

Geometry: his gateway into science

Enrico Fermi

Enrico Fermi

Enrico Fermi

Enrico Fermi

Enrico Fermi

"I can calculate anything in physics within a factor 2 on a few sheets; to get it fully right may well take a physicist a year, but I am not interested in that."

Back in Rome: the Via Panisperna boys

Back in Rome: the Via Panisperna boys

Back in Rome: the Via Panisperna boys

Franco Rasetti
"The pope"

Back in Rome: the Via Panisperna boys

Back in Rome: the Via Panisperna boys

Orso Corbino
"God almighty"
"The pope"

News from Paris: artificial radioactivity

News from Paris: artificial radioactivity

News from Paris: artificial radioactivity

"Our latest experiments have shown a very striking fact."

News from Paris: artificial radioactivity

"Our latest experiments have shown a very striking fact."

Geiger counter

Aluminium foil

Polonium
α-source

News from Paris: artificial radioactivity

"Our latest experiments have shown a very striking fact."

Geiger counter

Aluminium foil

Polonium
α-source
"When an aluminium foil is irradiated on a polonium preparation ..."

News from Paris: artificial radioactivity

"Our latest experiments have shown a very striking fact."

Geiger counter
Aluminium
foil

\1111/
Polonium
α-source
"... the emission of radiation does not cease immediately when the active preparation is removed."

News from Paris: artificial radioactivity

"Our latest experiments have shown a very striking fact."

Geiger counter
Aluminium
foil

\1111/
Polonium
α-source
"The foil remains radioactive and the emission of radiation decays exponentially as for an ordinary radio-element."

News from Paris: artificial radioactivity

"Our latest experiments have shown a very striking fact."

Geiger counter

\11111
Polonium α-source
"The foil remains radioactive and the emission of radiation decays exponentially as for an ordinary radio-element."

News from Paris: artificial radioactivity

"Our latest experiments have shown a very striking fact."

Geiger counter

"The foil remains radioactive and the emission of radiation decays exponentially as for an ordinary radio-element."

Back to Rome

Back to Rome

Artificial Production of a New Kind of Radio-Element
By F. Jouot and I. Curib, Institut du Radium, Paris

Back to Rome

Artificial Production of a New Kind of Radio-Element
By F. Jourot and I. Curis, Institut du Radium, Paris

Back to Rome

Artificial Production of a New Kind of Radio-Element
By F. Jouor and I. Curis, Institut du Radium, Paris

Aluminium atom
Phosphorus atom

Back to Rome

Artificial Production of a New Kind of Radio-Element

By F. Jourot and I. Curie, Institut du Radium, Paris

Fermi: High-intensity α-source, but most α-particles do not reach the nucleus!

What about neutrons?

What about neutrons?

Fermi: Uncharged neutrons would not get deflected!

But: available neutron sources much weaker (Chadwick and Rutherford also in the game!)

What about neutrons?

Fermi: Uncharged neutrons would not get deflected!

But: available neutron sources much weaker (Chadwick and Rutherford also in the game!)

What about neutrons?

Fermi: Uncharged neutrons would not get deflected!

But: available neutron sources much weaker (Chadwick and Rutherford also in the game!)

Radium
(α-source)
(Institute of Public Health, Via Panisperna basement)

What about neutrons?

Fermi: Uncharged neutrons would not get deflected!

But: available neutron sources much weaker (Chadwick and Rutherford also in the game!)

(Institute of Public Health, Via Panisperna basement)

What about neutrons?

Fermi: Uncharged neutrons would not get deflected!

But: available neutron sources much weaker (Chadwick and Rutherford also in the game!)

What about neutrons?

Fermi: Uncharged neutrons would not get deflected!

But: available neutron sources much weaker (Chadwick and Rutherford also in the game!)

Neutron-induced radioactivity

Neutron-induced radioactivity

So far, we have obtained an effect with the following elements :

Phosphorus-Strong effect. Half-period about 3 hours. The disintegration electrons could be photographed in the Wilson chamber. Chemical separation of the active product showed that the unstable element formed under the bombardment is probably silicon.

Iron-Period about 2 hours. As the result of chemical separation of the active product, this is probably manganese.

Silicon-Very strong effect. Period about 3 minutes. Electrons photographed in the Wilson chamber.

Aluminium-Strong effect. Period about 12 minutes. Electrons photographed in the Wilson chamber.

Chlorine-Gives an effect with a period much longer than that of any element investigated at present.

Vanadiven-Period about 5 minutes.
Copper-Dffect rather small. Period about 6 minutes.

Arsenic-Period about two days.
Silver_Strong effect. Period about 2 minutes. Tellurium. Period about 1 hour.
Iodine-Intense effect. Period about 30 minutes. Chromium-Intense effect. Period about 6 minutes. Electrons photographed in the Wilson chamber.

Barium-Small effect. Period about 2 minutes.
Fluorine-Period about 10 seconds.

Neutron-induced radioactivity

So far, we have obtained an effect with the following elements :

Phosphorus-Strong effect. Half-period about 3 hours. The disintegration electrons could be photographed in the Wilson chamber. Chemical separation of the active product showed that the unstable element formed under the bombardment is probably silicon.

Iron-_Period about 2 hours. As the result of chemical separation of the active product, this is probably mancanesa

Silicon $=$ Very strong effect. Period about 3 minutes. Ehectoris photographed in the Wilson chamber.

Aluminium-Strong effect. Period about 12 minutes. Electrons phorographed in the Wilson chamber.

Chlorine-Gives an effect with a period much longer than that of any element investigated at present.

Vanadium-Period ohont 5 minutes.
Copper Effect rather small. Period about 6 minutes.

Arsenic—Period about two days.
Silver-Strong effect. Period about 2 minutes. Telluriumm
Iodine - Intense effect. Period about 30 minutes. Chromium-Illvense effect. Period about 6 minutes. Electrons photographed in the Wilson chamber.

Barium-Small effect. Period about 2 minutes.
Fluorine-Period about 10 seconds.

Neutron-induced radioactivity

So far, we have obtained an effect with the following elements :

Phosphorus-Strong effect. Half-period about 3 hours. The disintegration electrons could be photographed in the Wilson chamber. Chemical separation of the active product showed that the unstable element formed under the bombardment is probably silicon.

Iron-Period about 2 hours. As the result of chemical separation of the active product, this is probably mancanesa

Silicon = Very strong effect. Period about 3 minutes. Erectrons plotographed in the Wilson chamber.

Aluminium-Strong effect. Period about 12 minutes. Electrons phorographed in the Wilson chamber.

Chlorine-Gives an effect with a period much longer than that of any element investigated at present.

Vanadium-Period ohout. 5 minutes.
Copper Dffect rather small. Period about 6 minutes.

Arsenic—Period about two days.
Silver-Strong effect. Period about 2 minutes. Tellurivm $-\cdots$ about 1 hour.
Iodine -Intense effect. Period about 30 minutes. Chromium-Illvense effect. Period about 6 minutes. Electrons photographed in the Wilson chamber.

Barium-Small effect. Period about 2 minutes.
Fluorine-Period about 10 seconds.

Neutron-induced radioactivity

So far, we have obtained an effect with the following elements :

Phosphorus-Strong effect. Half-period about 3 hours. The disintegration electrons could be photographed in the Wilson chamber. Chemical separation of the active product showed that the unstable element formed under the bombardment is probably silicon.

Iron-Period about 2 hours. As the result of chemical separation of the active product, this is probably mancanesa

Silicon = Very strong effect. Period about 3 minutes. Erectrons plotographed in the Wilson chamber.

Aluminium-Strong effect. Period about 12 minutes. Electrons phorographed in the Wilson chamber.

Chlorine-Gives an effect with a period much longer than that of any element investigated at present.

Vanadium-Period ohout. 5 minutes.
Copper Dffect rather small. Period about 6 minutes.

Arsenic—Period about two days.
Silver-Strong effect. Period about 2 minutes. Tellurivm $-\cdots$ about 1 hour.
Iodine -Intense effect. Period about 30 minutes. Chromium-Illvense effect. Period about 6 minutes. Electrons photographed in the Wilson chamber.

Barium-Small effect. Period about 2 minutes.
Fluorine-Period about 10 seconds.

Neutron-induced radioactivity

So far, we have obtained an effect with the following elements :

Phosphorus-Strong effect. Half-period about 3 hours. The disintegration electrons could be photographed in the Wilson chamber. Chemical separation of the active product showed that the unstable element formed under the bombardment is probably silicon.

Iron-Period about 2 hours. As the result of chemical separation of the active product, this is probably mancanesa

Silicon-Very strong effect. Period about 3 minutes. Erectrons plotographed in the Wilson chamber.

Aluminium-Strong effect. Period about 12 minutes. Electrons phorographed in the Wilson chamber.

Chlorine-Gives an effect with a period much longer than that of any element investigated at present.

Vanadiven-Period ohont, 5 minutes.
Copper Effect rather small. Period about 6 minutes.

Arsenic-Period ahout two days.
Silver-Strong effect. Period about 2 minutes. Tellurivm
Iodine -Intense effect. Period about 30 minutes. Chromium-inverse efiect. Period about 6 minutes. Electrons photographed in the Wilson chamber.

Barium-Small effect. Period about 2 minutes.
Fluorine-Period about 10 seconds.

The results were not reproducible!

The results were not reproducible!

Wanted to use silver as "activation standard" to compare against

The results were not reproducible!

Wanted to use silver as "activation standard" to compare against

Wooden table

The results were not reproducible!

Wanted to use silver as "activation standard" to compare against

Wooden table

Marble table

The results were not reproducible!

Wanted to use silver as "activation standard" to compare against

Much stronger effect for wood!

Fermi's discovery

"We were working very hard in the neutron-induced radioactivity and the results we were obtaining made no sense."

Fermi's discovery

"We were working very hard in the neutron-induced radioactivity and the results we were obtaining made no sense."
"One day, as I came to the laboratory, it occurred to me that I should examine the effect of placing a piece of lead before the incident neutrons."

Fermi's discovery

"We were working very hard in the neutron-induced radioactivity and the results we were obtaining made no sense."
"One day, as I came to the laboratory, it occurred to me that I should examine the effect of placing a piece of lead before the incident neutrons."
"I took great pains to have the piece of lead precisely machined."

Fermi's discovery

"We were working very hard in the neutron-induced radioactivity and the results we were obtaining made no sense."
"One day, as I came to the laboratory, it occurred to me that I should examine the effect of placing a piece of lead before the incident neutrons."
"I took great pains to have the piece of lead precisely machined."

Fermi's discovery

"We were working very hard in the neutron-induced radioactivity and the results we were obtaining made no sense."

Fermi's discovery

"We were working very hard in the neutron-induced radioactivity and the results we were obtaining made no sense."
"I tried every excuse to postpone putting the piece of lead in its place."

Fermi's discovery

"We were working very hard in the neutron-induced radioactivity and the results we were obtaining made no sense."
"I tried every excuse to postpone putting the piece of lead in its place."
"When finally, with some reluctance, I was going to put it in its place, I said to myself, 'No, I don't want this piece of lead here; what I want is a piece of paraffin.'"

Fermi's discovery

"We were working very hard in the neutron-induced radioactivity and the results we were obtaining made no sense."
"I tried every excuse to postpone putting the piece of lead in its place."
"When finally, with some reluctance, I was going to put it in its place, I said to myself, 'No, I don't want this piece of lead here; what I want is a piece of paraffin.'"

Fermi's discovery

"We were working very hard in the neutron-induced radioactivity and the results we were obtaining made no sense."
"I tried every excuse to postpone putting the piece of lead in its place."
"When finally, with some reluctance, I was going to put it in its place, I said to myself, 'No, I don't want this piece of lead here; what I want is a piece of paraffin.'"

Fermi's discovery

"We were working very hard in the neutron-induced radioactivity and the results we were obtaining made no sense."
"I tried every excuse to postpone putting the piece of lead in its place."
"When finally, with some reluctance, I was going to put it in its place, I said to myself, 'No, I don't want this piece of lead here; what I want is a piece of paraffin.'"

The activation became

a lot stronger!

Slowing down neutrons

Collisions with hydrogen atoms in paraffin wax slow down (initially fast) neutrons

Slowing down neutrons

Collisions with hydrogen atoms in paraffin wax slow down (initially fast) neutrons

Slowing down neutrons

Slow neutrons more easily enter the target nucleus

Slowing down neutrons

Collisions with hydrogen atoms in paraffin wax slow down (initially fast) neutrons

nucleus

Unstable silver nucleus

Slow neutrons more easily enter the target nucleus

Slowing down neutrons

Collisions with hydrogen atoms in paraffin wax slow down (initially fast) neutrons

Unstable silver nucleus

Slow neutrons more easily enter the target nucleus

nucleus

The same happens with wood!

Slowing down neutrons

Collisions with hydrogen atoms in paraffin wax slow down (initially fast) neutrons

Fast
"Further investigation showed that the activation could be enormously increased
by surrounding the source and the activated substance with a large amount of water or paraffin wax."

The same happens with wood!

Patenting slow neutrons

Patenting slow neutrons

UNITED STATES PATENT OFFICE
2,206,634
PROCESS FOR THE PRODUCTION OF RADIOACIVE SUBSTANODS
Enrico Fermi, Edoardo Amaldi, Bruno Ponte-
corvo, Franco Rasetti, and Emilio Segre, Rome, Italy, assignors to G. M. Giannini \& Co., Inc., New York, N. Y., a corporation of New York
Application October 3, 1935, Serial No. 43,462 In Italy October 26, 1934
7 Claims. (Cl. 204-31)

Patenting slow neutrons

UNITED STATES PATENT OFFICE
2,206,634
PROCESS FOR THE PRODUCTION OF RADIOACTIVE SUBSTANODS

Enrico Fermi, Edoardo Amaldi, Bruno Pontecorvo, Franco Rasetti, and Emilio Segre, Rome, Italy, assignors to G. M. Giannini \& Co., Inc., New York, N. Y., a corporation of New York

Application October 3, 1935, Serial No. 43,462
In Italy October 26, 1934
7 Claims. (Cl. 204-31)

Fermi's blunder

Exposing uranium to "thermal" neutrons

Paraffin
 "moderator"

Fermi's blunder

Exposing uranium to "thermal" neutrons

Chemical separation:

Fermi’s blunder

Exposing uranium to "thermal" neutrons

Chemical separation:

Fermi’s blunder

Exposing uranium to "thermal" neutrons

Fermi's blunder

Exposing uranium to "thermal" neutrons

Fermi's blunder

Exposing uranium to "thermal" neutrons

Fermi's blunder

Exposing uranium to "thermal" neutrons

Fermi's blunder

Exposing uranium to "thermal" neutrons

Fermi's blunder

Exposing uranium to "thermal" neutrons

Fermi's blunder

Exposing uranium to "thermal" neutrons

Fermi's blunder

Exposing uranium to "thermal" neutrons

Fermi's blunder

Exposing uranium to "thermal" neutrons

Fermi's blunder

Exposing uranium to "thermal" neutrons

Chemical separation:

\times Uranium (92 protons)
X Palladium (91 protons)
\times Thorium (90 protons)
\times Actinium (89 protons)
\times Radium (88 protons)

Fermi's blunder

Exposing uranium to "thermal" neutrons

Fermi's blunder

Exposing uranium to "thermal" neutrons

Chemical separation:

\times Uranium (92 protons)
X Palladium (91 protons)
\times Thorium (90 protons)
\times Actinium (89 protons)
\times Radium (88 protons)
\times Lead (82 protons)

Fermi’s blunder

Exposing uranium to "thermal" neutrons

Chemical separation:

\times Uranium (92 protons)
X Palladium (91 protons)
\times Thorium (90 protons)
X Actinium (89 protons)
\times Radium (88 protons)
\times Lead (82 protons)
Is it a heavier element with more than 92 protons?

Fermi’s blunder

Exposing uranium to "thermal" neutrons

Chemical separation:
X Uranium (92 protons)
X Palladium (91 protons)
\times Thorium (90 protons)
X Actinium (89 protons)
\times Radium (88 protons)
\times Lead (82 protons)
Is it a heavier element with more than 92 protons?

Slow neutron
Uranium

Fermi’s blunder

Exposing uranium to "thermal" neutrons

Is it a heavier element with more than 92 protons?

Fermi’s blunder

Exposing uranium to "thermal" neutrons

Chemical separation:

\times Uranium (92 protons)
X Palladium (91 protons)
\times Thorium (90 protons)
\times Actinium (89 protons)
X Radium (88 protons)
\times Lead (82 protons)

Is it a heavier element with more than 92 protons?

Fermi's blunder

Exposing uranium to "thermal" neutrons

Chemical separation:
X Uranium (92 protons)
X Palladium (91 protons)
\times Thorium (90 protons)
X Actinium (89 protons)
\times Radium (88 protons)
\times Lead (82 protons)
Is it a heavier element with more than 92 protons?
13-minute

898	N A T U R E
Possible Production of Elements of Atomic Number Higher than 92	
By Prof. E. Fbrmi, Royal University of Rome	

Fascists take over Italy

Fascists take over Italy

Fascists take over Italy

At the Nobel Prize ceremony
in Sweden (December 1938)

Fascists take over Italy

Safely arrived
in New York
(January 2, 1939)

Fermi at Columbia

Fermi at Columbia

The uranium nucleus has been split in Berlin!

Results made public on January 6, 1939

Fermi at Columbia

The uranium nucleus has been split in Berlin!

Results made public on January 6, 1939

Fermi at Columbia

The uranium nucleus has been split in Berlin!

Results made public on January 6, 1939

Heft I.
6. I. 1939]
Hahn u. Strassmann: Über den Nachweis und das Verhalten der Erdalkalimetalle.
Uber den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle ${ }^{1}$.

Von O. Hahn und F. Strassmann, Berlin-Dahlem.

What happened in Berlin?

What happened in Berlin?

Virtually the same experiment as in Fermi's Via Panisperna!

What happened in Berlin?

Virtually the same experiment as in Fermi's Via Panisperna!

What happened in Berlin?

Virtually the same experiment as in Fermi's Via Panisperna!

What happened in Berlin?

Virtually the same experiment as in Fermi's Via Panisperna!

What happened in Berlin?

Virtually the same experiment as in Fermi's Via Panisperna!

What happened in Berlin?

Virtually the same experiment as in Fermi's Via Panisperna!

"RaI"? $\underset{<\mathrm{rMin} .}{\beta} \mathrm{AcI} \xrightarrow[<30 \mathrm{Min} .]{ } \rightarrow \mathrm{Th}$?

"As chemists, we would actually have to say that the new elements are not radium, but barium."
'Iff our 'radium isotopes' are not radium, then our 'actinium isotopes' are not actinium, but lanthanum."

What happened in Berlin?

What happened in Berlin?

The nucleus is highly dynamic!
A droplet of water instead of a bowling ball.

What happened in Berlin?

The nucleus is highly dynamic!
A droplet of water instead of a bowling ball.

Uranium
(92 protons)

What happened in Berlin?

The nucleus is highly dynamic!
A droplet of water instead of a bowling ball.

Uranium
(92 protons)

What happened in Berlin?

The nucleus is highly dynamic!
A droplet of water instead of a bowling ball.

> Uranium
(92 protons)

What happened in Berlin?

The nucleus is highly dynamic!
A droplet of water instead of a bowling ball.

What happened in Berlin?

The nucleus is highly dynamic!
A droplet of water instead of a bowling ball.

What happened in Berlin?

The nucleus is highly dynamic!
A droplet of water instead of a bowling ball.

Fermi's reaction

Fermi's reaction

"I want to see this for myself!"

Fermi's reaction

"I want to see this for myself!"

Herbert Anderson

Fermi's reaction

"I want to see this for myself!"

Herbert Anderson

Fermi's reaction

"I want to see this for myself!"

Fermi's reaction

"I want to see this for myself!"

Herbert Anderson

Fermi's reaction

"I want to see this for myself!"

Herbert Anderson

Fermi's reaction

"I want to see this for myself!"

Herbert Anderson

February 16, 1939

"A large number of small pulses from the α-particles of uranium were observed."

Fermi's reaction

"I want to see this for myself!"

Herbert Anderson

"A large number of small pulses from the α-particles of uranium were observed."
"When exposed to the bombardment of neutrons very large pulses occurred in addition."

A chain reaction?

Less than one
(on average)

Reaction will eventually stop

A chain reaction?

Less than one
(on average)

Additional neutrons?

If so, how many?

More than one (on average)

Reaction will eventually stop

A chain reaction?

Less than one
(on average)

Additional neutrons?

If so, how many?

More than one

 (on average)Reaction will continue indefinitely

How many neutrons?

How many neutrons?

Leo Szilard

How many neutrons?

A practical chain reaction?

A self-sustaining chain reaction is possible in principle ...
... how to make it work in practice?

A practical chain reaction?

A self-sustaining chain reaction is possible in principle ...

... how to make it work in practice?
"1.5 neutrons per fission"
\rightarrow quite tight!

A practical chain reaction?

A self-sustaining chain reaction is possible in principle ...

... how to make it work in practice?

"1.5 neutrons per fission"
\rightarrow quite tight!

A practical chain reaction?

A self-sustaining chain reaction is possible in principle ...

... how to make it work in practice?

"1.5 neutrons per fission"
\rightarrow quite tight!

A practical chain reaction?

A self-sustaining chain reaction is possible in principle ...
... how to make it work in practice?

"1.5 neutrons per fission"
\rightarrow quite tight!
Need to slow down neutrons without losing them!

Which moderator to use?

Which moderator to use?

Which moderator to use?

Which moderator to use?

Hydrogen

Helium

Which moderator to use?

Hydrogen

Lithium

Helium

> Beryllium

Which moderator to use?

Hydrogen

Lithium
Boron

Helium

> Beryllium

Which moderator to use?

Hydrogen

	Lithium	Boron
Helium		
	Beryllium	Carbon

Which moderator to use?

Gaseous!

Lithium

Boron

> Carbon

Beryllium

Which moderator to use?

Lithium

Boron

Carbon
Beryllium

Which moderator to use?

Carbon

Which moderator to use?

Which moderator to use?

Measuring neutron diffusion

Test pile at Columbia

Measuring neutron diffusion

Spring 1940

Test pile at Columbia

Measuring neutron diffusion

Spring 1940

Measuring neutron diffusion

Spring 1940

Too many neurons are absorbed!

Measuring neutron diffusion

Spring 1940

Too many neurons are absorbed!
\rightarrow Boron impurities in graphite!

Measuring neutron diffusion

Spring 1940

Too many neurons are absorbed!
\rightarrow Boron impurities in graphite!

Carbon

Fast
neutron

Szilard scrounges graphite

Szilard scrounges graphite

Szilard scrounges graphite

$$
\text { Pebruary 7, } 1941
$$

Mr. H. D. Batchelor, Director of Research National Carbon Company, Inc.
Wdgewater Works
Cleveland, Ohio
Dear Mr. Batchelor:
Many thanks for your kind letter of January 31. We aporeciate very much the attention given to this matter by your Research Laboratory and investigations conducted by Messrs. Hamister and MacPherson, and regret to hear that you are not in a position to supply graphite bricks free of boron to meet certain specificstions of ours.

We should be very much interested to learn though the boron content of the best graphite which you are able to supply. For certain uses of graphite, we would be able to tolerate more boron than for other uses, although we are interested in every case in keeping the boron content as low as possible. Perhaps your graphite could be used at least for some of our work.

> Very truly yours
(L. Beilard)

18/eh

Szilard scrounges graphite

```
February 7, 1941
```

```
Mr. H. D. Batchelor, Director of Research
National Carbon Company, Inc.
Bdgewater Works
Cleveland, Oh1o
```

Dear Mr. Batchelor:
Many thanks for your kind letter of January 31. We appreciate very much the attention given to this matter by your Research Laboratory and investigations
 regret to hear that you are not in a position to supply graphite bricks free of boron to meet certain specifications of ours.

We should be very much interested to learn though the boron content of the best graphite which you are able to supply. For certain uses of graphite, we would be able to tolerate more boron than for other uses, although we are interested in every case in keeping the boron content as low as possible. Perhaps your graphite could be used at least for some of our work.

> Very truly yours (L. ℓ, sad ard)

18/ eh
"We] regret to hear that you are not in a position to supply graphite bricks free of boron to meet certain specifications of ours."

Szilard scrounges graphite

```
Pebruary 7, 1941
```

```
Mr. H. D. Batchelor, Director of Research
National Carbon Company, Inc.
wdgewater Works
Cleveland, Oh1o
```

"We] regret to hear that you are not in a position to supply graphite bricks free of boron to meet certain specifications of ours."
Many thanks for your kind letter of January 31. We aporeciate very much the attention given to this matter by your Research Laboratory and investigations ecmenote by lieseme. Homistor and ManPharenn, and regret to hear that you are not in a position to supply graphite bricks free of boron to meet certain speciffeations of ours.

We should be very much interested to learn though the boron content of the best graphite which you are able to supply. For certain uses of graphite, we would be able to tolerate abre boron unan ior ounct uses, although we are interested in every case in keeping the boron content as low as nossible. Perhaps your graphite could be used at least for some of our work.

$$
\begin{aligned}
& \text { very truly yours } \\
& \text { h. } \curvearrowleft \\
& \text { (L. szalard) }
\end{aligned}
$$

Ls/eh

Test piles at Columbia

September 1941

Test piles at Columbia

Uranium oxide
September 1941

Test piles at Columbia

September 1941

Test piles at Columbia

A sense of urgency ...

A sense of urgency ...

December 1941

A sense of urgency ...

A sense of urgency ...

... and a move to Chicago

The metallurgical laboratory

Stagg Field

Stagg Field

Stagg Field

Marshall field, ca. 1900
 Looking south

Stagg Field

President Robert Hutchins on football (1939):

 an "infernal nuisance" distracting from academics

Stagg Field

President Robert Hutchins on football (1939): an "infernal nuisance" distracting from academics

First test piles at Stagg Field

Improving the Pile

Improving the Pile

\longleftarrow Columbia / early Chicago piles:
Rectangular \rightarrow easy to build, but large neutron losses

Improving the Pile

\longleftarrow Columbia / early Chicago piles:
Rectangular \rightarrow easy to build, but large neutron losses

Loss-minimizing shape:
As close to a sphere as possible

Improving the pile

Improving the pile

Improving the pile

Boron-trifluoride (BF3) counters ...

Improving the pile

Boron-trifluoride (BF_{3}) counters ...

Improving the pile

Boron-trifluoride (BF_{3}) counters ...

Improving the pile

Boron-trifluoride (BF_{3}) counters ...

... turn a nuisance into a virtue
Detection chamber

Leona Woods inside the pile

The site of the first pile

The site of the first pile

Argonne Forest Preserve

The site of the first pile

The site of the first pile

The workers at Argonne were on strike!

The site of the first pile

The workers at Argonne were on strike!

"Should we build the pile at Stagg Field?"

The site of the first pile

The workers at Argonne were on strike! "Should we build the pile at Stagg Field?"

Arthur Compton:

The site of the first pile

The workers at Argonne were on strike!

"Should we build the pile at Stagg Field?"

Arthur Compton:

"As a responsible officer of the University, according to every rule of organizational protocol, I should have taken the matter to my superior.

The site of the first pile

The workers at Argonne were on strike!

"Should we build the pile at Stagg Field?"

Arthur Compton:

"As a responsible officer of the University, according to every rule of organizational protocol, I should have taken the matter to my superior.

The site of the first pile

The workers at Argonne were on strike!

"Should we build the pile at Stagg Field?"

Arthur Compton:

"As a responsible officer of the University, according to every rule of organizational protocol, I should have taken the matter to my superior.

But that would have been unfair.

The site of the first pile

The workers at Argonne were on strike!

"Should we build the pile at Stagg Field?"

Arthur Compton:

"As a responsible officer of the University, according to every rule of organizational protocol, I should have taken the matter to my superior.

But that would have been unfair.

The site of the first pile

The workers at Argonne were on strike!

"Should we build the pile at Stagg Field?"

Arthur Compton:

"As a responsible officer of the University, according to every rule of organizational protocol, I should have taken the matter to my superior.

But that would have been unfair.

Based on considerations of the University's welfare, the only answer he could have given would have been-no.

The site of the first pile

The workers at Argonne were on strike!

"Should we build the pile at Stagg Field?"

Arthur Compton:

"As a responsible officer of the University, according to every rule of organizational protocol, I should have taken the matter to my superior.

But that would have been unfair.

Based on considerations of the University's welfare, the only answer he could have given would have been-no.

The site of the first pile

The workers at Argonne were on strike!

"Should we build the pile at Stagg Field?"

Arthur Compton:

"As a responsible officer of the University, according to every rule of organizational protocol, I should have taken the matter to my superior.

But that would have been unfair.

Based on considerations of the University's welfare, the only answer he could have given would have been-no.

And this answer would have been wrong.

The site of the first pile

The workers at Argonne were on strike!

"Should we build the pile at Stagg Field?"

Arthur Compton:

"As a responsible officer of the University, according to every rule of organizational protocol, I should have taken the matter to my superior.

But that would have been unfair.

Based on considerations of the University's welfare, the only answer he could have given would have been-no.

And this answer would have been wrong.
So I assumed the responsibility myself."

Building CP-1

Building CP-1

Building CP-1: layer by layer

Building CP-1: layer by layer

Building CP-1: layer by layer

Building CP-1: layer by layer

Building CP-1: layer by layer

Building CP-1: layer by layer

Approaching criticality ... safely

Approaching criticality ... safely

Approaching criticality ... safely

Reaction becomes self-sustaining ("Pile becomes critical")

Approaching criticality ... safely

Reaction becomes self-sustaining ("Pile becomes critical")

Neutron-absorbing "'Zip" rod":

Approaching criticality ... safely

Reaction becomes self-sustaining ("Pile becomes critical")

Neutron-absorbing "'Zip' rod":

December 2, 1942

December 2, 1942

"‘Zip’ out"

$\xrightarrow[\text { TIME }]{ }$

December 2, 1942

"'Zip' out"
"Pull it to 13 feet, George."

December 2, 1942

"‘Zip’ out"
"Pull it to 13 feet, George."

December 2, 1942

"'Zip' out"
"Pull it to 13 feet, George."

December 2, 1942

"'Zip' out"
"Pull it to 13 feet, George."

December 2, 1942

"'Zip' out"
"Pull it to 13 feet, George."

December 2, 1942

"'Zip' out"
"This is not it. The trace will go
to this point and level off."
"Pull it to 13 feet, George."

December 2, 1942

"'Zip’ out"
"This is not it. The trace will go
to this point and level off."
"Pull it to 13 feet, George."

December 2, 1942

"‘Zip’ out"
"This is not it. The trace will go
to this point and level off."
"Pull it to 13 feet, George."

December 2, 1942

"‘Zip’ out"
"This is not it. The trace will go to this point and level off."
"Pull it to 13 feet, George."

December 2, 1942

"'Zip’ out"
"This is not it. The trace will go to this point and level off."
"Pull it out another foot."
"Pull it to 13 feet, George."

December 2, 1942

"'Zip’ out"
"This is not it. The trace will go to this point and level off."
"Pull it out another foot."
"Pull it to 13 feet, George."

December 2, 1942

"This is going to do it."
"‘Zip’ out"
"This is not it. The trace will go to this point and level off."
"Pull it out another foot."
"Pull it to 13 feet, George."

December 2, 1942

"'Zip' out"
"This is not it. The trace will go to this point and level off."
"This is going to do it."
"Now it will become self-sustaining. The trace will climb and continue to climb. It will not level off."
"Pull it out another foot."
"Pull it to 13 feet, George."

December 2, 1942

"'Zip' out"
"This is not it. The trace will go to this point and level off."
"This is going to do it."
"Now it will become self-sustaining. The trace will climb and continue to climb. It will not level off."
"Pull it out another foot."
"Pull it to 13 feet, George."

December 2, 1942

"'Zip’ out"
"This is not it. The trace will go to this point and level off."
"This is going to do it."
"Now it will become self-sustaining. The trace will climb and continue to climb. It will not level off."
"Pull it out another foot."
"O.K. 'Zip' in"
"Pull it to 13 feet, George."

December 2, 1942

"'Zip' out"
"This is not it. The trace will go to this point and level off."
"This is going to do it."
"Now it will become self-sustaining. The trace will climb and continue to climb. It will not level off."
"Pull it out another foot."
"O.K. 'Zip' in"
"Pull it to 13 feet, George."

NEUTRON

December 2, 1942

"'Zip' out"
"This is not it. The trace will go to this point and level off."
"This is going to do it."
"Now it will become self-sustaining. The trace will climb and continue to climb. It will not level off."
"Pull it out another foot."
"O.K. 'Zip' in"
"Pull it to 13 feet, George."

NEUTRON

December 2, 1942
3.25 pm

December 2, 1942 3.25 pm

December 2, 1942 3.25 pm

December 2, 1942

3.25 pm

West Stand Stag\% Field階University of Chicago.

I

I

West Stand Stag\% Field階University of Chicago.

I

I

So, what did it take to get here?

So, what did it take to get here?

Curiosity

So, what did it take to get here?

Curiosity

Giovanni Sagredo
"With these, I have found various marvelous things ..."

So, what did it take to get here?

Curiosity

Stephen Gray
"I then resolved to procure me a large flint-glass tube, to see if I could make any further discovery with it."

Giovanni Sagredo

So, what did it take to get here?

Curiosity

Stephen Gray

"I then resolved to procure me a large flint-glass tube, to see if I could make any further discovery with it."

Count Rumford
"It was by accident that I was led to make the experiment ..."

Giovanni Sagredo
"With these, I have found various marvelous things ..."

So, what did it take to get here?

Precise instruments

So, what did it take to get here?

Precise instruments

So, what did it take to get here?

Precise instruments

Michael Faraday:
Galvanometer \rightarrow Induction

So, what did it take to get here?

Precise instruments

Marie \& Pierre Curie Electrometer
\rightarrow Polonium, Radium

Galvanometer \rightarrow Induction
Michael Faraday:

So, what did it take to get here?

 Hard work
So, what did it take to get here?

Hard work

So, what did it take to get here?

Hard work

"Resinous"

So, what did it take to get here?

Hard work

$1=-2$

So, what did it take to get here?

The helping hand of the past

So, what did it take to get here?

The helping hand of the past

So, what did it take to get here?

The helping hand of the past

So, what did it take to get here?

The helping hand of the past

So, what did it take to get here?

The helping hand of the past

So, what did it take to get here?

The helping hand of the past

So, what did it take to get here?

The helping hand of the past

So, what did it take to get here?

The helping hand of the past

Heinrich Hertz

So, what did it take to get here?

 The helping hand of the past

Heinrich Hertz

So, what did it take to get here?

 The helping hand of the past

Heinrich Hertz

So, what did it take to get here?

 The helping hand of the past

Michael Faraday

Michael Faraday

Heinrich Hertz

So, what did it take to get here?

 The helping hand of the past

Michael Faraday

Michael Faraday

Heinrich Hertz

So, what did it take to get here?

The helping hand of the past

So, what did it take to get here?

The helping hand of the past

So, what did it take to get here?

The helping hand of the past

So, what did it take to get here?

Thank you!

