: Tis THE UNIVERSITY OF
 CHICAGO

how Fundamental science HAS CFANGED THE WORLD

Reaping the fruits of hard work

Reaping the fruits of hard work

A new perspective on electricity "Cathode Rays"

A new perspective on electricity

A new perspective on electricity

"Cathode rays" behave just like electricity!

A new perspective on electricity

"Cathode rays" behave just like electricity!

A new perspective on electricity

"Cathode rays" behave just like electricity!

Electric

Cathode rays

Cathode rays

Electricity flowing
in a wire

Cathode rays

Electricity flowing
in a wire
J. J. Thomson (1897):

Electricity is a stream of electrons

What is the nature of electricity?

What is the nature of electricity? matter

Is matter continuous or discrete?

Is matter continuous or discrete?

A topic of "eternal" philosophical debate!

Is matter continuous or discrete?

A topic of "eternal" philosophical debate!

Democritus (ca. 300 BC):

Is matter continuous or discrete?

A topic of "eternal" philosophical debate!

Democritus (ca. 300 BC):
"By convention there is sweetness, by convention there is bitterness, by convention there is color; in reality only atoms and the void."

Is matter continuous or discrete?

A topic of "eternal" philosophical debate!

Democritus (ca. 300 BC):
"By convention there is sweetness, by convention there is bitterness, by convention there is color; in reality only atoms and the void."
"Bitterness is caused by small, angular, jagged atoms passing across the tongue."

Is matter continuous or discrete?

A topic of "eternal" philosophical debate!

Democritus (ca. 300 BC):
"By convention there is sweetness, by convention there is bitterness, by convention there is color; in reality only atoms and the void."
"Bitterness is caused by small, angular, jagged atoms passing across the tongue."
"Sweetness is caused by larger, smoother, more rounded atoms."

The first real hints: Chemistry

Splitting substances with electricity

Water \rightarrow Hydrogen + Oxygen
Early 1800s

The first real hints: Chemistry

Splitting substances with electricity

Water \rightarrow Hydrogen + Oxygen
Early 1800s

The first real hints: Chemistry

Splitting substances with electricity

Water \rightarrow Hydrogen + Oxygen
Early 1800s

The first real hints: Chemistry

Splitting substances with electricity

Water \rightarrow Hydrogen + Oxygen
Early 1800s

The first real hints: Chemistry

Splitting substances with electricity

Water \rightarrow Hydrogen + Oxygen
Early 1800s

The first real hints: Chemistry

Recombining substances

"When two measures of hydrogen and one of oxygen gas are mixed, and fired by the electric spark, the whole is converted into steam."

$$
\text { Hydrogen + Oxygen } \rightarrow \text { Water }
$$

John Dalton

The first real hints: Chemistry

Recombining substances

"Whe two measures of hydrogen and one of oxygen gas are mixed, and fired by the electric spark, the whole Is converted into steam."

$$
\text { Hydrogen + Oxygen } \rightarrow \text { Water }
$$

John Dalton

The first real hints: Chemistry

Recombining substances

"Whe two measures of hydrogen and one of oxygen gas are mixed, and fired by the electric spark, the whole Is converted into steam."

$$
\text { Hydrogen + Oxygen } \rightarrow \text { Water }
$$

John Dalton

Carbon
100 g

The first real hints: Chemistry

Recombining substances

"Whe two measures of hydrogen and one of oxygen gas are mixed, and fired by the electric spark, the whole Is converted into steam."

$$
\text { Hydrogen + Oxygen } \rightarrow \text { Water }
$$

John Dalton

Carbon $100 g$	$+\quad$Oxygen $133 g$

The first real hints: Chemistry

Recombining substances

"Whe two measures of hydrogen and one of oxygen gas are mixed, and fired by the electric spark, the whole Is converted into steam."

$$
\text { Hydrogen + Oxygen } \rightarrow \text { Water }
$$

Oxygen

Carbon
100 g

The first real hints: Chemistry

Recombining substances

"Whe two measures of hydrogen and one of oxygen gas are mixed, and fired by the electric spark, the whole is converted into steam."

$$
\text { Hydrogen + Oxygen } \rightarrow \text { Water }
$$

The first real hints: Chemistry

Recombining substances

"Whe two measures of hydrogen and one of oxygen gas are mixed, and fired by the electric spark, the whole is converted into steam."

$$
\text { Hydrogen + Oxygen } \rightarrow \text { Water }
$$

	+	Oxygen 133g	Carbon monoxide
Carbon 100 g			
	+	Oxygen 266 g	Carbon dioxide

The first real hints: Chemistry

Recombining substances

"Whe two measures of hydrogen and one of oxygen gas are mixed, and fired by the electric spark, the whole Is converted into steam."

$$
\text { Hydrogen + Oxygen } \rightarrow \text { Water }
$$

	+	Oxygen	Carbon monoxide
$\begin{gathered} \text { Carbon } \\ 100 \mathrm{~g} \end{gathered}$			
	+	Oxygen	Carbon dioxide

The first real hints: Chemistry

Recombining substances

"Whe two measures of hydrogen and one of oxygen gas are mixed, and fired by the electric spark, the whole Is converted into steam."

$$
\text { Hydrogen + Oxygen } \rightarrow \text { Water }
$$

| Oxygen
 Carbon
 100 g | $+\underbrace{2: 1}$ Carbon monoxide |
| :---: | :---: | :---: | :---: |
| | +Oxygen
 $266 g$$\longrightarrow$ Carbon dioxide |

The first real hints: Chemistry

Recombining substances

"Whe two measures of hydrogen and one of oxygen gas are mixed, and fired by the electric spark, the whole is converted into steam."

$$
\text { Hydrogen + Oxygen } \rightarrow \text { Water }
$$

	+	Oxygen	Carbon monoxide
$\begin{gathered} \text { Carbon } \\ 100 \mathrm{~g} \end{gathered}$		2:1	
	+	$\begin{gathered} \text { Oxygen } \\ 266 \mathrm{~g} \end{gathered}$	Carbon dioxide

The first real hints: Chemistry

Recombining substances

"Whe two measures of hydrogen and one of oxygen gas are mixed, and fired by the electric spark, the whole Is converted into steam."

$$
\text { Hydrogen + Oxygen } \rightarrow \text { Water }
$$

John Dalton

Such ratios will always involve whole numbers!

Dalton's atoms (1808)

"In all chemical investigations, all the changes we can produce consist in separating particles that are in a state of cohesion, and joining those that were previously at a distance."

Dalton's atoms (1808)

"In all chemical investigations, all the changes we can produce consist in separating particles that are in a state of cohesion, and joining those that were previously at a distance."

$$
\begin{aligned}
& 1 \text { atom of } A+1 \text { atom of } B=1 \text { atom of } C \\
& 1 \text { atom of } A+2 \text { atoms of } B=1 \text { atom of } D
\end{aligned}
$$

Dalton's atoms (1808)

"In all chemical investigations, all the changes we can produce consist in separating particles that are in a state of cohesion, and joining those that were previously at a distance."

1 atom of $A+1$ atom of $B=1$ atom of C 1 atom of $A+2$ atoms of $B=1$ atom of D
"Water is a binary compound of hydrogen and oxygen, and the relative weights of the two elementary atoms are as $1: 7$. ."

Dalton's atoms (1808)

"In all chemical investigations, all the changes we can produce consist in separating particles that are in a state of cohesion, and joining those that were previously at a distance."

1 atom of $A+1$ atom of $B=1$ atom of C 1 atom of $A+2$ atoms of $B=1$ atom of D
"Water is a binary compound of hydrogen and oxygen, and the relative weights of the two elementary atoms are as $1: 7$. ."

1) Atoms are elementary

Dalton's atoms (1808)

"In all chemical investigations, all the changes we can produce consist in separating particles that are in a state of cohesion, and joining those that were previously at a distance."

1 atom of $A+1$ atom of $B=1$ atom of C
1 atom of $A+2$ atoms of $B=1$ atom of D
"Water is a binary compound of hydrogen and oxygen, and the relative weights of the two elementary atoms are as $1: 7$. "

1) Atoms are elementary
2) As such, they only come in whole numbers

Dalton's atoms (1808)

"In all chemical investigations, all the changes we can produce consist in separating particles that are in a state of cohesion, and joining those that were previously at a distance."

1 atom of $A+1$ atom of $B=1$ atom of C
1 atom of $A+2$ atoms of $B=1$ atom of D
"Water is a binary compound of hydrogen and oxygen, and the relative weights of the two elementary atoms are as $1: 7$. "

1) Atoms are elementary

2) As such, they only come in whole numbers
3) The masses of different atoms relate to each other as whole numbers

Dalton's atoms (1808)

"In all chemical investigations, all the changes we can produce consist in separating particles that are in a state of cohesion, and joining those that were previously at a distance."

$$
\begin{aligned}
& 1 \text { atom of } A+1 \text { atom of } B=1 \text { atom of } C \\
& 1 \text { atom of } A+2 \text { atoms of } B=1 \text { atom of } D
\end{aligned}
$$

"Water is a binary compound of hydrogen and oxygen. and the relative weights of the two elementary atoms are as 1:7."

Wrong! It's 1:16!

1) Atoms are elementary
2) As such, they only come in whole numbers
3) The masses of different atoms relate to each other as whole numbers

Dalton's atoms (1808)

Dalton's atoms (1808)

Table of relative atomic weights:

Fig.	Fig.	
l Hydrog. its rel. weight 1	11 Strontites	46
2 Azote 5	12 Barytes	68
3 Carbone or charcoal... 5	13 Iron ..	38
4 Oxygen 7	14 Zinc	56
5 Phosphorus 9	15 Copper	56
6 Sulphur 13	16 Lead ..	95
7 Magnesia............... 20	17 Silver	100
8 Lime 23	18 Platina	100
9 Soda 28	19 Gold ...	140
10 Potash.................. 42	20 Mercury	167

Dalton's atoms (1808)

Table of relative atomic weights:

On the nature of atoms:

Dalton's atoms (1808)

Table of relative atomic weights:

Fig.	Fig.	
l Hydrog. its rel. weight 1	11 Strontites	46
2 Azote 5	12 Barytes	68
3 Carbone or charcoal... 5	13 Iron ..	38
4 Oxygen 7	14 Zinc	56
5 Phosphorus 9	15 Copper	56
6 Sulphur 13	16 Lead ..	95
7 Magnesia............... 20	17 Silver	100
8 Lime 23	18 Platina	100
9 Soda 28	19 Gold ...	140
10 Potash.................. 42	20 Mercury	167

On the nature of atoms:

"The atoms of such bodies are conceived at present to be simple."

Dalton's atoms (1808)

Table of relative atomic weights:

Fig.	Fig.	
l Hydrog. its rel. weight 1	11 Strontites	46
2 Azote 5	12 Barytes	68
3 Carbone or charcoal... 5	13 Iron ..	38
4 Oxygen 7	14 Zinc	56
5 Phosphorus 9	15 Copper	56
6 Sulphur 13	16 Lead ..	95
7 Magnesia............... 20	17 Silver	100
8 Lime 23	18 Platina	100
9 Soda 28	19 Gold ...	140
10 Potash.................. 42	20 Mercury	167

Some are close, but most are wrong!

On the nature of atoms:
"The atoms of such bodies are conceived at present to be simple."

Yet more regularity

1863: 56 chemical elements (ca. 1 new discovery per year)
Is there any order in this chaos?

Dmitri Mendeleev

Yet more regularity

1863: 56 chemical elements (ca. 1 new discovery per year)

Is there any order in this chaos?

Dmitri Mendeleev

$\begin{gathered} \text { 邑 } \\ \text { 总 } \end{gathered}$	Grupo I.	Gruplo II.	(Iruppo III,	$\begin{gathered} \text { Cruppo IV. } \\ \text { RH: } \\ \text { RO' }^{\prime} \end{gathered}$	$\begin{gathered} \text { Groppo V. } \\ \text { Rt' }^{2} \\ \mathbf{B}^{+} 0^{s} \end{gathered}$	$\begin{gathered} \text { Grappo VL } \\ \text { R: } \\ \text { H0 } 0^{\prime} \end{gathered}$	$\begin{aligned} & \text { Gxumpe VIL. } \\ & \text { RHI } \\ & \text { RTgr } \end{aligned}$	$\begin{aligned} & \text { Gruppo Yilf. } \\ & \overline{\mathrm{RO}^{\prime}} \end{aligned}$
1	$L_{i=1}^{I=1}$	$\mathrm{Bo}=3,4$	$B=11$	$C=12$	$N=14$	$0=16$	P=19	
5 4	$\begin{aligned} & \mathrm{Na}=28 \\ & \mathrm{~K}=39 \end{aligned}$	$\begin{aligned} & M g=24 \\ & C_{A}=40 \end{aligned}$	$\begin{gathered} A 1=27,8 \\ -=44 \end{gathered}$	$\left\{\begin{array}{l} \quad 5 i=28 \\ \mathrm{ri}=18 \end{array}\right.$	$\mathrm{V}_{=1} \overline{\mathrm{P}}=81$	$\begin{array}{r} \mathrm{B}=32 \\ \mathrm{Cr}=62 \end{array}$	$\left\|\begin{array}{r} \mathrm{Cl}=35,5 \\ \mathrm{Mg}=65 \end{array}\right\|$	$\left\lvert\, \begin{aligned} \mathrm{Fo}=6 \mathrm{G}, \mathrm{Co}=60 \\ \mathrm{Nt}=69, \mathrm{Cu}=09 . \end{aligned}\right.$
5	$\begin{gathered} (\mathrm{Cu}=63) \\ \mathrm{Bb}=86 \end{gathered}$	$\begin{gathered} 2 n=65 \\ 3:=87 \end{gathered}$	$\begin{gathered} -=68 \\ \mathrm{PY}=88 \end{gathered}$	$\begin{gathered} -=72 \\ y_{t}=90 \end{gathered}$	$\begin{gathered} A s=75 \\ \mathrm{Nb}=94 \end{gathered}$	$\begin{array}{\|c} \mathrm{S}_{0}=\mathbf{7 8} \\ \mathrm{Mo}=\mathrm{g} 0 \end{array}$	$\begin{aligned} & \mathrm{Hr}=80 \\ & -=100 \end{aligned}$	$\begin{aligned} & 1 \mathrm{ku}=10 \%, R \mathrm{R}=104, \\ & 1 \mathrm{l}=106, \mathrm{~A}_{\mathrm{g}}=108 . \end{aligned}$
7 8 9	$\left\{\begin{array}{c} (A \mathrm{~g}=108) \\ C:=108 \end{array}\right.$	$\begin{gathered} \mathrm{Cd}=112 \\ \mathrm{Bs}=137 \end{gathered}$	$\begin{aligned} & \quad \operatorname{In}=113 \\ & \text { PDi=188 } \end{aligned}$	$\begin{aligned} & \mathrm{Sn}=118 \\ & \mathrm{OC}=140 \end{aligned}$	SL=122	$\mathrm{Tu}=125$	$-\mathrm{J}=127$	
10	-	-	2Er= 178	$P L a=180$	$T \mathrm{a}=162$	$\mathrm{W}=184$	-	$\begin{gathered} \text { Os }=195, \operatorname{Ir}=197, \\ \mathrm{Pt}=198, \mathrm{Au}=199 . \end{gathered}$
11 12	($\mathrm{Au}=199$)	$]^{\mathrm{Hg}=200}$	$\underbrace{T}=204$	$\begin{aligned} & \mathrm{rb}=207 \\ & \mathrm{TH}=96! \end{aligned}$	BI=208	$\mathrm{U}=240$		

Mendeleev's table (1871)

Yet more regularity

1863: 56 chemical elements (ca. 1 new discovery per year)

Is there any order in this chaos?

Eight groups of chemically similar elements

Dmitri Mendeleev

$\begin{gathered} \text { g } \\ \text { 突 } \end{gathered}$	Grapro ${ }_{\text {I }}^{\text {a }}$	Gruppo If.	(1rupro III,	$\begin{aligned} & \text { Gruppo IV. } \\ & \text { RB4 } \\ & \text { Bor } \end{aligned}$	$\begin{gathered} \text { Groppe } \mathrm{V} . \\ \text { RH? } \\ \text { R'o }^{2} \end{gathered}$			$\begin{gathered} \text { Gruppo vilf. } \\ \mathbf{R O}^{4} \end{gathered}$
1	$\mathrm{Ii}=7_{\mathrm{I}=1}$	$00=9,1$	$B=11$	$\mathrm{C}=12$	$N=14$	$0=16$	$\mathrm{P}=19$	
8	$\begin{aligned} & \mathrm{Na} a=28 \\ & \mathrm{~K}=39 \end{aligned}$	$\begin{aligned} & \mathrm{Mg}=24 \\ & \mathrm{C}_{\star}=40 \end{aligned}$	$\begin{aligned} & A 1=27 \\ & =44 \end{aligned}$	$\begin{aligned} & 5 t=28 \\ & i=48 \end{aligned}$	$\mathrm{V}_{=51} \mathrm{P}=31$	$\begin{aligned} & \mathrm{S}=32 \\ & \mathrm{Cr}=6 \mathrm{~g} \end{aligned}$	$\begin{array}{r} \mathrm{Cl}=35,5 \\ \mathrm{Mg}=65 \end{array}$	$F=60_{\mathrm{t}} \mathrm{Co}=60_{0}$
5	$\begin{gathered} (\mathrm{Cu}=63) \\ \mathrm{Bb}=8 \mathrm{G} \end{gathered}$	$\begin{array}{r} \mathrm{Zn}=65 \\ S_{\mathrm{r}}=87 \end{array}$	$\left\lvert\, \begin{gathered} -=68 \\ p \mathrm{Y}=88 \end{gathered}\right.$	$\begin{gathered} -=72 \\ z \pi=90 \end{gathered}$	$\begin{gathered} A s=75 \\ N b=94 \end{gathered}$	$\begin{gathered} \mathrm{S} 0=78 \\ \mathrm{Mo}=96 \end{gathered}$	$\begin{gathered} \mathrm{Hr}=80 \\ -=100 \end{gathered}$	$\begin{aligned} & \mathrm{Hu}=104, \mathrm{~h}=104, \\ & \mathrm{~d}=10 \mathrm{~A}, A_{\mathrm{B}}=108 . \end{aligned}$
7 8 9	$\begin{gathered} (A g=108) \\ C a=108 \end{gathered}$	$\begin{gathered} \mathrm{Cd}=112 \\ \mathrm{Bs}=137 \end{gathered}$	$\begin{gathered} \mathrm{In}=118 \\ \mathrm{PDi}=18 \mathrm{~B} \end{gathered}$	$\begin{array}{r} \mathrm{Sn}=118 \\ \mathrm{OCe}=140 \end{array}$		$-^{\mathrm{Tu}=125}$	${ }^{\mathrm{J}=127}$	- - -
10	-	-	$2 \mathrm{Er}=178$	$p L a=180$	$1 \mathrm{a}=162$	$\mathrm{W}=184$	-	$\begin{aligned} & \mathrm{Os}=195, \mathrm{Ir}=197 \\ & \mathrm{Pt}=198, \mathrm{Av}=199 . \end{aligned}$
11 12	- $\mathrm{Au}=190\rangle$	$\underbrace{\operatorname{Ig}=200}$	$-{ }^{\mathrm{Tl}=204}$	$\begin{gathered} \mathrm{rb}=207 \\ \mathrm{Th}=93! \end{gathered}$	$-^{\mathrm{Bi} ص 208}$	$\mathrm{U}_{\mathrm{I}=240^{-}}$		- -

Mendeleev's table (1871)

Yet more regularity

1863: 56 chemical elements (ca. 1 new discovery per year)

Is there any order in this chaos?

Apparent periodicity! Missing elements!

Eight groups of chemically similar elements

Dmitri Mendeleev

$\begin{gathered} \text { g } \\ \text { 突 } \end{gathered}$	Grapro ${ }_{\text {I }}^{\text {a }}$	Gruppo If.	(1rupro III,	$\begin{aligned} & \text { Gruppo IV. } \\ & \text { RB4 } \\ & \text { Bor } \end{aligned}$	$\begin{gathered} \text { Groppe } \mathrm{V} . \\ \text { RH? } \\ \text { R'o }^{2} \end{gathered}$			$\begin{gathered} \text { Gruppo vilf. } \\ \mathbf{R O}^{4} \end{gathered}$
1	$\mathrm{Ii}=7_{\mathrm{I}=1}$	$00=9,1$	$B=11$	$\mathrm{C}=12$	$N=14$	$0=16$	$\mathrm{P}=19$	
8	$\begin{aligned} & \mathrm{Na} a=28 \\ & \mathrm{~K}=39 \end{aligned}$	$\begin{aligned} & \mathrm{Mg}=24 \\ & \mathrm{C}_{\star}=40 \end{aligned}$	$\begin{aligned} & A 1=27 \\ & =44 \end{aligned}$	$\begin{aligned} & 5 t=28 \\ & i=48 \end{aligned}$	$\mathrm{V}_{=51} \mathrm{P}=31$	$\begin{aligned} & \mathrm{S}=32 \\ & \mathrm{Cr}=6 \mathrm{~g} \end{aligned}$	$\begin{array}{r} \mathrm{Cl}=35,5 \\ \mathrm{Mg}=65 \end{array}$	$F=60_{\mathrm{t}} \mathrm{Co}=60_{0}$
5	$\begin{gathered} (\mathrm{Cu}=63) \\ \mathrm{Bb}=8 \mathrm{G} \end{gathered}$	$\begin{array}{r} \mathrm{Zn}=65 \\ S_{\mathrm{r}}=87 \end{array}$	$\left\lvert\, \begin{gathered} -=68 \\ p \mathrm{Y}=88 \end{gathered}\right.$	$\begin{gathered} -=72 \\ z \pi=90 \end{gathered}$	$\begin{gathered} A s=75 \\ N b=94 \end{gathered}$	$\begin{gathered} \mathrm{S} 0=78 \\ \mathrm{Mo}=96 \end{gathered}$	$\begin{gathered} \mathrm{Hr}=80 \\ -=100 \end{gathered}$	$\begin{aligned} & \mathrm{Hu}=104, \mathrm{~h}=104, \\ & \mathrm{~d}=10 \mathrm{~A}, A_{\mathrm{B}}=108 . \end{aligned}$
7 8 9	$\begin{gathered} (A g=108) \\ C a=108 \end{gathered}$	$\begin{gathered} \mathrm{Cd}=112 \\ \mathrm{Bs}=137 \end{gathered}$	$\begin{gathered} \mathrm{In}=118 \\ \mathrm{PDi}=18 \mathrm{~B} \end{gathered}$	$\begin{array}{r} \mathrm{Sn}=118 \\ \mathrm{OCe}=140 \end{array}$		$-^{\mathrm{Tu}=125}$	${ }^{\mathrm{J}=127}$	- - -
10	-	-	$2 \mathrm{Er}=178$	$p L a=180$	$1 \mathrm{a}=162$	$\mathrm{W}=184$	-	$\begin{aligned} & \mathrm{Os}=195, \mathrm{Ir}=197 \\ & \mathrm{Pt}=198, \mathrm{Av}=199 . \end{aligned}$
11 12	- $\mathrm{Au}=190\rangle$	$\underbrace{\operatorname{Ig}=200}$	$-{ }^{\mathrm{Tl}=204}$	$\begin{gathered} \mathrm{rb}=207 \\ \mathrm{Th}=93! \end{gathered}$	$-^{\mathrm{Bi} ص 208}$	$\mathrm{U}_{\mathrm{I}=240^{-}}$		- -

Mendeleev's table (1871)

Yet more regularity

1863: 56 chemical elements (ca. 1 new discovery per year)

Is there any order in this chaos?

Apparent periodicity! Missing elements!

Eight groups of chemically similar elements

Dmitri Mendeleev

$\begin{aligned} & \text { 总 } \\ & \text { 突 } \end{aligned}$	Gruppo I. $-{ }^{-10}$	Cruppo IH	(Irupro III,	$\begin{gathered} \text { Gruppo iv. } \\ \text { R:4 } \\ \text { RO' } \end{gathered}$	Groppe V . RED $\mathrm{B}^{2}{ }^{3}$	$\begin{gathered} \text { Grappo VL } \\ \mathrm{ag}^{\prime} \\ \mathrm{no} \\ \hline 0^{\prime} \end{gathered}$	\mid	$\frac{\text { Gruppo vilf. }}{\mathbf{R O}^{\prime}}$
1	$\mathrm{Li}_{=7}=1$	$0,=9,1$	$B=11$	$\mathrm{C}=12$	$N=14$	$0=16$	$\mathrm{P}=19$	
8	$\begin{aligned} & \mathrm{Na}=23 \\ & \mathrm{~K}=39 \end{aligned}$	$\begin{aligned} & \quad M g=24 \\ & C_{A}=40 \end{aligned}$	$A 1=27, \mathrm{~b}$	$\begin{aligned} & \mathrm{Ei}=28 \\ & \mathrm{Ti}=18 \end{aligned}$	$\mathrm{v}_{\mathrm{L}}^{\mathrm{y}} \mathrm{p}=31$	$\begin{aligned} & \mathrm{s}=32 \\ & \mathrm{Cr}=62 \end{aligned}$	$\begin{array}{r} \mathrm{Cl}=35,5 \\ \mathrm{Mg}=65 \end{array}$	$\begin{array}{r} \mathrm{Fo}_{0}=60, \mathrm{Co}=60 \\ \mathrm{Ni}=60, \mathrm{Cu}=69 . \end{array}$
5	$\begin{gathered} (\mathrm{Cu}=63) \\ \mathrm{Bb}=8 \mathrm{ab} \end{gathered}$	$\begin{aligned} & \mathrm{Zn}=65 \\ & =87 \end{aligned}$	$p \mathrm{Y}_{\mathrm{t}}=88$	$z_{r}=90$	$\begin{gathered} A s=75 \\ \mathrm{Nb}=94 \end{gathered}$	$\begin{gathered} \mathrm{S}_{0}=78 \\ \mathrm{Mo}=96 \end{gathered}$	$\begin{gathered} \mathrm{Hr}=80 \\ -=100 \end{gathered}$	$\begin{aligned} & \mathrm{Bu}=104, \mathrm{Rh}=104, \\ & \mathrm{ld}=106, \mathrm{~A}=108 . \end{aligned}$
2	$\left\{\begin{array}{c} (A z=108 \\ C_{8}=108 \end{array}\right.$	$\begin{gathered} \mathrm{Cd}=112 \\ \mathrm{Bs}=187 \end{gathered}$	$\begin{aligned} & \quad I_{n}=118 \\ & \mathrm{PDi}=188 \end{aligned}$	$\begin{gathered} \mathrm{Sn}=118 \\ \mathrm{PCo}=140 \end{gathered}$	$\underbrace{\mathrm{SL}=122}$	$-^{\mathrm{Tu}=125}$	$\mathrm{J}=127$	
10			$2 \mathrm{Lr}=178$	$p L a=180$	$T a=162$	$W=184$	-	$\left\{\begin{array}{c} 08=195, \mathrm{Ir}=197 \\ \mathrm{Pt}=198, \mathrm{Au}=199 . \end{array}\right.$
11 12	¢ $\mathrm{A}=190\rangle$ -	$\mathrm{HIg}^{\mathrm{Hg}} 200$	$-{ }^{\mathrm{Tl}=204}$	$\left\{\begin{array}{c} \mathrm{rb}=207 \\ \mathrm{Th}=93! \end{array}\right.$	$-\quad$	$\mathrm{V}_{\mathrm{V}=240}$	-	- - -

Mendeleev's table (1871)

Yet more regularity

1863: 56 chemical elements (ca. 1 new discovery per year)

Is there any order in this chaos?

Apparent periodicity! Missing elements!

Eight groups of chemically similar elements

Dmitri Mendeleev

$\begin{gathered} \text { g } \\ \text { 突 } \end{gathered}$	Grapro ${ }_{\text {I }}^{\text {a }}$	Gruppo If.	(1rupro III,	$\begin{aligned} & \text { Gruppo IV. } \\ & \text { RB4 } \\ & \text { Bor } \end{aligned}$	$\begin{gathered} \text { Groppe } \mathrm{V} . \\ \text { RH? } \\ \text { R'o }^{2} \end{gathered}$			$\begin{gathered} \text { Gruppo vilf. } \\ \mathbf{R O}^{4} \end{gathered}$
1	$\mathrm{Ii}=7_{\mathrm{I}=1}$	$00=9,1$	$B=11$	$\mathrm{C}=12$	$N=14$	$0=16$	$\mathrm{P}=19$	
8	$\begin{aligned} & \mathrm{Na} a=28 \\ & \mathrm{~K}=39 \end{aligned}$	$\begin{aligned} & \mathrm{Mg}=24 \\ & \mathrm{C}_{\star}=40 \end{aligned}$	$\begin{aligned} & A 1=27 \\ & =44 \end{aligned}$	$\begin{aligned} & 5 t=28 \\ & i=48 \end{aligned}$	$\mathrm{V}_{=51} \mathrm{P}=31$	$\begin{aligned} & \mathrm{S}=32 \\ & \mathrm{Cr}=6 \mathrm{~g} \end{aligned}$	$\begin{array}{r} \mathrm{Cl}=35,5 \\ \mathrm{Mg}=65 \end{array}$	$F=60_{\mathrm{t}} \mathrm{Co}=60_{0}$
5	$\begin{gathered} (\mathrm{Cu}=63) \\ \mathrm{Bb}=8 \mathrm{G} \end{gathered}$	$\begin{array}{r} \mathrm{Zn}=65 \\ S_{\mathrm{r}}=87 \end{array}$	$\left\lvert\, \begin{gathered} -=68 \\ p \mathrm{Y}=88 \end{gathered}\right.$	$\begin{gathered} -=72 \\ z \pi=90 \end{gathered}$	$\begin{gathered} A s=75 \\ N b=94 \end{gathered}$	$\begin{gathered} \mathrm{S} 0=78 \\ \mathrm{Mo}=96 \end{gathered}$	$\begin{gathered} \mathrm{Hr}=80 \\ -=100 \end{gathered}$	$\begin{aligned} & \mathrm{Hu}=104, \mathrm{~h}=104, \\ & \mathrm{~d}=10 \mathrm{~A}, A_{\mathrm{B}}=108 . \end{aligned}$
7 8 9	$\begin{gathered} (A g=108) \\ C a=108 \end{gathered}$	$\begin{gathered} \mathrm{Cd}=112 \\ \mathrm{Bs}=137 \end{gathered}$	$\begin{gathered} \mathrm{In}=118 \\ \mathrm{PDi}=18 \mathrm{~B} \end{gathered}$	$\begin{array}{r} \mathrm{Sn}=118 \\ \mathrm{OCe}=140 \end{array}$		$-^{\mathrm{Tu}=125}$	${ }^{\mathrm{J}=127}$	- - -
10	-	-	$2 \mathrm{Er}=178$	$p L a=180$	$1 \mathrm{a}=162$	$\mathrm{W}=184$	-	$\begin{aligned} & \mathrm{Os}=195, \mathrm{Ir}=197 \\ & \mathrm{Pt}=198, \mathrm{Av}=199 . \end{aligned}$
11 12	- $\mathrm{Au}=190\rangle$	$\underbrace{\operatorname{Ig}=200}$	$-{ }^{\mathrm{Tl}=204}$	$\begin{gathered} \mathrm{rb}=207 \\ \mathrm{Th}=93! \end{gathered}$	$-^{\mathrm{Bi} ص 208}$	$\mathrm{U}_{\mathrm{I}=240^{-}}$		- -

Mendeleev's table (1871)

Yet more regularity

1863: 56 chemical elements (ca. 1 new discovery per year)

Is there any order in this chaos?

Apparent periodicity! Missing elements!

Eight groups of chemically similar elements

Dmitri Mendeleev

$\begin{gathered} \text { g } \\ \text { 突 } \end{gathered}$	Grapro ${ }_{\text {I }}^{\text {a }}$	Gruppo If.	(1rupro III,	$\begin{aligned} & \text { Gruppo IV. } \\ & \text { RB4 } \\ & \text { Bor } \end{aligned}$	$\begin{gathered} \text { Groppe } \mathrm{V} . \\ \text { RH? } \\ \text { R'o }^{2} \end{gathered}$	$\begin{gathered} \text { Grappo VL } \\ \mathrm{alas}^{\prime} \\ \mathrm{nol} \end{gathered}$		$\begin{gathered} \text { Gruppo vilf. } \\ \mathbf{R O}^{4} \end{gathered}$
1	$\sum_{\mathrm{Li}=7}^{\mathrm{II}=1}$	$g_{0}=8,1$	$B=11$	$\mathrm{C}=12$	$N=14$	$=16$	$\mathrm{V}=19$	
8	$\begin{aligned} & \mathrm{Na} a=28 \\ & \mathrm{~K}=39 \end{aligned}$	$\begin{aligned} & \mathrm{Mg}=24 \\ & \mathrm{C}_{\star}=40 \end{aligned}$	$\begin{aligned} & \mathrm{Al}=27,8 \mathrm{~b} \\ & =44 \end{aligned}$	$\begin{aligned} & 5 i=28 \\ & \mathrm{Ci}=48 \end{aligned}$	$\mathrm{V}_{=51}^{\mathrm{p}=81}$	$\begin{aligned} & 8=32 \\ & C r=62 \end{aligned}$	$\begin{array}{r} \mathrm{Cl}=35,5 \\ \mathrm{Mg}=65 \end{array}$	$F=60_{\mathrm{t}} \mathrm{Co}=60_{0}$
5	$\left[\begin{array}{c} (\mathrm{Cu}=63) \\ \mathrm{Bb}=80 \end{array}\right.$	$\begin{aligned} & \mathrm{Zn}=65 \\ & \mathrm{Sr}_{\mathrm{r}}=87 \end{aligned}$	$\left\lvert\, \begin{gathered} -=68 \\ p \mathrm{Y}=88 \end{gathered}\right.$	$y t=90$	$\begin{gathered} A s=75 \\ N b=94 \end{gathered}$	$\begin{gathered} \mathrm{S} 0=78 \\ \mathrm{Mo}=96 \end{gathered}$	$\begin{gathered} \mathrm{Hr}=80 \\ -=100 \end{gathered}$	$\begin{aligned} & \mathrm{Ru}=104, \mathrm{Rh}=104, \\ & 1 \mathrm{l}=10 \mathrm{~A}=108, \end{aligned}$
7 8 9	$\begin{gathered} (A g=108) \\ C a=108 \end{gathered}$	$\begin{gathered} \mathrm{Cd}=112 \\ \mathrm{Bs}=137 \end{gathered}$	$\begin{gathered} \mathrm{In}=118 \\ \mathrm{PDi}=18 \mathrm{~B} \end{gathered}$	$\begin{aligned} & \mathrm{Sn}=118 \\ & \mathrm{OCo}=140 \end{aligned}$	$-\mathrm{SL}=122$	$-\mathrm{Tu}=125$	$\underbrace{J=127}$	- - -
10	-	-	$2 \mathrm{Er}=178$	$p \mathrm{La}=180$	$T \mathrm{a}=162$	$\mathrm{W}=184$	-	$\begin{aligned} & \mathrm{Os}=195, \mathrm{Ir}=197 \\ & \mathrm{Pt}=198, \mathrm{Av}=199 . \end{aligned}$
11 12	< $\mathrm{Av}=190\rangle$	$\underbrace{\operatorname{Ig}=200}$	$-{ }^{\mathrm{Tl}=204}$	$\begin{array}{r} \mathrm{rb}=207 \\ \mathrm{Th}=93! \end{array}$	$-^{\mathrm{Bi} ص 208}$	$\mathrm{U}_{\mathrm{I}=240^{-}}$		- -

Mendeleev's table (1871)

Yet more regularity

1863: 56 chemical elements (ca. 1 new discovery per year)

Is there any order in this chaos?

Apparent periodicity! Missing elements!

Eight groups of chemically similar elements

Dmitri Mendeleev

$\begin{gathered} \text { g } \\ \text { 突 } \end{gathered}$	Grapro ${ }_{\text {I }}^{\text {a }}$	Gruppo If.	(1rupro III,	$\begin{aligned} & \text { Gruppo IV. } \\ & \text { RB4 } \\ & \text { Bor } \end{aligned}$	$\begin{gathered} \text { Groppe } \mathrm{V} . \\ \text { RH? } \\ \text { R'o }^{2} \end{gathered}$			$\begin{gathered} \text { Gruppo vilf. } \\ \mathbf{R O}^{4} \end{gathered}$
1	$\mathrm{Ii}=7_{\mathrm{I}=1}$	$00=9,1$	$B=11$	$\mathrm{C}=12$	$N=14$	$0=16$	$\mathrm{P}=19$	
8	$\begin{aligned} & \mathrm{Na} a=28 \\ & \mathrm{~K}=39 \end{aligned}$	$\begin{aligned} & \mathrm{Mg}=24 \\ & \mathrm{C}_{\star}=40 \end{aligned}$	$\begin{aligned} & A 1=27 \\ & =44 \end{aligned}$	$\begin{aligned} & 5 t=28 \\ & i=48 \end{aligned}$	$\mathrm{V}_{=51} \mathrm{P}=31$	$\begin{aligned} & \mathrm{S}=32 \\ & \mathrm{Cr}=6 \mathrm{~g} \end{aligned}$	$\begin{array}{r} \mathrm{Cl}=35,5 \\ \mathrm{Mg}=65 \end{array}$	$F=60_{\mathrm{t}} \mathrm{Co}=60_{0}$
5	$\begin{gathered} (\mathrm{Cu}=63) \\ \mathrm{Bb}=8 \mathrm{G} \end{gathered}$	$\begin{array}{r} \mathrm{Zn}=65 \\ S_{\mathrm{r}}=87 \end{array}$	$\left\lvert\, \begin{gathered} -=68 \\ p \mathrm{Y}=88 \end{gathered}\right.$	$\begin{gathered} -=72 \\ z \pi=90 \end{gathered}$	$\begin{gathered} A s=75 \\ N b=94 \end{gathered}$	$\begin{gathered} \mathrm{S} 0=78 \\ \mathrm{Mo}=96 \end{gathered}$	$\begin{gathered} \mathrm{Hr}=80 \\ -=100 \end{gathered}$	$\begin{aligned} & \mathrm{Hu}=104, \mathrm{~h}=104, \\ & \mathrm{~d}=10 \mathrm{~A}, A_{\mathrm{B}}=108 . \end{aligned}$
7 8 9	$\begin{gathered} (A g=108) \\ C a=108 \end{gathered}$	$\begin{gathered} \mathrm{Cd}=112 \\ \mathrm{Bs}=137 \end{gathered}$	$\begin{gathered} \mathrm{In}=118 \\ \mathrm{PDi}=18 \mathrm{~B} \end{gathered}$	$\begin{array}{r} \mathrm{Sn}=118 \\ \mathrm{OCe}=140 \end{array}$		$-^{\mathrm{Tu}=125}$	${ }^{\mathrm{J}=127}$	- - -
10	-	-	$2 \mathrm{Er}=178$	$p L a=180$	$1 \mathrm{a}=162$	$\mathrm{W}=184$	-	$\begin{aligned} & \mathrm{Os}=195, \mathrm{Ir}=197 \\ & \mathrm{Pt}=198, \mathrm{Av}=199 . \end{aligned}$
11 12	- $\mathrm{Au}=190\rangle$	$\underbrace{\operatorname{Ig}=200}$	$-{ }^{\mathrm{Tl}=204}$	$\begin{gathered} \mathrm{rb}=207 \\ \mathrm{Th}=93! \end{gathered}$	$-^{\mathrm{Bi} ص 208}$	$\mathrm{U}_{\mathrm{I}=240^{-}}$		- -

Mendeleev's table (1871)

Yet more regularity

1863: 56 chemical elements (ca. 1 new discovery per year)

Is there any order in this chaos?

Apparent periodicity! Missing elements!

Eight groups of chemically similar elements

Dmitri Mendeleev

$\begin{gathered} \text { g } \\ \text { 突 } \end{gathered}$	Grapro ${ }_{\text {I }}^{\text {a }}$		(1rupro III,	$\begin{aligned} & \text { Gruppo IV. } \\ & \text { RB4 } \\ & \text { Bor } \end{aligned}$	Groppo RH^{2} $\mathrm{~B}^{2} 0^{3}$			$\begin{gathered} \text { Gruppo vilf. } \\ \mathbf{R O}^{4} \end{gathered}$
1	$\sum_{\mathrm{Li}=7}^{\mathrm{II}=1}$	$x_{0}=3,1$	$=11$	$\mathrm{C}=12$	$N=14$	$0=16$	$\mathrm{F}=19$	
8	$\begin{aligned} & \mathrm{Na} a=28 \\ & \mathrm{~K}=39 \end{aligned}$	$\begin{aligned} & 3 g=24 \\ & C_{A}=40 \end{aligned}$	$\overline{A 1}=27, b$	$\begin{aligned} & 5 i=28 \\ & \mathrm{Ci}=48 \end{aligned}$	$\mathrm{V}_{=51} \mathrm{P}=31$	$\begin{aligned} & \mathrm{S}=32 \\ & \mathrm{Cr}=6 \mathrm{~g} \end{aligned}$	$\begin{array}{r} \mathrm{Cl}=35,5 \\ \mathrm{Mg}=65 \end{array}$	$F=60_{\mathrm{t}} \mathrm{Co}=60_{0}$
5	$\left[\begin{array}{c} (\mathrm{Cu}=63) \\ \mathrm{Bb}=80 \end{array}\right.$	$\begin{aligned} & Z n=65 \\ & S_{t}=87 \end{aligned}$	$\left\lvert\, \begin{gathered} -=68 \\ \mathrm{PY}=88 \end{gathered}\right.$	$\frac{-=72}{} y r=90$	$\begin{aligned} & A s=75 \\ & N b=94 \end{aligned}$	$\begin{gathered} \mathrm{S} 0=78 \\ \mathrm{Mo}=96 \end{gathered}$	$\begin{gathered} \mathrm{Hr}=80 \\ -=100 \end{gathered}$	$\begin{aligned} & \mathrm{Ru}=104, \mathrm{Rh}=104, \\ & 1 \mathrm{l}=10 \mathrm{~A}=108, \end{aligned}$
7	$\begin{gathered} \quad\left(A_{g}=108\right) \\ C_{4}=108 \end{gathered}$	$\left.\begin{gathered} C d_{=112} \\ B_{s}=187 \end{gathered} \right\rvert\,$	$\begin{aligned} & \quad \operatorname{In}=113 \\ & \mathrm{ODi}=18 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \mathrm{Sn}=118 \\ & \mathrm{OCo}=140 \end{aligned}$	$\mathrm{SL}=122$	$-^{\mathrm{To}=125}$	$\mathrm{J}=127$	- - -
10	$(-)$	$-$	$2 \mathrm{Er}=178$	$P L a=180$	$T a=162$	$W=184$	- -	$\begin{gathered} \mathrm{Os}=195, \operatorname{Ir}=197, \\ \mathrm{Pt}=198, \mathrm{At}=199 . \end{gathered}$
11 12	$\left.{ }_{-} \mathrm{Au}=109\right\rangle$	$\mathrm{HIg}=200$	$\mathrm{Tl}=20.4$	$\begin{array}{r} \mathrm{rb}=207 \\ \mathrm{Th}=93! \end{array}$	$-^{\mathrm{Bi}=208}$	$\mathrm{U}_{\mathrm{I}=240^{-}}$		- -

Mendeleev's table (1871)

Yet more regularity

1863: 56 chemical elements (ca. 1 new discovery per year)

Is there any order in this chaos?

Apparent periodicity! Missing elements!

Eight groups of chemically similar elements

Dmitri Mendeleev

$\begin{gathered} \text { g } \\ \text { 突 } \end{gathered}$	Grapro ${ }_{\text {I }}^{\text {a }}$	Gruppo If.	(1rupro III,	$\begin{aligned} & \text { Gruppo IV. } \\ & \text { RB4 } \\ & \text { Bor } \end{aligned}$	$\begin{gathered} \text { Groppe } \mathrm{V} . \\ \text { RH? } \\ \text { R'o }^{2} \end{gathered}$			$\begin{gathered} \text { Gruppo vilf. } \\ \mathbf{R O}^{4} \end{gathered}$
1	$\mathrm{Ii}=7_{\mathrm{I}=1}$	$00=9,1$	$B=11$	$\mathrm{C}=12$	$N=14$	$0=16$	$\mathrm{P}=19$	
8	$\begin{aligned} & \mathrm{Na} a=28 \\ & \mathrm{~K}=39 \end{aligned}$	$\begin{aligned} & \mathrm{Mg}=24 \\ & \mathrm{C}_{\star}=40 \end{aligned}$	$\begin{aligned} & A 1=27 \\ & =44 \end{aligned}$	$\begin{aligned} & 5 t=28 \\ & i=48 \end{aligned}$	$\mathrm{V}_{=51} \mathrm{P}=31$	$\begin{aligned} & \mathrm{S}=32 \\ & \mathrm{Cr}=6 \mathrm{~g} \end{aligned}$	$\begin{array}{r} \mathrm{Cl}=35,5 \\ \mathrm{Mg}=65 \end{array}$	$F=60_{\mathrm{t}} \mathrm{Co}=60_{0}$
5	$\begin{gathered} (\mathrm{Cu}=63) \\ \mathrm{Bb}=8 \mathrm{G} \end{gathered}$	$\begin{array}{r} \mathrm{Zn}=65 \\ S_{\mathrm{r}}=87 \end{array}$	$\left\lvert\, \begin{gathered} -=68 \\ p \mathrm{Y}=88 \end{gathered}\right.$	$\begin{gathered} -=72 \\ z \pi=90 \end{gathered}$	$\begin{gathered} A s=75 \\ N b=94 \end{gathered}$	$\begin{gathered} \mathrm{S} 0=78 \\ \mathrm{Mo}=96 \end{gathered}$	$\begin{gathered} \mathrm{Hr}=80 \\ -=100 \end{gathered}$	$\begin{aligned} & \mathrm{Hu}=104, \mathrm{~h}=104, \\ & \mathrm{~d}=10 \mathrm{~A}, A_{\mathrm{B}}=108 . \end{aligned}$
7 8 9	$\begin{gathered} (A g=108) \\ C a=108 \end{gathered}$	$\begin{gathered} \mathrm{Cd}=112 \\ \mathrm{Bs}=137 \end{gathered}$	$\begin{gathered} \mathrm{In}=118 \\ \mathrm{PDi}=18 \mathrm{~B} \end{gathered}$	$\begin{array}{r} \mathrm{Sn}=118 \\ \mathrm{OCe}=140 \end{array}$		$-^{\mathrm{Tu}=125}$	${ }^{\mathrm{J}=127}$	- - -
10	-	-	$2 \mathrm{Er}=178$	$p L a=180$	$1 \mathrm{a}=162$	$\mathrm{W}=184$	-	$\begin{aligned} & \mathrm{Os}=195, \mathrm{Ir}=197 \\ & \mathrm{Pt}=198, \mathrm{Av}=199 . \end{aligned}$
11 12	- $\mathrm{Au}=190\rangle$	$\underbrace{\operatorname{Ig}=200}$	$-{ }^{\mathrm{Tl}=204}$	$\begin{gathered} \mathrm{rb}=207 \\ \mathrm{Th}=93! \end{gathered}$	$-^{\mathrm{Bi} ص 208}$	$\mathrm{U}_{\mathrm{I}=240^{-}}$		- -

Mendeleev's table (1871)

Yet more regularity

1863: 56 chemical elements (ca. 1 new discovery per year)

Is there any order in this chaos?

Apparent periodicity! Missing elements!

Eight groups of chemically similar elements

Dmitri Mendeleev

$\begin{gathered} \text { g } \\ \text { 突 } \end{gathered}$	Grapro ${ }_{\text {I }}^{\text {a }}$	Gruppo If.	(1rupro III,	$\begin{aligned} & \text { Gruppo IV. } \\ & \text { RB4 } \\ & \text { Bor } \end{aligned}$	$\begin{gathered} \text { Groppe } \mathrm{V} . \\ \text { RH? } \\ \text { R'o }^{2} \end{gathered}$	$\begin{gathered} \text { Grappo VL } \\ \mathrm{alas}^{\prime} \\ \mathrm{nol} \end{gathered}$		$\begin{gathered} \text { Gruppo vilf. } \\ \mathbf{R O}^{4} \end{gathered}$
1	$\mathrm{Ii}=7_{\mathrm{I}=1}$	$00=9,1$	$B=11$	$C=12$	$N=14$	$0=16$	$\mathrm{P}=19$	
8	$\begin{aligned} & \mathrm{Na} a=28 \\ & \mathrm{~K}=39 \end{aligned}$	$\begin{aligned} & \mathrm{Mg}=24 \\ & \mathrm{C}_{\star}=40 \end{aligned}$	$\begin{aligned} & A 1=27,8) \\ & =14 \end{aligned}$	$\begin{aligned} & \mathrm{Bi}=28 \\ & \mathrm{Ti}=48 \end{aligned}$	$\mathrm{V}_{=51}^{\mathrm{p}=S_{11}}$	$\begin{array}{r} \mathrm{S}=32 \\ \mathrm{Cr}=6 \mathrm{~g} \end{array}$	$\begin{array}{r} \mathrm{Cl}=35,5 \\ \mathrm{Mg}=65 \end{array}$	$F=60_{\mathrm{t}} \mathrm{Co}=60_{0}$
5	$\begin{gathered} (\mathrm{Cu}=63) \\ \mathrm{Bb}=8 \mathrm{G} \end{gathered}$	$\begin{array}{r} \mathrm{Zn}=65 \\ S_{\mathrm{r}}=87 \end{array}$	$p \mathrm{Yq}=88$	$\begin{gathered} -=72 \\ y \mathrm{z}=90 \end{gathered}$	$\begin{gathered} A s=75 \\ N b=94 \end{gathered}$	$\begin{array}{r} \mathrm{S}_{0}=\mathbf{2 8} \\ \mathrm{Mo}=90 \end{array}$	$\begin{array}{r} \mathrm{Hr}=80 \\ -=100 \end{array}$	$\begin{aligned} & \mathrm{Bu}=104, \mathrm{Rh}=104, \\ & \mathrm{ld}=106, \mathrm{~A}_{8}=108 . \end{aligned}$
7 8 9	$\begin{gathered} (A g=108) \\ C a=108 \end{gathered}$	$\begin{gathered} \mathrm{Cd}=112 \\ \mathrm{Bs}=137 \end{gathered}$	$\begin{gathered} \mathrm{In}=118 \\ \mathrm{PDi}=18 \mathrm{~B} \end{gathered}$	$\begin{array}{r} \mathrm{Sn}=118 \\ \mathrm{OCo}=140 \end{array}$	$\underbrace{\mathrm{SL}=122}$	$-^{\mathrm{Tu}=125}$	${ }^{\mathrm{J}=127}$	- - -
10	-	-	$2 \mathrm{Er}=178$	$p L a=180$	$\mathrm{Ta}=162$	$\mathrm{W}=184$	-	$\begin{aligned} & \mathrm{Os}=195, \mathrm{Ir}=197 \\ & \mathrm{Pt}=198, \mathrm{Av}=199 . \end{aligned}$
11 12	- $\mathrm{Au}=190\rangle$	$\underbrace{\operatorname{Ig}=200}$	$\|-\quad\|$	$\begin{gathered} \mathrm{rb}=207 \\ \mathrm{Th}=93! \end{gathered}$	$)^{\mathrm{Bi}=208}$	$U=240^{-}$		- -

Mendeleev's table (1871)

Yet more regularity

1863: 56 chemical elements (ca. 1 new discovery per year)

Is there any order in this chaos?

Apparent periodicity! Missing elements!

Eight groups of chemically similar elements

Dmitri Mendeleev

$\begin{gathered} \text { g } \\ \text { 突 } \end{gathered}$	Grapro ${ }_{\text {I }}^{\text {a }}$	Gruppo If.	(1rupro III,	$\begin{aligned} & \text { Gruppo IV. } \\ & \text { RB4 } \\ & \text { Bor } \end{aligned}$	$\begin{gathered} \text { Groppe } \mathrm{V} . \\ \text { RH? } \\ \text { R'o }^{2} \end{gathered}$			$\begin{gathered} \text { Gruppo vilf. } \\ \mathbf{R O}^{4} \end{gathered}$
1	$\mathrm{Ii}=7_{\mathrm{I}=1}$	$00=9,1$	$B=11$	$\mathrm{C}=12$	$N=14$	$0=16$	$\mathrm{P}=19$	
8	$\begin{aligned} & \mathrm{Na} a=28 \\ & \mathrm{~K}=39 \end{aligned}$	$\begin{aligned} & \mathrm{Mg}=24 \\ & \mathrm{C}_{\star}=40 \end{aligned}$	$\begin{aligned} & A 1=27 \\ & =44 \end{aligned}$	$\begin{aligned} & 5 t=28 \\ & i=48 \end{aligned}$	$\mathrm{V}_{=51} \mathrm{P}=31$	$\begin{aligned} & \mathrm{S}=32 \\ & \mathrm{Cr}=6 \mathrm{~g} \end{aligned}$	$\begin{array}{r} \mathrm{Cl}=35,5 \\ \mathrm{Mg}=65 \end{array}$	$F=60_{\mathrm{t}} \mathrm{Co}=60_{0}$
5	$\begin{gathered} (\mathrm{Cu}=63) \\ \mathrm{Bb}=8 \mathrm{G} \end{gathered}$	$\begin{array}{r} \mathrm{Zn}=65 \\ S_{\mathrm{r}}=87 \end{array}$	$\left\lvert\, \begin{gathered} -=68 \\ p \mathrm{Y}=88 \end{gathered}\right.$	$\begin{gathered} -=72 \\ z \pi=90 \end{gathered}$	$\begin{gathered} A s=75 \\ N b=94 \end{gathered}$	$\begin{gathered} \mathrm{S} 0=78 \\ \mathrm{Mo}=96 \end{gathered}$	$\begin{gathered} \mathrm{Hr}=80 \\ -=100 \end{gathered}$	$\begin{aligned} & \mathrm{Hu}=104, \mathrm{~h}=104, \\ & \mathrm{~d}=10 \mathrm{~A}, A_{\mathrm{B}}=108 . \end{aligned}$
7 8 9	$\begin{gathered} (A g=108) \\ C a=108 \end{gathered}$	$\begin{gathered} \mathrm{Cd}=112 \\ \mathrm{Bs}=137 \end{gathered}$	$\begin{gathered} \mathrm{In}=118 \\ \mathrm{PDi}=18 \mathrm{~B} \end{gathered}$	$\begin{array}{r} \mathrm{Sn}=118 \\ \mathrm{OCe}=140 \end{array}$		$-^{\mathrm{Tu}=125}$	${ }^{\mathrm{J}=127}$	- - -
10	-	-	$2 \mathrm{Er}=178$	$p L a=180$	$1 \mathrm{a}=162$	$\mathrm{W}=184$	-	$\begin{aligned} & \mathrm{Os}=195, \mathrm{Ir}=197 \\ & \mathrm{Pt}=198, \mathrm{Av}=199 . \end{aligned}$
11 12	- $\mathrm{Au}=190\rangle$	$\underbrace{\operatorname{Ig}=200}$	$-{ }^{\mathrm{Tl}=204}$	$\begin{gathered} \mathrm{rb}=207 \\ \mathrm{Th}=93! \end{gathered}$	$-^{\mathrm{Bi} ص 208}$	$\mathrm{U}_{\mathrm{I}=240^{-}}$		- -

Mendeleev's table (1871)

Yet more regularity

1863: 56 chemical elements (ca. 1 new discovery per year)

Is there any order in this chaos?

Apparent periodicity! Missing elements!

Eight groups of chemically similar elements

Dmitri Mendeleev

$\begin{gathered} \text { g } \\ \text { 突 } \end{gathered}$	Grapro ${ }_{\text {I }}^{\text {a }}$	Gruppo If.	(1rupro III.	$\begin{aligned} & \text { Gruppo IV. } \\ & \text { RB4 } \\ & \text { Bor } \end{aligned}$	$\begin{gathered} \text { Groppe } \mathrm{V} . \\ \text { RH? } \\ \text { R'o }^{2} \end{gathered}$			$\begin{gathered} \text { Gruppo vilf. } \\ \mathbf{R O}^{4} \end{gathered}$
1	$\mathrm{Ii}=7_{\mathrm{I}=1}$	$00=9,1$	$B=11$	$\mathrm{C}=12$	$N=14$	$0=16$	$\mathrm{P}=19$	
8	$\begin{aligned} & \mathrm{Na} a=28 \\ & \mathrm{~K}=39 \end{aligned}$	$\begin{aligned} & \mathrm{Mg}=24 \\ & \mathrm{C}_{\star}=40 \end{aligned}$	$A 1=2$	$\begin{aligned} & 5 i=28 \\ & i=48 \end{aligned}$	$\mathrm{V}_{=51}^{\mathrm{p}=81}$	$\begin{aligned} & \mathrm{S}=32 \\ & \mathrm{Cr}=6 \mathrm{~g} \end{aligned}$	$\begin{array}{r} \mathrm{Cl}=35,5 \\ \mathrm{Mg}=65 \end{array}$	$F=60_{\mathrm{t}} \mathrm{Co}=60_{0}$
5	$\begin{gathered} (\mathrm{Cu}=63) \\ \mathrm{Bb}=8 \mathrm{G} \end{gathered}$	$\begin{aligned} & \mathrm{Zn}=65 \\ = & 87 \end{aligned}$	$\mathrm{PY}=80$	$\begin{aligned} & -=72 \\ & y=90 \end{aligned}$	$\begin{aligned} & A s=75 \\ & N b=94 \end{aligned}$	$\left\{\begin{array}{c} \mathrm{S}_{0}=7 \mathrm{~s} \\ \mathrm{Mo}=\mathrm{p} 0 \end{array}\right.$	$\begin{gathered} \mathrm{Hr}=80 \\ -=100 \end{gathered}$	$\begin{aligned} & \mathrm{Bu}=104, \mathrm{Rh}=104, \\ & \mathrm{ld}=106, \mathrm{~A}_{8}=108 . \end{aligned}$
7 8 9	$\begin{gathered} (A g=108) \\ C a=108 \end{gathered}$	$\begin{gathered} \mathrm{Cd}=112 \\ \mathrm{Bs}=137 \end{gathered}$	$\begin{gathered} \quad \mathrm{In}=118 \\ \mathrm{Di}=188 \end{gathered}$	$\begin{aligned} & \mathrm{Sn}=118 \\ & \mathrm{OCo}=140 \end{aligned}$	$\mathrm{SL}=122$	$-^{\mathrm{Tu}=125}$	${ }^{\mathrm{J}=127}$	- - -
10	-	\| -	$2 \mathrm{Er}=178$	$p L_{a}=180$	$T \mathrm{a}=162$	$\mathrm{W}=184$	-	$\begin{aligned} & \mathrm{Os}=195, \mathrm{Ir}=197 \\ & \mathrm{Pt}=198, \mathrm{Av}=199 . \end{aligned}$
11 12	< $\mathrm{Au}=199\rangle$	$\underbrace{\operatorname{Ig}=200}$	$\mathrm{Tl}=204$	$\begin{array}{r} \mathrm{rb}=207 \\ \mathrm{Th}=93! \end{array}$	$-^{\mathrm{Bi} ص 208}$	$\mathrm{U}_{\mathrm{I}=240^{-}}$		- -

Mendeleev's table (1871)

Yet more regularity

1863: 56 chemical elements (ca. 1 new discovery per year)

Is there any order in this chaos?

Apparent periodicity! Missing elements!

Eight groups of chemically similar elements

Dmitri Mendeleev

$\begin{gathered} \text { g } \\ \text { 突 } \end{gathered}$	Grapro ${ }_{\text {I }}^{\text {a }}$	Gruppo If.	(1rupro III,	$\begin{aligned} & \text { Gruppo IV. } \\ & \text { RB4 } \\ & \text { Bor } \end{aligned}$	$\begin{gathered} \text { Groppe } \mathrm{V} . \\ \text { RH? } \\ \text { R'o }^{2} \end{gathered}$			$\begin{gathered} \text { Gruppo vilf. } \\ \mathbf{R O}^{4} \end{gathered}$
1	$\mathrm{Ii}=7_{\mathrm{I}=1}$	$00=9,1$	$B=11$	$\mathrm{C}=12$	$N=14$	$0=16$	$\mathrm{P}=19$	
8	$\begin{aligned} & \mathrm{Na} a=28 \\ & \mathrm{~K}=39 \end{aligned}$	$\begin{aligned} & \mathrm{Mg}=24 \\ & \mathrm{C}_{\star}=40 \end{aligned}$	$\begin{aligned} & A 1=27 \\ & =44 \end{aligned}$	$\begin{aligned} & 5 t=28 \\ & i=48 \end{aligned}$	$\mathrm{V}_{=51} \mathrm{P}=31$	$\begin{aligned} & \mathrm{S}=32 \\ & \mathrm{Cr}=6 \mathrm{~g} \end{aligned}$	$\begin{array}{r} \mathrm{Cl}=35,5 \\ \mathrm{Mg}=65 \end{array}$	$F=60_{\mathrm{t}} \mathrm{Co}=60_{0}$
5	$\begin{gathered} (\mathrm{Cu}=63) \\ \mathrm{Bb}=8 \mathrm{G} \end{gathered}$	$\begin{array}{r} \mathrm{Zn}=65 \\ S_{\mathrm{r}}=87 \end{array}$	$\left\lvert\, \begin{gathered} -=68 \\ p \mathrm{Y}=88 \end{gathered}\right.$	$\begin{gathered} -=72 \\ z \pi=90 \end{gathered}$	$\begin{gathered} A s=75 \\ N b=94 \end{gathered}$	$\begin{gathered} \mathrm{S} 0=78 \\ \mathrm{Mo}=96 \end{gathered}$	$\begin{gathered} \mathrm{Hr}=80 \\ -=100 \end{gathered}$	$\begin{aligned} & \mathrm{Hu}=104, \mathrm{~h}=104, \\ & \mathrm{~d}=10 \mathrm{~A}, A_{\mathrm{B}}=108 . \end{aligned}$
7 8 9	$\begin{gathered} (A g=108) \\ C a=108 \end{gathered}$	$\begin{gathered} \mathrm{Cd}=112 \\ \mathrm{Bs}=137 \end{gathered}$	$\begin{gathered} \mathrm{In}=118 \\ \mathrm{PDi}=18 \mathrm{~B} \end{gathered}$	$\begin{array}{r} \mathrm{Sn}=118 \\ \mathrm{OCe}=140 \end{array}$		$-^{\mathrm{Tu}=125}$	${ }^{\mathrm{J}=127}$	- - -
10	-	-	$2 \mathrm{Er}=178$	$p L a=180$	$1 \mathrm{a}=162$	$\mathrm{W}=184$	-	$\begin{aligned} & \mathrm{Os}=195, \mathrm{Ir}=197 \\ & \mathrm{Pt}=198, \mathrm{Av}=199 . \end{aligned}$
11 12	- $\mathrm{Au}=190\rangle$	$\underbrace{\operatorname{Ig}=200}$	$-{ }^{\mathrm{Tl}=204}$	$\begin{gathered} \mathrm{rb}=207 \\ \mathrm{Th}=93! \end{gathered}$	$-^{\mathrm{Bi} ص 208}$	$\mathrm{U}_{\mathrm{I}=240^{-}}$		- -

Mendeleev's table (1871)

Back to Thomson in 1897

"Thus on this view, we have in the cathode rays matter in a new state, a state in which the subdivision of matter is carried very much further than in the ordinary gaseous state."

Thomson's view of the atom (1904)

Normal matter is electrically neutral
\rightarrow Atoms are electrically neutral

Thomson's view of the atom (1904)

Normal matter is electrically neutral

\rightarrow Atoms are electrically neutral

"We suppose that the atom consists of a number of corpuscles moving about in a sphere of uniform positive electrification."

Thomson's view of the atom (1904)

Normal matter is electrically neutral

\rightarrow Atoms are electrically neutral

"We suppose that the atom consists of a number of corpuscles moving about in a sphere of uniform positive electrification."

Thomson's view of the atom (1904)

Normal matter is electrically neutral

\rightarrow Atoms are electrically neutral

"We suppose that the atom consists of a number of corpuscles moving about in a sphere of uniform positive electrification."

Thomson's view of the atom (1904)

"What properties would this structure confer upon the atom?"

Thomson's view of the atom (1904)

"What properties would this structure confer upon the atom?"

"Stability suggests the view of a motion of a ring of negatively electrified particles placed inside a uniformly electrified sphere."

Thomson's view of the atom (1904)

"What properties would this structure confer upon the atom?"

"Stability suggests the view of a motion of a ring of negatively electrified particles placed inside a uniformly electrified sphere."

Thomson's view of the atom (1904)

"What properties would this structure confer upon the atom?"

"Stability suggests the view of a motion of a ring of negatively electrified particles placed inside a uniformly electrified sphere."

Thomson's view of the atom (1904)

"What properties would this structure confer upon the atom?"

"Stability suggests the view of a motion of a ring of negatively electrified particles placed inside a uniformly electrified sphere."

Thomson's view of the atom (1904)

"What properties would this structure confer upon the atom?"

"Stability suggests the view of a motion of a ring of negatively electrified particles placed inside a uniformly electrified sphere."

"A large number of particles cannot be in a stable equilibrium when arranged as a single ring."

Thomson's view of the atom (1904)

"What properties would this structure confer upon the atom?"

"Stability suggests the view of a motion of a ring of negatively electrified particles placed inside a uniformly electrified sphere."

"A large number of particles cannot be in a stable equilibrium when arranged as a single ring."
"It can be made stable by placing inside it an appropriate number of corpuscles."

Thomson's view of the atom (1904)

"It can be made stable by placing inside it an appropriate number of corpuscles."

Thomson's view of the atom (1904)

"It can be made stable by placing inside it an appropriate number of corpuscles."

"Shells"

Thomson's view of the atom (1904)

"It can be made stable by placing inside it an appropriate number of corpuscles."

"Shells"

What would be the chemical properties of such atoms?

Thomson's view of the atom (1904)

"It can be made stable by placing inside it an appropriate number of corpuscles."

"Shells"

What would be the chemical properties of such atoms?

Can the laws of mechanics and electricity explain chemistry?

Thomson's view of the atom (1904)

Adding more and more corpuscles: heavier atoms (in discrete jumps!)

Thomson's view of the atom (1904)

Adding more and more corpuscles: heavier atoms (in discrete jumps!)

This sequence of properties is very like that observed in the case of the atoms of the elements.

Thus we have the series of elements :

$$
\begin{array}{lllllllll}
\mathrm{He} & \mathrm{Li} & \mathrm{Be} & \mathrm{~B} & \mathrm{C} & \mathrm{~N} & \mathrm{O} & \mathrm{~F} & \mathrm{Ne} . \\
\mathrm{Ne} & \mathrm{Na} & \mathrm{Mg} & \mathrm{Al} & \mathrm{Si} & \mathrm{P} & \mathrm{~S} & \mathrm{Cl} & \mathrm{Arg} .
\end{array}
$$

The first and last element in each of these series has no valency, the second is a monovalent electropositive element, the last but one is a monovalent electronegative element, the third is a divalent electropositive element, the last but two a divalent electronegative element, and so on.

Thomson's view of the atom (1904)

Electrons are like raisins in a cake!
Tine inst and last element in each of trese series has no valency, the second is a monovalent electropositive element, the last but one is a monovalent electronegative element, the third is a divalent electropositive element, the last but two a divalent electronegative element, and so on.

How to look inside the atom?

How to look inside the atom?

Back ten years to Röntgen and his X-rays ...

Röntgen's big discovery (1895)

Henri Becquerel

Henri Becquerel

0
\# THEXSES
phesentess
a la faculté des sciences de paris poun ortextin
le gradie je doctieur es sciences pilysioules,
Pan M. Henai BECQuerel;
logénieur des Ponts et chaussiés.
[" THESE. - Recianciass sun L'absonption ue la lusiehe.
2• THĖSE. - Propositions donates par la Fanaite.

Soutenues le mars 1888, devant la Commission d'examen.
sM. FRIEDEL, President. debray,
IPPMANN, Examinateurs.

PARIS,
fiauthier-villars et fils, imprimeurs-hibiaires de bereaudes longitudis, delecoleppolytechnique Quai des Grands-Augustins, 3 .

1888

His doctoral thesis:

"Researches on the absorption of light by crystals"

Henri Becquerel

Henri Becquerel

Henri Becquerel

1895: Professor at Ecole Polytechnique (Ca. 80 years after Sadi Carnot)

Phosphorescence and uranium

Uranium salt exposed to sunlight ...
"Phosphorescence"

Phosphorescence and uranium

Uranium salt exposed to sunlight ...

... continues to glow in the dark for a certain time

Phosphorescence and uranium

"Phosphorescence"

At the Academy of Sciences in 1896

At the Academy of Sciences in 1896

"Mr. H. Poincaré had just shown the first radiographs sent by Mr. Röntgen."

At the Academy of Sciences in 1896

"Mr. H. Poincaré had just shown the first radiographs sent by Mr. Röntgen."

At the Academy of Sciences in 1896

"Mr. H. Poincaré had just shown the first radiographs sent by Mr. Röntgen."
"I asked my colleague what was the place of emission of those rays, in the vacuum tube that produced X-rays."

At the Academy of Sciences in 1896

"Mr. H. Poincaré had just shown the first radiographs sent by Mr. Röntgen."
"I asked my colleague what was the place of emission of those rays, in the vacuum tube that produced X-rays."

At the Academy of Sciences in 1896

"Mr. H. Poincaré had just shown the first radiographs sent by Mr. Röntgen."
"I asked my colleague what was the place of emission of those rays, in the vacuum tube that produced X-rays."
"I was answered that the origin of the radiation was the luminous spot of the wall of the tube that received the cathodic flux."

At the Academy of Sciences in 1896

"Mr. H. Poincaré had just shown the first radiographs sent by Mr. Röntgen."
"I asked my colleague what was the place of emission of those rays, in the vacuum tube that produced X-rays."
"I was answered that the origin of the radiation was the luminous spot of the wall of the tube that received the cathodic flux."

At the Academy of Sciences in 1896

"Mr. H. Poincaré had just shown the first radiographs sent by Mr. Röntgen."
"I asked my colleague what was the place of emission of those rays, in the vacuum tube that produced X-rays."
"I was answered that the origin of the radiation was the luminous spot of the wall of the tube that received the cathodic flux."
"I cogitated at once to search whether the new emission was a manifestation of the phenomenon that gave birth to the phosphorescence and whether all phosphorescent bodies emit similar rays."

A chance discovery

"A Lumière plate was enclosed in an opaque case of black cloth."

A chance discovery

"A Lumière plate was enclosed in an opaque case of black cloth."

A chance discovery

"A Lumière plate was enclosed in an opaque case of black cloth."

"After developing the photographic plate in the usual way, one observes that the silhouette of the crystalline crust appears in black on the sensitive plate."

A chance discovery

"A Lumière plate was enclosed in an opaque case of black cloth."

"After developing the photographic plate in the usual way, one observes that the silhouette of the crystalline crust appears in black on the sensitive plate."

A chance discovery

"A Lumière plate was enclosed in an opaque case of black cloth."

A chance discovery

"A Lumière plate was enclosed in an opaque case of black cloth."

"I will insist particularly upon the following fact, which seems to me quite important and beyond the phenomena which one could expect to observe."

A chance discovery

"A Lumière plate was enclosed in an opaque case of black cloth."

"I will insist particularly upon the following fact, which seems to me quite important and beyond the phenomena which one could expect to observe."

"The same crystalline crusts, arranged the same way, in the same conditions and through the same screens, but kept in darkness, still produce the same photographic images."

A chance discovery

"A Lumière plate was enclosed in an opaque case of black cloth."

"I will insist particularly upon the following fact, which seems to me quite important and beyond the phenomena which one could expect to observe."

"The same crystalline crusts, arranged the same way, in the same conditions and through the same screens, but kept in darkness, still produce the same photographic images."

A chance discovery

particularly upon the following fact, o me quite important and beyond the phenomena which one could expect to observe."

"The same crystalline crusts, arranged the same way, in the same conditions and through the same screens, but kept in darkness, still produce the same photographic images."

A chance discovery

particularly upon the following fact, o me quite important and beyond the phenomena which one could expect to observe."

"The same crystalline crusts, arranged the same way, in the same conditions and through the same screens, but kept in darkness, still produce the same photographic images."

It's not about the sun nor phosphorescence at all!

A chance discovery

"A Lumière plate of black cloth."

particularly upon the following fact, o me quite important and beyond the phenomena which one could expect to observe."

Marie Skłodowska-Curie

Marie Skłodowska-Curie

From Poland to Paris:

A pact between sisters

Marie Skłodowska-Curie

From Poland to Paris:
 A pact between sisters

Arrived in Paris in 1891:
Just after the World's Fair in 1889

Marie Skłodowska-Curie

Marie Skłodowska-Curie

Pierre Curie

Pierre Curie

1880: the Curie brothers discover the piezoelectric effect

Pierre Curie

1880: the Curie brothers discover the piezoelectric effect

1895: Magnets lose their magnetism when heated up!

The Curies in 1895

The Curies in 1895

Enjoying their honeymoon (1895)

The Curies in 1895

Enjoying their honeymoon (1895)

1896: Marie is looking for a doctoral thesis topic

How to quantify the strength of Becquerel's radiation?

A connection with electricity

A connection with electricity

Leyden jar
("Cylindrical condenser")

A connection with electricity

Leyden jar
("Cylindrical condenser")

"Becquerel rays" are "ionizing"
"Parallel-plate condenser"

A connection with electricity

Leyden jar
("Cylindrical condenser")

"Parallel-plate condenser"

A connection with electricity

Leyden jar
("Cylindrical condenser")

"Parallel-plate condenser"

A connection with electricity

"Becquerel rays" are "ionizing"
"Parallel-plate condenser"

A connection with electricity

"Parallel-plate condenser"

A connection with electricity

"Parallel-plate condenser"

A connection with electricity

"Parallel-plate condenser"
"Becquerel rays" gradually discharge the condenser
Very small! Need very precise experiments!

How to charge the condenser?

How to measure the discharge?

How to perform the experiment?

How to perform the experiment?

How to perform the experiment?

Electrometer
(Needs to be very sensitive!)

1) Put material sample into parallel-plate condenser
2) Wait until discharging condenser reaches

How to perform the experiment?

Electrometer
(Needs to be very sensitive!)

1) Put material sample into parallel-plate condenser
2) Wait until discharging condenser reaches

\downarrow

How to perform the experiment?

Electrometer
(Needs to be very sensitive!)

1) Put material sample into parallel-plate condenser
2) Wait until discharging condenser reaches

How to perform the experiment?

Electrometer
(Needs to be very sensitive!)

1) Put material sample into parallel-plate condenser
2) Wait until discharging condenser reaches

\downarrow

How to perform the experiment?

Electrometer
(Needs to be very sensitive!)

1) Put material sample into parallel-plate condenser
2) Wait until discharging condenser reaches

\downarrow

How to perform the experiment?

Electrometer
(Needs to be very sensitive!)

1) Put material sample into parallel-plate condenser
2) Wait until discharging condenser reaches

\downarrow

How to perform the experiment?

1) Put material sample into parallel-plate condenser
2) Wait until discharging condenser reaches specified level

Electrometer
(Needs to be very sensitive!)
3) Add additional weight to the piezoelectric crystal to recharge condenser to original level
\rightarrow Time interval measures strength of radiation

The real experiment

The real plate condenser

The real plate condenser

The real plate condenser

The real piezoelectric crystal

The real piezoelectric crystal

Pierre's precision electrometer

Taking the measurements

Taking the measurements

Testing different materials

Uranium and thorium minerals are the most "active"

Testing different materials

Uranium and thorium minerals are the most "active"

"I was struck by the fact that the activity of uranium and thorium compounds appears to be an atomic property of the element uranium and of the element thorium."

Testing different materials

Uranium and thorium minerals are the most "active"

"I was struck by the fact that the activity of uranium and thorium compounds appears to be an atomic property of the element uranium and of the element thorium."
"The activity is not destroyed by either physical changes of state or chemical transformations."

Testing different materials

Uranium and thorium minerals are the most "active"

Testing different materials

Uranium and thorium minerals are the most "active"

"Two minerals of uranium, pitchblende and chalcolite are much more active than uranium itself."

Testing different materials

Uranium and thorium minerals are the most "active"

"Two minerals of uranium, pitchblende and chalcolite are much more active than uranium itself."
"The fact is very remarkable, and leads to the belief that these minerals may contain an element which is much more active than uranium."

Testing different materials

Uranium and thorium minerals are the most "active"

"The fact is very remarkable, and leads to the belief that these minerals may contain an element which is much more active than uranium."

Testing different materials

Uranium and thorium minerals are the most "active"

"The fact is very remarkable, and leads to the belief that these minerals may contain an element which is much more active than uranium."

Is there more than uranium?

"We have sought to isolate this substance in pitchblende and experiment has just confirmed the preceding conjectures."

Is there more than uranium?

"We have sought to isolate this substance in pitchblende and experiment has just confirmed the preceding conjectures."

Is there more than uranium?

"We have sought to isolate this substance in pitchblende and experiment has just confirmed the preceding conjectures."

Is there more than uranium?

"We have sought to isolate this substance in pitchblende and experiment has just confirmed the preceding conjectures."

"If the existence of this new metal is confirmed, we propose to call it polonium from the name of the country of origin of one of us."
"We believe therefore that the substance which we have removed from pitchblende contains a metal not yet reported close to bismuth in its analytical properties."

Is there more than uranium?

"We have sought to isolate this substance in pitchblende and experiment has just confirmed the precedit

"We have treated it with a
Fore that the substance hoved from pitchblende pt yet reported close to palytical properties."

Something else?

Something else?

"In the course of these researches we have found a second substance strongly radioactive and entirely different in its chemical properties from Polonium."

Something else?

"In the course of these researches we have found a second substance strongly radioactive and entirely different in its chemical properties from Polonium."
"We believe that the new radioactive substance contains a new element to which we propose to give the name radium."

Something else?

${ }^{\text {"II }}$ In the course of these researches we have found a second substance strongly radioactive and entirely different in its chemical properties from Polonium."
"We believe that the new radioactive substance contains a new element to which we propose to give the name radium."

Something else?

${ }^{\text {"II }}$ In the course of these researches we have found a second substance strongly radioactive and entirely different in its chemical properties from Polonium."
"We believe that the new radioactive substance contains a new element to which we propose to give the name radium."

Ernest Rutherford

Ernest Rutherford

Ernest Rutherford

Ernest Rutherford

At the Cavendish with

Ernest Rutherford

His ticket overseas

Duropean and Othos: Io vign Items

I.OADOA. July 11

The Oommissioners of the 1851 Exhibition have swarded the science research schoiarships to Ernest Ruther-

At the Cavendish with other "aliens"

McGill University, Montreal

How penetrating are the rays?

Radiation measurement in the "Curie method":

How penetrating are the rays?

Radiation measurement in the "Curie method":

How many sheets are needed to absorb ("shield") the radiation?

How penetrating are the rays?

Radiation measurement in the "Curie method":

How many sheets are needed to absorb ("shield") the radiation?

How penetrating are the rays?

Radiation measurement in the "Curie method":

How many sheets are needed to absorb ("shield") the radiation?

How penetrating are the rays?

Radiation measurement in the "Curie method":

How many sheets are needed to absorb ("shield") the radiation?

How penetrating are the rays?

Radiation measurement in the "Curie method":

How many sheets are needed to absorb ("shield") the radiation?

How penetrating are the rays?

Radiation measurement in the "Curie method":

How many sheets are needed to absorb ("shield") the radiation?

Only one kind of rays?

"The aluminium foil in this case was about 0.0005 cm thick."

Only one kind of rays?

"The aluminium foil in this case was about 0.0005 cm thick."

Only one kind of rays?

Number of aluminum sheets
"The aluminium foil in this case was about 0.0005 cm thick."

More than one kind of rays!

"These experiments show that the uranium radiation is complex and that there are present at least two distinct types of radiation."

More than one kind of rays!

Thin aluminum
sheets

"These experiments show that the uranium radiation is complex and that there are present at least two distinct types of radiation."

More than one kind of rays!

Thin aluminum
sheets

$\xrightarrow{\sim}$

"These experiments show that the uranium radiation is complex and that there are present at least two distinct types of radiation."

More than one kind of rays!

Thin aluminum
sheets

$\xrightarrow{\sim}$

"These experiments show that the uranium radiation is complex and that there are present at least two distinct types of radiation."

More than one kind of rays!

Thin aluminum
sheets

$\xrightarrow[\sim]{\sim}$

"These experiments show that the uranium radiation is complex and that there are present at least two distinct types of radiation."

More than one kind of rays!

Thin aluminum
sheets

~

"These experiments show that the uranium radiation is complex and that there are present at least two distinct types of radiation."

More than one kind of rays!

"One that is very readily absorbed, which will be termed for convenience the α radiation ..."

"These experiments show that the uranium radiation is complex and that there are present at least two distinct types of radiation."

More than one kind of rays!

"One that is very readily absorbed, which
will be termed for convenience the α radiation ..."
"... and the other of a more penetrating character, which will be termed the β radiation.

"These experiments show that the uranium radiation is complex and that there are present at least two distinct types of radiation."

What are α rays made of?

What are α rays made of?

Just like Thomson's experiment

What are α rays made of?

Just like Thomson's experiment

What are α rays made of?

Just like Thomson's experiment

What are α rays made of?

Just like Thomson's experiment

What are α rays made of?

Ionization chamber

What are α rays made of?

Ionization chamber

What are α rays made of?

Ionization chamber

"The direction of deviation in a magnetic field was opposite in sense to the cathode rays, i.e. the α rays consisted of positively charged particles."

What are α rays made of?

Ionization chamber
"With the largest electromagnet in the laboratory, I was only able to deviate about 30 per cent of the α rays."

"The direction of deviation in a magnetic field was opposite in sense to the cathode rays, i.e. the α rays consisted of positively charged particles."

What are α rays made of?

"With the largest electromagnet in the laboratory, I was only able to deviate about 30 per cent of the α rays."
"I was, however, enabled to make use of the field magnet of a 30 kilowatt Edison dynamo."

Ionization chamber

"The direction of deviation in a magnetic field was opposite in sense to the cathode rays, i.e. the α rays consisted of positively charged particles."

What are α rays made of?

"With the largest electromagnet in the laboratory, I was only able to deviate about 30 per cent of the α rays."
"I was, however, enabled to make use of the field magnet of a 30 kilowatt Edison dynamo."

Radium already used as a tool for research!

"The direction of deviation in a magnetic field was opposite in sense to the cathode rays, i.e. the α rays consisted of positively charged particles."

What are α rays made of?

"With the largest electromagnet in the laboratory, I was only able to deviate about 30 per cent of the α rays."
"I was, however, enabled to make use of the field magnet of a 30 kilowatt Edison dynamo."

Radium already used as a tool for research!
"The sample of radium of greater activity than that normally sold was obtained through the kindness of M. Curie"

"The direction of deviation in a magnetic field was opposite in sense to the cathode rays, i.e. the α rays consisted of positively charged particles."

1903: Three kinds of radioactivity

1903: Three kinds of radioactivity

α

Positively charged
high m / e
easily stopped

1903: Three kinds of radioactivity

Positively charged
high m / e
easily stopped

Negatively charged
small m / e
more penetrating

1903: Three kinds of radioactivity

γ

Positively charged
high m / e
easily stopped

Negatively charged
small m / e
more penetrating

Uncharged
even more penetrating

1903: Three kinds of radioactivity

high m / e
easily stopped

Moving to Manchester

An offer he could not refuse ...

Moving to Manchester

An offer he could not refuse ...

Moving to Manchester

An offer he could not refuse ...

Moving to Manchester

An offer he could not refuse ...

Moving to Manchester

An offer he could not refuse ...

Hans Geiger
"Everybody seems jolly \& anxious to help and I find a most enjoyable absence of convention."

Moving to Manchester

An offer he could not refuse ...

Hans Geiger
"Everybody seems jolly \& anxious to help and I find a most enjoyable absence of convention."
"I find the students here regard a professor as little short of Lord God Almighty. It is quite refreshing after the critical attitude of the Canadian students."

New instruments

New instruments

Ionization chamber

New instruments

Ionization chamber

The first particle counter
 (Rutherford and Geiger)

By E. Ruthbrford, F.R.S., Professor of Physics, and H. Gbighr, Ph.D., John Harling Fellow, University of Manchester.
(Read June 18 ; MS. received July 17, 1908.)

New instruments

Ionization chamber

The first particle counter
(Rutherford and Geiger)

New instruments

Ionization chamber
The first particle counter
(Rutherford and Geiger)

New instruments

Ionization chamber

The first particle counter
 (Rutherford and Geiger)

> An Electrical Method of Counting the Number of α-Particles from Radio-active Substances.

By E. Ruthbrford, F.R.S., Professor of Physics, and H. Gbigbr, Ph.D., John Harling Fellow, University of Manchester.
(Read June 18; MS. received July 17, 1908.)

New instruments

Ionization chamber
The first particle counter
(Rutherford and Geiger)

Anomalous scattering? 1909

Scattering through wide angle is possible!

Anomalous scattering?

 1913

Anomalous scattering?

 1913

Fluorescent

Anomalous scattering?

 1913

Radioactive source
"It was quite the most incredible event that has ever happened to me in my life."
"It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you."

The atom has a nucleus!

The atom has a nucleus!

J.J. Thomson's
"Plum pudding model"

The atom has a nucleus!

J.J. Thomson's
"Plum pudding model"

The atom has a nucleus!

J.J. Thomson's
"Plum pudding model"

Rutherford's model of the atom

The atom has a nucleus!

J.J. Thomson's
"Plum pudding model"

Rutherford's model of the atom

The atom has a nucleus!

J.J. Thomson's
"Plum pudding model"

Rutherford's model of the atom

The atom has a nucleus!

Rutherford's calculations describing the scattering

1914: WW1 interrupts science

1914: WW1 interrupts science

Marie Curie:

invests Nobel prize money in war bonds, organizes a mobile X-ray service along the front

1914: WW1 interrupts science

What is the nucleus made of?

Rutherford: " α particles can collide with the nucleus of a hydrogen atom"

What is the nucleus made of?

Rutherford: " α particles can collide with the nucleus of a hydrogen atom"

What is the nucleus made of?

Rutherford: " α particles can collide with the nucleus of a hydrogen atom"

What is the nucleus made of?

Rutherford: " α particles can collide with the nucleus of a hydrogen atom"

"In an end-on collision, the H-particle will have about four times the range of the α-particle producing it."

Hydrogen contained in nitrogen?

April 1919

Nitrogen atom

Hydrogen contained in nitrogen?

April 1919

Nitrogen atom
"We must conclude that the hydrogen atom which is liberated formed a constituent part of the nitrogen nucleus."

Hydrogen contained in nitrogen?

April 1919

"Considering the enormous intensity of the forces brought into play, it is not so much a matter of surprise that the nitrogen atom should suffer disintegration."

Nitrogen atom
"We must conclude that the hydrogen atom which is liberated formed a constituent part of the nitrogen nucleus."

Hydrogen contained in nitrogen?

April 1919

"Considering the enormous intensity of the forces brought into play, it is not so much a matter of surprise that the nitrogen atom should suffer disintegration."

"We must conclude that the hydrogen atom which is liberated formed a constituent part of the nitrogen nucleus."

"Nuclear chemistry"

Atoms are not "elementary", they have their own building blocks!

Hydrogen
Adding more and more electrons (and protons) builds up the elements in the periodic table

"Nuclear chemistry"

Atoms are not "elementary", they have their own building blocks!

Hydrogen
hydrogen)

Adding more and more electrons (and protons) builds up the elements in the periodic table

"Nuclear chemistry"

Atoms are not "elementary", they have their own building blocks!

"Nuclear chemistry"

Atoms are not "elementary", they have their own building blocks!

Another hint from chemistry

Can chemical elements exist "multiple times"?

Uranium
$\downarrow \alpha$
Thorium
$\downarrow \beta$
Protactinium
$\downarrow \beta$
Uranium

Frederick Soddy

Another hint from chemistry

Can chemical elements exist "multiple times"?

Uranium

Protactinium
$\downarrow \beta$ Uranium

Frederick Soddy

Another hint from chemistry

Can chemical elements exist "multiple times"?

Another hint from chemistry

Can chemical elements exist "multiple times"?

How is this possible?

How is this possible?

But: adding another proton + electron turns it into a different (heavier) element ...

How is this possible?

But: adding another proton + electron turns it into a different (heavier) element ...
... not into a heavier version of the same element!

How is this possible?

But: adding another proton + electron turns it into a different (heavier) element ...
... not into a heavier version of the same element!

What's wrong?

How is this possible?

What's wrong?

A new neutral particle?

1932

A new neutral particle?

1932

James Chadwick

A new neutral particle?

 1932James Chadwick

Frédéric and Irène Joliot-Curie

A new particle?

1932

A new particle?

1932

A new particle?

1932

A new particle?

1932

"In order to explain the great penetrating power of the radiation we must assume that the particle has no net charge. "

A new particle?

1932
"In order to explain the great penetrating power of the radiation we must assume that the particle has no net charge. "

Which kind of neutral particle?

Chadwick (1932):
"It is concluded that the radiation consists of neutrons, particles of mass 1, and charge 0."

(The Joliot-Curies missed
a major discovery!)
But what kind of neutron?

Proton and electron tightly bound together

New particle without building blocks

Which kind of neutral particle?

Chadwick (1932):
"It is concluded that the radiation consists of neutrons, particles of mass 1, and charge 0."
(The Joliot-Curies missed
a major discovery!)
But what kind of neutron?

Proton and electron tightly bound together

New particle without building blocks

Chadwick + Goldhaber (1935):
Mass of neutron larger than proton and electron taken together!

Which kind of neutral particle?

Chadwick (1932):
"It is concluded that the radiation consists of neutrons, particles of mass 1, and charge 0."
(The Joliot-Curies missed
a major discovery!)

But what kind of neutron?

New particle without building blocks

Chadwick + Goldhaber (1935):
Mass of neutron larger than proton and electron taken together!

An updated view of the atom

Nitrogen
(Heavier than
hydrogen)

An updated view of the atom

	Dalton, 1808:
	"The atoms of such are conceived at preses
$\stackrel{10}{\square}$	be simple.

Dalton, 1808:

"The atoms of such bodies are conceived at present to be simple."

Atoms are everything but simple!

Dalton, 1808:

"The atoms of such bodies are conceived at present to be simple."

1935:

Atoms are everything but simple!

And again, changes in our worldview are going to have big consequences ...

Dalton, 1808:

"The atoms of such bodies are conceived at present to be simple."

1935:

Atoms are everything but simple!

And again, changes in our worldview are going to have big consequences ...

