BENJAMIN PALACIOS
CCAM William H. Kruskal Instructor

Pencil-beam Approximation of Fokker-Planck and Applications

THURSDAY, November 5, 2020, at 5:05 pm
via ZOOM

ABSTRACT

Solutions of stationary Fokker-Planck equations in the narrow beam regime are commonly approximated by either ballistic linear transport or by a Fermi pencil-beam equation. In a joint project with Guillaume Bal, we present a rigorous approximation analysis of these three models in a half-space geometry, where error estimates are obtained in a 1-Wasserstein sense which is an adapted metric to quantify beam spreading.

The pencil-beam approximation has been recently used to model an inverse problem arising in Light-Sheet Fluorescence Microscopy imaging, where uniqueness and stability of the inverse problem have been established. This is a collaborative work with researchers from Chile.

For further information and inquiries, please email Zellencia Harris at zellenciah@uchicago.edu. If you wish to subscribe to our listserv, please visit the following website:

https://lists.uchicago.edu/web/subscribe/cam_colloquium.