Brief overview of some of the department research activities

- Survey Science
- Structure Formation
- Extragalactic Optical and Infrared Astronomy
- Theory, Cosmology
- Gravitational-wave Science
- Plasma and High Energy Astrophysics
- Exoplanets
- Cosmic Microwave Background

Survey Science

Observational Cosmology and Astrophysics at the University of Chicago

http://surveys.uchicago.edu/

Big Group Meetings: Thursdays @ 2PM CDT (bi-weekly) https://fnal.zoom.us/j/457644428?pwd=UkVEVytLUzc0VmJDa GdTMkN5u2nyuT09

Small Sub-Group Meetings: Thursdays (bi-weekly)
Please contact Alex DW, Brian, Chihway, Josh for coordinates

Joint Cosmology Meetings: Fridays @ 9AM CDT (bi-weekly) https://uchicago.zoom.us/j/94057788064?pwd=TWkzQ1dTUGhHeE loNDdnOFZITDIrdz09

The Survey Science Group

+ ~10 undergraduates

And you!

Fundamental Science with Cosmic Surveys

What is the Universe made of?

- Dark Matter: Attractive force responsible for the formation of structure in the Universe
- Dark Energy: Repulsive force responsible for the accelerating expansion of the Universe
- Ordinary Matter: All the stars and galaxies (and exoplanets) and other stuff that we observe

structure and galaxy formation

re-ionization modelling

Andrey Kravtsov Nick Gnedin Astro/KICP/EFI Fermilab/Astro/KICP

Susmita Adhikari **KICP Associate Fellow**

Huanging Chen Astro grad student

Christine Simpson McCormick fellow Astro/EFI/KICP

+early stages of galaxy formation reionization fossils supercomputer simulations structure formation modelling

simulatons of reionization

Viraj Manwadkar Astro undergrad student

Arka Baneriee Schramm Fellow, Fermilab

Clarke Esmerian Astro grad student

Hanjue Zhu Astro grad student

machine learning/numerical methods galaxy formation simulations physics of star formation aeedback process and galactic winds

+galaxy-halo connection clusters of galaxies "edges" of halos

friday group meetings 3pm, ERC 419 subscribe to mailing list at https://box.uchicago.edu/mailman/listinfo/fridayowls

Camille Avestruz KICP fellow 15-19 Now Asst Professor UMichigan

Oscar Agertz
KICP fellow 12-15
Now Asst Professor
Lund University

Surhud More KICP fellow 09-12 Now Professor Pune ICUAA and IPMU

structure and galaxy formation re-ionization modelling

Recent graduates:

Denis Erkal Physics PhD 2013 Asst. Professor, Surrey Univ, UK

Matt Becker E Physics PhD 2013 Asst. Scientist Argonne National Lab

Benedikt Diemer Astro PhD 2015 Einstein Fellow Asst Professor U Maryland

Phil Mansfield
Astro PhD 2020
KIPAC fellow, Stanford

Sasha Kaurov, Astro PhD 2016 W.D. Loughlin Fellow, IAS

Cameron Liang Astro PhD 2018 Postdoc Fellow UCSB-> Institute for Defense Analyses

Vadim Semenov Astro PhD 2019 Hubble Fellow ITC, Harvard

physics of star formation

aeedback process

and galactic winds

simulatons of

reionization

UChicago Research Computing Center

General purpose computing cluster (~16000 cores) used for research and classes by faculty, postdocs, students

Includes fast interconnect (FDR-10), large memory nodes, GPU nodes

https://rcc.uchicago.edu/resources/high-performance-computing

Extragalactic Optical / Infrared Astronomy at the University of Chicago

Probing the other dark matter:

observations, semi-analytic models, and instrumentation

Current projects:

- An image slicer for Magellan Revealing the invisible cosmos (U Chicago Women's Board)
- A high-definition view of the complex circumgalactic medium (NSF AAG)
- The CUBS Cosmic Ultraviolet Baryon Survey (2x169 orbits HST Cycle 25)

Hsiao-Wen Chen

Astronomy & Astrophysics / KICP

The University of Chicago

Current/former group members

Mandy Chen, 3rd-yr Graduate Student

Zhijie Qu, Postdoc Scholar

Naren Kasinath, 3rd year undergrad

Rohan Venkat, 2nd year undergrad

Erin Boettcher, Postdoc Scholar, GSFC

Jean-Rene Gauthier, PhD '11, Caltech Millikan fellow, Senior Principal Product Data Scientist, Oracle

Sean Johnson, PhD '16, Assistant professor, Michigan, Ann Arbor Fakhri Zahedy, PhD '19, Carnegie Fellow

Yun-Hsin Huang, masters '15, UArizona graduate program

Taweewat (Champ)
Somboonpanyakul, '15, MIT PhD '21

Rebecca Pierce, '17, UMaryland, aerospace engineering graduate program

What We Do

String Theory and Cosmology
Inflation
Gravitational Particle Production
Origin of Dark Matter
Dark Energy
Particles and Cosmology
Early Universe Cosmology
Imprint of Inflation on CMB

Primordial Gravitational Waves
Cosmic Origin of Dark Matter
Dark Matter Direct Detection
Dark Matter Indirect Detection
Primordial Black Holes
Modified Gravity
Neutrino Astrophysics/Cosmology
Quantum Cosmology

Who Does It

Astronomy & Astrophysics Faculty

Craig Hogan

Wayne Hu

Dan Hooper

Austin Joyce

Rocky Kolb

Gordon Krnjaic

Other faculty from Physics, EFI, KCTP Postdocs from Chicago, Fermilab, Argonne Members of the Kavli Institute for Cosmological Physics (KICP)

KICP: People

30 Senior Members

Primary Appointments:

Astronomy & Astrophysics Dept.

Physics Dept.

Fermilab

Argonne

3 Senior Researchers

20 Senior Associates

12 KICP Fellows

33 Associate Fellows

46 Graduate Students

Numerous Undergraduate Students

144 Total

KICP: Science

Cosmic Microwave Background Experiment Multi-messenger Astronomy

Cosmic Microwave Background Theory Neutrinos (accelerators, cosmic, reactors)

Cosmic Rays Observational Cosmology

Dark Matter Experiment Particle Theory and Cosmology

Dark Matter Theory Structure Formation & Evolution

Detector Development Survey Science

General Relativity and Cosmology Theoretical Cosmology

Where We Do It Campus

Eckhardt Research Center

Michelson Physics Center

Where We Do It Chicagoland

Fermi National Accelerator Laboratory

Argonne National Laboratory

Craig Hogan

Observable effects of quantum nonlocality and coherence on gravity

"Spooky" causal correlations of primordial perturbations in large-angle CMB anisotropy and large scale structure

Relation of the cosmological constant to QCD

Experiments (thought and real) with quantum gravity

Wayne Hu

Professor, Department of Astronomy and Astrophysics, and the College; Enrico Fermi Institute; Kavli Institute for Cosmological Physics

Research

Hu's research focuses on the theory and phenomenology of inflation, dark energy and gravity as revealed in Cosmic Microwave Background anisotropies, large scale structure and gravitational lensing.

Current Students

Graduate: Meng-Xiang Lin, David Zegeye

Recent Students

Graduate: Sam Passaglia (2020), Pavel Motloch (2018), Chen He (2017), Yin Li (2015),

Pierre Gratia (2015), Vinicius Miranda (2015), Cora Dvorkin (2011),...

Dan Hooper

Research Interests

The Particle Nature of Dark Matter

- -Indirect and direct searches
- -The Galactic Center γ -ray excess
- -Dark matter model building

Physics of the early universe

- -Origin of dark matter
- -Exotic relics? Exotic eras?

High-energy astrophysics

- -Neutrino astronomy
- -Cosmic ray physics
- -Gamma ray astronomy

Austin Joyce

Mes Se

Early universe cosmology:

Inflationary physics

New calculational

approaches ("bootstrap")

Theoretical Cosmologist: Working at the interface between gravity and high energy physics—particularly through the use of effective field theory/symmetries.

Cosmology as a probe of fundamental physics:

- Signatures of new particles
- The origins of structure in the Universe

Physics of the late Universe:

- Cosmic acceleration
- Tests of gravity
- Dark matter phenomenology
- Black hole physics

 $10^{-32} \, \mathrm{s}$

Today

Rocky Kolb

Last three papers:

comoving length scale

Completely dark photons from gravitational particle production during the inflationary era With Andrew J. Long (Rice)
Published in: *JHEP* 03 (2021) 283

Catastrophic Production of Slow Gravitinos With Andrew J. Long (Rice), and Evan McDonough (UChicago) Physical Review D, in press (2021)

Gravitino Swampland Conjecture With Andrew J. Long (Rice), and Evan McDonough (Winnipeg)

Physical Review Letters, in press (2021)

Current projects:

Gravitational production of massive gravitons With Siyang Yang and Andrew J. Long (Rice) and Rachel Rosen (Columbia)

Rarita-Schwinger fermions as dark matter With Daniel Chung and Eddie Basso (Wisconsin)

Supergravity in the swampland? With Andrew J. Long (Rice), and Evan McDonough (Winnipeg)

 $m/H_e = 10^{-2}$

 $k/a_eH_e = 10^1$

 $k/a_e H_e = 10^0$

 $k/a_eH_e = 10^{-1}$

 $k/a_eH_e = 10^{-}$

 a/a_e

Gordan Krnjaic ("Kern-ya-yitch")

, h

Theoretical cosmologist

Research Interests

Dark matter
Neutrinos
Baryogenesis
Primordial black holes
Early universe theory
Proposing new experiments

Channel A $(Z_{\odot}/18)$

Channel B $(Z_{\odot}/18)$

CHeB + MS a = 0.12 AU a = 0.12 AU a = 0.12 AU a = 0.02 AU

CHeB + MS a = 0.11 AU CHeB + MS t = 5.1 Myr $\epsilon = 0.0$

BH + MS t = 7.3 Myr a = 0.41 AU $\epsilon = 0.0$ $7.7 M_{\odot}$ $58.7 M_{\odot}$

a = 0.01 AU

Gravitational-Wave Science at UChicago

Scrambling

Echoes

Our group studies the most extreme objects in the universe using gravitational waves. We employ theoretical, computational, and data analysis techniques to probe everything from black holes and neutron stars to the expansion of the universe.

Left: potential formation pathways for compact a = 0.35 AU BH+CHeB t = 9.5 Myr e = 0.97 30.0 M_{\odot} 58.5 M_{\odot} 15.5 Myr t = 5.9 Myrbinary systems with BH + He t = 10.2 Myr a = 10.2 AU BH/NS + CHeB t = 8.3 Myr t = 8.3 Myrhighly asymmetric masses a = 0.02 AU t = 10.4 Myr a = 0.02 AU e = 0.0 $3.0 M_{\odot}$ $23.4 M_{\odot}$ t = 8.3 Myrsimilar to those that produced gravitational-wave signal GW190814

Above: Simulated constraints on the jet structure of gamma-ray bursts. Below: Time-frequency trace of binary neutron star merger GW170817

Left: N-body simulations of chaotic gravitational encounters that っ result in a rapid, highly-eccentric merger.

Top: Additions to GR cause lensed GWs to be severely different than GR signals Left: Strong lensing can make lensed GWs appear as non-GR signals for type II images, even in classical GR.

High-energy X-ray Astrophysics

- Physics of galaxy clusters
- AGN feedback
- Observational plasma physics

- X-ray observations
- Numerical simulations
- X-ray missions: XRISM, Athena

PI: Irina Zhuravleva

Yunchong Zhang

Postdoc: Congyao Zhang

Nicholas Earley

Astroplasmas / High-Energy Astrophysics

Cosmic rays (all energies)

UChicago Tradition: Compton, Fermi, Chandrasekhar, Parker

- Non-thermal emission
- Now on supercomputers!

Christine Simpson

Rostom Mbarek George Zacharekgas

Plus several undergrad/master students

Also: F. Cattaneo, V. Dwarkadas, B. Rosner

Ultra-High Energy Neutrino Astronomy, Vieregg Group

Radio Neutrino Observatory in Greenland: First Deployment was in 2021! Full Array installed by 2024. Payload for Ultrahigh Energy Observations (PUEO): New UChicago-led Astrophysics Pioneers Mission to Launch in 2024!

Radomir Smida Research Ass. Prof.

Dan Baxter

at Fermilab).

KICP Fellow (now

John Farmer, Julian Cuevas-Zepeda Sravan

Jonty Paul

UHE Cosmic rays and neutrinos

Ariel Matalon

Nick Corso

Dark Matter direct detection

Angela Olinto CORRECTOR PLATE LIGHT SHIELD FOCAL SURFACE

Also: Scott Wakely Light cosmic rays

Pointe du Fréjus Tunnel routier de Fréjus FRANCE Altitude 1 228 n

Exoplanets

Astronomy & Astrophysics faculty

Geophysical Sciences faculty

Bean

Fabrycky

Rogers

Powell (Starting 2023)

Abbot

Ciesla

Kite

UChicago goes to Reykjavik

(Extreme Solar Systems IV)

Exoplanet Dynamics Group - Daniel Fabrycky

Evolution: N-body, migration, tidal dynamics, ... System architectures: i's, e's, spin-orbit, mass/radius,... Types: Resonant Chains, Binary hosts, Exomoons, ...

Bean group will have access to ~300 hours of JWST exoplanet atmosphere observations in Cycle 1, including the lead of the very first observations.

JWST launch robustly expected by the end of the year.

JWST will revolutionize our understanding of planets and the origins of life by revealing the atmospheric compositions, structures, and dynamics of transiting exoplanets in unprecedented detail.

Exoplanets

MAROON-X

New radial velocity instrument built at U. Chicago and recently commissioned on the Gemini-N telescope

Aim to detect rocky planets in the habitable zones of nearby M dwarfs

GI 486b = TOI-1827.01

CARMENES rms = 1.9 m/s

Radial Velocity (m s⁻¹)

Red rms = 0.44 m/s MX Blue rms = 1.2 m/s

HIRES

Rogers - Theory and Computation Group Uncovering the Composition Distribution of Planets

Planet Evolution Model Database

Building an extensive, accessible, and versatile database of planet interior structure and evolution models (from sub-Earths to super-Jupiters) to predict planet size at specified mass, composition, insolation, and age.

Planet Population Statistics

Developing frameworks to derive constraints on the planet mass-composition distribution from large numbers of noisy M_p-R_p measurements.

Connecting Planet Interiors and Atmospheres

Studying the planet interioratmosphere connection to identify atmospheric abundance patterns that could be used as robust indicators deep interior structure and processes.

Group Meetings Wednesdays @ 2pm. All are welcome!

The Cosmic Microwave Background

Inflation

Inflation (~10¹⁶ GeV)

Neutrinos

• Energy-scale of • Beyond standard model: relic particles

> Sum of the neutrino masses

Age of the Universe

Dark Energy

• Test gravity and dark energy

BICEP2 Collaboration/CERN/NASA

Astrophysics

- Galaxy clusters
- Transients
- Our galaxy
- Search for planet 9

CMB Instrumentation & Analysis

Detector Development

Integration and Deployment

CMB Map-making

Large Millimeter Telescope (SuperSpec) suk

New instruments for submm-wavelength spectroscopy and line intensity mapping.

South Pole Telescope

(SPT-SLIM)

Current members:

Pete Barry Kirit Karkare Ryan McGeehan Amy Tang (graduated) Cory Cotter Aaron Steiger

The Cosmic Microwave Background

Brad Benson Fermilab SPT, CMB-S4

John Carlstrom U. Chicago A&A SPT, CMB-S4

Clarence Chang Argonne SPT, CMB-S4

Tom Crawford U. Chicago, A&A SPT, CMB-S4

Jeff McMahon U. Chicago A&A ACT, SO, CMB-S4 Bicep/KECK, S4

Abby Vieregg U. Chicago Phys.

Selected action shots of group members. (I blame covid for the absence of an up to date group photo)