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Structure & Culture



STRUCTURE

“Patterning of social connections among 
individuals, among groups, and other 
aggregates...” 

--Pachucki and Breiger, Annu. Rev. Sociol. 36, 2010



CULTURE

“...meanings, local practices, discourse, 
repertoires, and norms...” 

--Pachucki and Breiger, Annu. Rev. Sociol. 36, 2010



NETWORK ANALYSIS 
PRIVILEGES STRUCTURE



Structural Hole

Burt, AJS 2004



Cultural Hole

Pachucki & Breiger, 2010



Scientific Communication



Citations reveal



“Patterning of social connections among 
individuals, among groups, and other 
aggregates...” 

--Pachucki and Breiger, Annu. Rev. Sociol. 36, 2010



and conceal

“...meanings, local practices, discourse, 
repertoires, and norms...” 

--Pachucki and Breiger, Annu. Rev. Sociol. 36, 2010



Every science requires 
a special language, 
because every science 
has its own ideas.

Etienne Bonnot de Condillac



Fitness landscape...



Comparing expected 
relative reproductive 
success across multiple 
genotypes...



Jargon facilitates...

“The N = 4 super Yang-Mills plasma is studied 
in the regime of weak coupling. Collective 
excitations and collisional processes are 
discussed and compared to those of QCD 
plasma. The two systems are concluded to be 
very similar to each other with the differences 
mostly reflecting different numbers of degrees 
of freedom.”



and impedes...

communicating medical information  
to a patient 

publishing material  
for public outreach 

presenting technical information  
to a multidisciplinary audience



MODELING 
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and Methods.

I. RESULTS

A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.

Phrase

Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=

�
�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based
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� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.

Phrase

Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=

�
�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based

Entropy
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and Methods.

I. RESULTS

A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.

Phrase

Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=

�
�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based

pi(x) � log2 pi(x)
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and Methods.

I. RESULTS

A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.

Phrase

Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=

�
�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based

Entropy

(equivalently, expected message length)
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and Methods.

I. RESULTS

A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.

Phrase

Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=

�
�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based

pi(x) � log2 pi(x)
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and Methods.

I. RESULTS

A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.

Phrase

Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=

�
�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based

Entropy

(equivalently, expected interpretive effort)
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and Methods.

I. RESULTS

A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.

Phrase

Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=
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x�X pi(x) log2 pi(x)
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and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based
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A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.

Phrase

Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:
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This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
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� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
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and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
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High	


Entropy



2

and Methods.

I. RESULTS

A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
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The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.
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The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.
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What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
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� log2 pj(y). Insofar as the length of codewords corre-
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sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-
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ratio of the average message length within field i to the
average message length between fields:
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and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
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To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.
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Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.
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Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:
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Q(pi||pj)
=
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x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based
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A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.
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Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:
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This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:
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=
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and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
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with a reader through a channel [9]. Let X denote the
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The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.
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The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the
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di�erent codebooks. This situation is represented below.
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that the writer now encodes phrases optimally for a
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distribution over phrases pi(x) and the reader’s probabil-
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probability pi(x) and encodes them in codewords from
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This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-
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with a reader through a channel [9]. Let X denote the
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values x ⇤ X and probability distribution pi(x); the sub-
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random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.
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The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.
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What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
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nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-
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random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
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is commonly used to explain the power-law distribution
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� log2 pi(x) in bits [12]. Most of the extra cost incurred
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that are common in the writer’s field but rare in the
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the same probability distribution and codebook, denoted
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This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
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where many phrases are used with equal probability (i.e.,
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ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
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nearly every phrase used by an author in the other.
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on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=

�
�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
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A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.
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Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.
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What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
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the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:
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to a reader in the same field. We can understand this
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codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
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nearly every phrase used by an author in the other.
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and similarly define the jargon barrier for a reader from
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the same probability distribution and codebook, denoted
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ing of messages generated by sampling phrases x ⇤ X
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� log2 pi(x) in bits [12]. Most of the extra cost incurred
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that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.
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to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.
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cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):
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This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.
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What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
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to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-
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ratio of the average message length within field i to the
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Eij =
H(Xi)

Q(pi||pj)
=

�
�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
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with a reader through a channel [9]. Let X denote the
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random from X with probability pi(x). She then tran-
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codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
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pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.
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that the writer now encodes phrases optimally for a
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the reader’s codebook Pj with length � log2 pj(x). The
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This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-
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codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.
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encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):
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pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
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that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
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probability pi(x) and encodes them in codewords from
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quently in field i and very rarely in field j, the respective
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sage, an article written by someone in field i, will require
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understand it than a reader from field i. The di�erent
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communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=

�
�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
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quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
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of English words [10, 11]. The optimum codeword for a
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� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
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tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.
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H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.

Phrase

Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=

�
�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based
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and Methods.

I. RESULTS

A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.

Phrase

Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=

�
�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based

pi(x) � log2 pj(x)
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and Methods.

I. RESULTS

A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.

Phrase

Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=

�
�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based
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and Methods.

I. RESULTS

A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.

Phrase

Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=

�
�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based

pi(x) � log2 pj(x)
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and Methods.

I. RESULTS

A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.

Phrase

Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=

�
�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based

Inefficient



2

and Methods.

I. RESULTS

A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.

Phrase

Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=

�
�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based

pi(x) � log2 pj(x)
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and Methods.

I. RESULTS

A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.

Phrase

Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=
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�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based
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I. RESULTS

A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.
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random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.
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Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.
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What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:
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and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based
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Possible Bubbles of Spacetime Curvature in the South Pacific

Benjamin K. Tippett∗

Department of Mathematics and Statistics
University of New Brunswick
Fredericton, NB, E3B 5A3

Canada

In 1928, the late Francis Wayland Thurston published a scandalous manuscript in purport of
warning the world of a global conspiracy of occultists. Among the documents he gathered to
support his thesis was the personal account of a sailor by the name of Gustaf Johansen, describing
an encounter with an extraordinary island. Johansen’s descriptions of his adventures upon the
island are fantastic, and are often considered the most enigmatic (and therefore the highlight) of
Thurston’s collection of documents.

We contend that all of the credible phenomena which Johansen described may be explained as
being the observable consequences of a localized bubble of spacetime curvature. Many of his most
incomprehensible statements (involving the geometry of the architecture, and variability of the
location of the horizon) can therefore be said to have a unified underlying cause.

We propose a simplified example of such a geometry, and show using numerical computation that
Johansen’s descriptions were, for the most part, not simply the ravings of a lunatic. Rather, they
are the nontechnical observations of an intelligent man who did not understand how to describe
what he was seeing. Conversely, it seems to us improbable that Johansen should have unwittingly
given such a precise description of the consequences of spacetime curvature, if the details of this
story were merely the dregs of some half remembered fever dream.

We calculate the type of matter which would be required to generate such exotic spacetime
curvature. Unfortunately, we determine that the required matter is quite unphysical, and possess
a nature which is entirely alien to all of the experiences of human science. Indeed, any civilization
with mastery over such matter would be able to construct warp drives, cloaking devices, and other
exotic geometries required to conveniently travel through the cosmos.

I. INTRODUCTION

A. The Personal Accounts of Thurston, Dyer, and Johansen

The most wonderful thing in the world, in our opinion, is the ability of the human mind to correlate many seemingly
unrelated pieces of information into a jubilant whole. We are born ignorant, imprisoned by the islands of our personal
experience; but intelligence, logic, and diligent study are like glorious seaworthy vessels which allow us to travel
boundless and brilliant oceans. The great ambition of science is the piecing together of dissociated knowledge to
create hard tempered theories, and then the bravely facing of their philosophical implications in order to begin the
process anew. In this way we have climbed towards the brilliant truth, and have lifted our human state into the glory
of an age of enlightenment.

Let us begin with a discussion of the source material our research is based upon, lest we find our own work tainted
by the stigma associated with it. We would like to make it clear that we in no way endorse or condone their occultist
perspective.

In 1928, a manuscript written by the late Francis Wayland Thurston was published [8], relating his conclusions
regarding an investigation begun by his late uncle, Dr. George Angell. These findings, taken in conjunction with the
reported findings of Dr. William Dyer [2] from his 1930 expedition to the Antarctic continent, paint an incredible
picture. As they describe it, somewhere in the oceans of the south pacific dwell a dormant race of ancient cyclopean
monsters.

The respective works of Angell and Dyer were received with an appropriately generous quantity of incredulity. The
published accounts of Dyer’s adventures in Antarctica have been dismissed as being due hallucinations incurred by
a high-altitude cerebral edema. Thurston’s manuscript, on the other hand, has often been interpreted as being the
creative work of a paranoid mind in the grip of some tragic delirium. The year preceding his death (and the publication

∗Electronic address: barn@titaniumphysics.com
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Fig. 1. Detecting regularities in patterns of movement on a network (derived from [14] and also
available in a dynamic version [18]). (a) We want to effectively and concisely describe the trace of a
random walker on a network. The orange line shows one sample trajectory. For an optimally efficient
one-level description, we can use the codewords of the Huffman codebook depicted in (b). The 314 bits
shown under the network describes the sample trajectory in (a), starting with 1111100 for the first
node on the walk in the upper left corner, 1100 for the second node, etc., and ending with 00011 for
the last node on the walk in the lower right corner. (c) A two-level description of the random walk, in
which an index codebook is used to switch between module codebooks, yields on average a 32% shorter
description for this network. The codes of the index codebook for switching module codebooks and the
codes used to indicate an exit from each module are shown to the left and the right of the arrows under
the network, respectively. Using this code, we capitalize on structures with long persistence times, and
we can use fewer bits than we could do with a one-level description. For the walk in (a), we only need
the 243 bits shown under the the network in (c). The first three bits 111 indicate that the walk begins
in the red module, the code 0000 specifies the first node on the walk, and so forth. (d) Reporting only
the module names, and not the locations within the modules, provides an efficient coarse-graining of
the network.

Morse code uses short codes for common letters and longer codes for rare ones. Figure 1(b)
shows a prefix-free Huffman coding for a sample network. It corresponds to a lookup table for
coding and decoding nodes on the network, a codebook that connects nodes with codewords. In
this codebook, each Huffman codeword specifies a particular node, and the codeword lengths
are derived from the ergodic node visit frequencies of a random walk (the average node visit fre-
quencies of an infinite-length random walk). Because the code is prefix-free, that is, no codeword
is a prefix of any other codeword, codewords can be sent concatenated without punctuation and
still be unambiguously decoded by the receiver. With the Huffman code pictured in Fig. 1(b),
we are able to describe the nodes traced by the specific 71-step walk in 314 bits. If we instead
had chosen a uniform code, in which all codewords are of equal length, each codeword would
be ⌈log 25⌉ = 5 bits long, and 71 · 5 = 355 bits would have been required to describe the walk.
This Huffman code is optimal for sending a one-time transmission describing the location

of a random walker at one particular instant in time. Moreover, it is optimal for describing a
list of locations of the random walker at arbitrary (and sufficiently distant) times. However, if
we wish to list the locations visited by our random walker in a sequence of successive steps, we
can do better. Sequences of successive steps are of critical importance to us; after all, this is
flow.
Many real-world networks are structured into a set of regions such that once the random

walker enters a region, it tends to stay there for a long time, and movements between regions
are relatively rare. As we design a code to enumerate a succession of locations visited, we can
take advantage of this regional structure. We can take a region with a long persistence time and
give it its own separate codebook. So long as we are content to reuse codewords in other re-
gional codebooks, the codewords used to name the locations in any single region will be shorter
than those in the global Huffman code example above, because there are fewer locations to be
specified. We call these regions “modules” and their codebooks “module codebooks.” However,
with multiple module codebooks, each of which re-uses a similar set of codewords, the sender
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and Methods.

I. RESULTS

A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.

Phrase

Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=

�
�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based
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and Methods.

I. RESULTS

A. Modeling scholarly communication

To quantify the e�ects of jargon, we construct a simple
model of scientific communication. For reference, we first
consider a model for optimal communication within each
field, then we quantify the penalty for using these lan-
guages between fields. Imagine a writer communicating
with a reader through a channel [9]. Let X denote the
space of all phrases they might use to communicate. The
writer is characterized by a random variable Xi, with
values x ⇤ X and probability distribution pi(x); the sub-
script i denotes the writer’s field of science or scholarship.
The probability distribution pi(x) tracks the importance
of each phrase in field i; important phrases are used fre-
quently, e.g., “fitness landscape” in evolutionary biology.

The writer generates a message by drawing phrases at
random from X with probability pi(x). She then tran-
scribes the phrases into whatever “language” is appro-
priate for her reader’s scholarly field, using that field’s
codebook Pj . We assume that the language of each
scholarly field (its codebook Pj) is optimized based on
how frequently a given phrase is used; this assumption
is commonly used to explain the power-law distribution
of English words [10, 11]. The optimum codeword for a
phrase x used in field i with probability pi(x) has length
� log2 pi(x) in bits [12]. Most of the extra cost incurred
when communicating between fields comes from phrases
that are common in the writer’s field but rare in the
reader’s field; non-technical phrases (“here we show”) will
tend to have comparable frequencies in both fields.

First, consider a scientist from field i sending a message
to a reader from the same field. Writer and reader have
the same probability distribution and codebook, denoted
by the blue boxes.

Phrase

Writer Reader
Channel

The writer selects phrase x with probability pi(x). Be-
cause she and her reader have the same codebook, she
encodes it with a codeword of length � log2 pi(x). The
expected message length per phrase is simply the Shan-
non entropy of Xi given probability distribution pi(x):

H(Xi) = �
⇥

x�X
pi(x) log2 pi(x) (1)

This result follows directly from the Shannon source cod-
ing theorem [9]. Indeed, this is the most e⌅cient encod-
ing of messages generated by sampling phrases x ⇤ X
with the writer’s probability distribution pi(x). In fields
where many phrases are used with equal probability (i.e.,
probability mass is spread evenly across phrases) the en-
tropy will be large, as will the average message length

per phrase. If some phrases are used very frequently, the
entropy will be smaller. These two situations model the
e�ciency of jargon for communication within fields.
Now consider the more interesting case, in which the

writer and the reader come from di�erent fields and have
di�erent codebooks. This situation is represented below.

Phrase

Writer Reader
Channel

What is the average message length per phrase, given
that the writer now encodes phrases optimally for a
reader in a di�erent field? Denote the writer’s probability
distribution over phrases pi(x) and the reader’s probabil-
ity distribution pj(x). The writer selects phrases x with
probability pi(x) and encodes them in codewords from
the reader’s codebook Pj with length � log2 pj(x). The
expected length of her message per phrase is then the
cross entropy Q(pi||pj) of the two distributions [13], i.e.,
the entropy of Xi given pi(x) plus the Kullback-Leibler
divergence between pi and pj [14]:

Q(pi||pj) = �
⇥

x�X
pi(x) log2 pj(x) (2)

This quantity will always be larger than the Shannon
entropy; a message sent to a reader in a di�erent field
will, on average, be longer than the same message sent
to a reader in the same field. We can understand this
result intuitively. If a particular phrase y is used very fre-
quently in field i and very rarely in field j, the respective
codewords will vary enormously in length, � log2 pi(y) ⇥
� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
average message length between fields:

Eij =
H(Xi)

Q(pi||pj)
=

�
�

x�X pi(x) log2 pi(x)

�
�

x�X pi(x) log2 pj(x)
(3)

and similarly define the jargon barrier for a reader from
field j reading a paper in field i as Jij = 1 � Eij . We
denote the average jargon barrier of field i as Ji =�

j Jij/N , where we sum over the N = 60 potential
“reading” fields.
This operationalization of semantic distance, while

simple, has several advantages. First, unlike most at-
tempts to include semantic information, ours is based
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I. RESULTS
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� log2 pj(y). Insofar as the length of codewords corre-
spond to the time or energy required to decipher a mes-
sage, an article written by someone in field i, will require
a reader from field j to expend much more energy to
understand it than a reader from field i. The di�erent
message lengths thus reflect the ine�ciency of jargon for
communication between fields. In the worst case sce-
nario, the two fields concentrate their probability mass
on largely disjoint subsets of phrases, i.e., they have dis-
tinct jargon, forcing a reader from the one to look up
nearly every phrase used by an author in the other.
With these results in hand, we can quantify the ef-

ficiency of communication from field i to field j as the
ratio of the average message length within field i to the
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and similarly define the jargon barrier for a reader from
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database. A complete list of these terms, and more detailed methodology, are
available in the online supplement. To apply our model of scholarly communica-
tion to real data, we need the codebooks for field i and j to contain the same
phrases (domain[Pi]=domain[Pj ]) so that a concept from field i can always be
expressed in the codebook of field j. To ensure this, we introduce a teleportation
parameter�, which merges a discipline codebookPi with the “corpus codebook"
S generated from the papers of every field:

psi (x) = (1� �)pi(x) + �s(x)

psj(x) = (1� �)pj(x) + �s(x),

where the lowercase p and s indicate the probability distribution function over
phrases for the appropriate codebooks. Intuitively, this means that with some
small probability � the writer (or reader) consults not the discipline codebook Pi

but the corpus codebook S. The value of this parameter does not change our
results, so we chose the intuitive value of 1%.

Measuring distance in the citation network. We measure distance in the ci-
tation network between fields i and j as follows. For randomly selected pairs
of papers, one in field i and one in field j, we calculate the number of links in
the shortest path between them, where topological distance is computed for the
undirected version of the citation network. The average value of this quantity is
the average shortest path between these two fields.

Jargon topomap. To construct the topographical map in Figure 3, we first em-
bed the 60 fields in two dimensions using principal coordinates analysis (PCoA),
i.e., multidimensional scaling, as implemented in R [16]. We define the elements
of the dissimilarity matrix using the average shortest path distance between two
fields in the citation network. We refer to the xy coordinates of field i as F i

x

and F i
y . Jargon mountains were calculated as the distance-weighted sum of

pairwise, symmetrized jargon barriers J̃ij . The underlying logic is as follows.
The height of each pixel in the map should be more affected by closeby fields.
Thus we define a weight vector ���⇥wPxy for pixel Pxy , at position x and position
y. The components of this vector determine how much a given field i contributes
to the pixel height at position x, y:

wi
Pxy = (

⇥
(x� F i

x)2 + (y � F i
y)2)

��,

where � is a parameter controlling how rapidly the influence of a given field falls
off with distance. For Figure 3, we used � = 1. Finally, we exclude the near-
est field ( max(���⇥wPxy ) ) from calculations of the pixel height; inclusion of the
nearest field leads to “holes" in the topographical map centered on each field (the
sum is dominated by the self-barrier J̃ii = 0). The height of the pixel Pxy is
then given by:

Pxy =
�

i ⇤=max(���⇥wPxy )

�

j ⇤=max(���⇥wPxy ),j ⇤=i

wi
Pxyw

j
Pxy

J̃ij .
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D(i, j) = hdiji

(structural distance: measured using citation paths)
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What do cultural holes tell us?

Four “domains”, three tied together by scale: social sciences; 
ecological sciences; molecular biology; statistics 

Social sciences have lower jargon barriers and smooth intra-
domain communication (integrated) 

Ecological sciences have higher jargon barriers and inefficient 
communication with neighbors (balkanized by particularities) 

Molecular sciences have higher jargon barriers but communicate 
efficiently with neighbors (shared reductive substrate)
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Ways Forward

Better models of scientific language 
(topic models?) 

More diverse “symbol set” (e.g., white 
space, equations, etc.) 

Temporality & temporal dynamics of 
jargon/cultural holes



Structure and culture are 
complementary,  
cross-cutting,  
& co-constituting



Cultural Hole

Advantage to Broker



FUTURE POSSIBILITIES?







ALIEN OBJECTS


