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Far away places with strange sounding names

Far away over the sea

Those far away places with strange sounding names

Are calling, calling me.

– Joan Whitney & Alex Kramer
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ABSTRACT

Exoplanet atmosphere characterization has the potential to reveal the origins, nature, and

even habitability of distant worlds. This thesis represents a step towards realizing that

potential for a diverse group of four extrasolar planets. Here, I present the results of in-

tensive observational campaigns with the Hubble and Spitzer Space Telescopes to study the

atmospheres of the super-Earth GJ 1214b and the hot Jupiters WASP-43b, WASP-12b, and

WASP-103b.

I measured an unprecedentedly precise near-infrared transmission spectrum for GJ 1214b

that definitively reveals the presence of clouds in the planets atmosphere. For WASP-43b

and WASP-12b, I also measured very precise spectra that exhibit water features at high

confidence (> 7σ). The retrieved water abundance for WASP-43b extends the well-known

Solar System trend of decreasing atmospheric metallicity with increasing planet mass. The

detection of water for WASP-12b marks the first spectroscopic identification of a molecule

in the planet’s atmosphere and implies that it has solar composition, ruling out carbon-

to-oxygen ratios greater than unity. For WASP-103b, I present preliminary results from

the new technique of phase-resolved spectroscopy to determine the planet’s temperature

structure, dynamics, and energy budget. In addition to these observations, I also describe

the BATMAN code, an open-source Python package for fast and flexible modeling of transit

light curves.

Taken together, these results provide a foundation for comparative planetology beyond

the Solar System and the investigation of Earth-like, potentially habitable planets with future

observing facilities.
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CHAPTER 1

INTRODUCTION

1.1 Exoplanets’ Greatest Hits, 1995 - present

Exoplanet science has made stunning progress during the twenty short years since the first

planet orbiting a star other than the Sun was discovered (Mayor & Queloz, 1995). To name

just a few recent highlights, we now have mass measurements for terrestrial planets (e.g.,

Howard et al., 2013; Pepe et al., 2013; Dressing et al., 2015), direct images of a young Jupiter-

like planet within 15 AU of its host star (Macintosh et al., 2015), and the discovery of over

2000 confirmed transiting planets from NASA’s Kepler mission (Borucki et al., 2010) and

ground-based surveys (from the Exoplanet Orbit Database; Han et al., 2014).

Exoplanets are far more diverse in their properties than the planets of the Solar System.

We have found ultra-short period planets (e.g., Sanchis-Ojeda et al., 2014), highly inflated

planets (e.g., Hebb et al., 2009), a new class of planet known as super-Earths, which are

between the Earth and Neptune in size (e.g., Santos et al., 2004), circumbinary planets (e.g.,

Doyle et al., 2011), and even a disintegrating planet orbiting a white dwarf (Vanderburg

et al., 2015).

But this wealth of discovery is perhaps best summarized with demographic information.

We know now that planets are common, with at least 20% of stars hosting one or more

(Howard et al., 2012; Fressin et al., 2013; Dressing & Charbonneau, 2015). Note that this

occurrence rate is a lower bound because it does not include long-period planets (P > 1

year), and will likely increase with longer survey duration. Small planets are more abundant

than large ones, with a plateau in occurrence near 2R⊕ (Petigura et al., 2013). Remarkably,

occurrence measurements have even extended to Earth analogs (terrestrial planets in the

habitable zones of their host stars), with the best current estimate of their abundance at

roughly 10% (Petigura et al., 2013; Dressing & Charbonneau, 2015).
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1.2 Moving from Discovery to Characterization

There are two questions that immediately arise for these new-found exoplanets:

1. How did they form and evolve?

2. What are they like?

One approach to answering these questions is to compare the observed planet masses,

radii, and orbital architectures to theoretical models of planet formation and interior struc-

ture. There has been extensive work on this topic, but it is a challenging proposition because

there are often multiple models that can reproduce the properties of a planetary system (e.g.,

Rogers & Seager, 2010a; Chiang & Laughlin, 2013; Hansen & Murray, 2013; Dawson, 2014;

Dawson et al., 2016; Chatterjee & Tan, 2014; Schlichting, 2014; Batygin et al., 2015; Lee &

Chiang, 2016). Morever, none of this work can address a planet’s climate or habitability.

Fortunately, we can reveal the nature of exoplanets in much greater detail by

characterizing their atmospheres. The atmosphere is a fossil record of formation

conditions, and it is also responsible for regulating planetary climate.

1.2.1 Clues from Planetary Atmospheres I: How Do Planets Form?

To give a conceptual example of how atmospheres are sensitive to planet formation condi-

tions, consider the case of atmospheric water abundance. For a typical protoplanetary disk

around a Sun-like star, water ice freezes out a radial distance of 2 AU (Öberg et al., 2011).

Water is the dominant carrier of oxygen, so beyond the water frost-line the remaining gas is

oxygen-poor whereas solids are oxygen-rich.

Consequently, giant planets that form by core accretion beyond the water frost-line are

expected to sweep up the majority of their mass in oxygen-poor gas and have low water

abundances (Madhusudhan et al., 2011a). Small planets, on the other hand, have a larger

bulk fraction of their mass coming from planetesimals. Super-Earths formed exterior to

2



the water frost-line will therefore be enriched in water compared to those formed at shorter

orbital distances from the star (Chiang & Laughlin, 2013).

This qualitive model of water enrichment/depletion has been made quantitative by planet

population synthesis models that track the planets’ composition in detail (Fortney et al.,

2013; Madhusudhan et al., 2014a; Marboeuf et al., 2014). These simulations show how

composition is sensitive not only to formation location, but also the size and composition of

planetesimals, the surface density of solids in the protoplanetary disk, and the total mass of

the disk.

By measuring the atmospheric composition of a large sample of exoplanets and comparing

the results to the output of planet population synthesis models, we have the potential to

constrain these important facets of the formation process.

1.2.2 Clues from Planetary Atmospheres II: What are Planets Like?

Planetary atmospheres are also responsible for planetary climate in two key ways. First, the

atmosphere sets a planet’s energy budget. The atmospheric chemical composition (including

cloud and haze properties) controls the fraction of incident stellar flux reflected by the planet

(the Bond albedo). In addition, greenhouse gases such as water and carbon dioxide absorb

outgoing long-wave radiation from the planet’s surface and heat the atmosphere. Some of

this energy is re-radiated toward the surface, heating it in a feedback loop that increases the

equilibrium temperature of the planet. The other major role of the atmosphere is energy

transport. Atmospheric dynamics tend to even out temperature differences on the planet

caused by variations in insolation (from equator to pole, or day- to nightside). This energy

circulation from hot to cold regions is particularly important for tidally locked planets, which

have a highly irradiated dayside and no incident flux on the nightside (Pierrehumbert, 2010).

The atmosphere is also essential for planetary habitability. Consider the example of the

inner planets of the Solar System: Venus, Earth, and Mars. All three are near the so-called

habitable zone, where surface temperatures could be appropriate for liquid water (Koppa-

3



rapu, 2013). However, only Earth has retained its water. Venus lost most of its water

through evaporation caused by a runaway greenhouse effect and subsequent photoevapo-

ration, leaving a remnant atmosphere composed mainly of CO2. This composition results

in an uninhabitable surface with a temperature above 700 K, despite the planet’s relatively

modest insolation. By contrast, Mars has almost no atmosphere. Due to its low mass (only

one tenth that of Earth), Mars is vulnerable to atmospheric escape. It may have also expe-

rienced atmospheric erosion due to large impacts early in its history (Pierrehumbert, 2010).

The end result is a low-pressure CO2 atmosphere and a surface that is cold, dessicated, and

unfit for life.

1.2.3 Goals for This Work

The goal of my thesis is detailed characterization of the atmospheres of a select group of

exoplanets. This work is designed to make the first steps in understanding their origins and

climates, based on the principles discussed in this section. More broadly, a second goal is to

push the limits of achievable precision with current facilities to prepare for even more precise

investigations with the James Webb Space Telescope (JWST ), and lay the foundation for

the eventual study of potentially habitable worlds to separate the Earths from the Marses

and the Venuses.

1.3 Overview of Atmosphere Characterization Techniques

As described in §,1.2, atmosphere characterization has the potential to yield great insight

into the nature and origins of extrasolar planets. However, these planets are small, faint,

and distant, so how can one go about studying their atmospheres?

The focus of this work is on transiting planets, which periodically pass in front of their

host stars along our line of sight. These systems provide an unmatched opportunity for

atmosphere characterization because it is possible to tease out the spectrum of the planet by
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making differential measurements with respect to the host star. Using the star as a reference

point skirts the challenge of blocking out its light, and enables the study of cool planets

with short orbital periods (which are currently inaccessible via direct imaging). Transiting

systems therefore offer the best near-future prospects for characterizing planets similar to

those in our Solar System. In this section, I summarize the two primary techniques for

atmosphere characterization of transiting planets: transmission spectroscopy and thermal

emission spectroscopy.

1.3.1 Transmission Spectroscopy

The transmission spectroscopy method, illustrated in Figure 1.1, measures the planet’s tran-

sit depth as a function of wavelength. During transit, a small fraction of the stellar flux

filters through the planetary atmosphere along our line of sight. Absorbing species in the

atmosphere (molecules, atoms) block the transmission of stellar flux, resulting in an in-

crease in transit depth at wavelengths with larger opacity. The change in transit depth with

wavelength due to this effect scales as:

∆ ∼ 2HRp/R
2
s (1.1)

where Rp is the planet radius, Rs is the stellar radius, and H = kT/µg is the atmospheric

scale height (Seager, 2010). The atmospheric mean molecular mass and planetary surface

gravity are denoted by µ and g. Measurements of the transmission spectrum are primarily

sensitive to the atmospheric composition (relative molecular abundances) and the presence

of clouds and haze.

1.3.2 Emission Spectroscopy

A complementary approach to studying the atmospheres of transiting planets is the emission

spectroscopy technique, which measures the thermal emission from the planet. Figure 1.2
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Figure 1.1: Transmission Spectroscopy Schematic
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Illustration of the geometry of transmission spectroscopy. The left panels show a cartoon star
(large colored circle), with a transiting planet (core indicated by the black circle; atmosphere
by the partially opaque annulus). The rendered opacity of the atmosphere is proportional
to the fraction of transmitted stellar flux. The right-hand panels show the predicted trans-
mission spectrum for a 100% water vapor model atmosphere for a planet like GJ 1214b;
the transit depth increases at wavelengths where a larger fraction of stellar flux is absorbed
by water molecules in the atmosphere. The vertical red line indicates the wavelength of
light chosen to compute the atmospheric opacity (1.25, 1.35, 1.45, and 1.55 µm from top to
bottom).
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illustrates this approach. The eclipse depth is the ratio of planet to stellar flux, and is given

by:

fp =
R2
pI(λ, Tp)

R2
sI(λ, Ts)

(1.2)

where I(λ, T ) is the blackbody intensity at a wavelength λ and temperature T . The emission

spectrum is sensitive to both the planet’s atmospheric composition and its thermal structure.

At wavelengths where the atmosphere has higher opacity, thermal emission measurements

probe higher layers of the planetary atmosphere and thus constrain changes in temperature

with altitude.

Emission spectroscopy can also be used to characterize the atmosphere as a function of

longitude. A short-period, tidally-locked planet completes a full revolution on its spin axis

every orbital period. Phase curve observations, which measure thermal emission as a function

of time over an entire revolution, can therefore determine global atmospheric composition

and temperature structure.

1.4 Technical Breakthroughs Enabling Atmospheric Studies

It is worth noting the technical challenges associated with making the measurements de-

scribed in the previous section. For the best-case scenario, a large, high-temperature planet

(Jupiter radius, equilibrium temperature > 1000K), the amplitude of features in trans-

mission and emission spectra is of order 100 parts per million. This level of precision is

challenging to achieve with ground-based observations due to turbulence in the Earth’s at-

mosphere (e.g., Bean et al., 2010). Even from space with photon-noise limited precision,

stacking multiple transit and eclipse observations is necessary to reach sub-100 ppm preci-

sion (e.g., Kreidberg et al., 2014b).

There have been two major breakthroughs that enable measurements precise enough to

reveal spectral features in exoplanet atmospheres. The first is the development of the spatial
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Figure 1.2: Thermal Emission Schematic

Time lapse cartoon illustrating planet thermal emission as a function of time over its 20-
hour orbital period. The star is shown with a yellow circle. The planet is depicted as a
disk with orange shading indicating the hot dayside and gray shading for the nightside, with
the planet-to-star radius ratio enlarged for display purposes. The black line shows the total
planet + star flux as a function of time, with the blue circle marking the time corresponding
to each panel. This cartoon neglects reflected light from the planet, which can contribute
significant flux at visible wavelengths.
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scanning technique for the Wide Field Camera 3 instrument on the Hubble Space Telescope

(HST/WFC3). WFC3 is the newest instrument available on HST (installed in 2009) and

it provides low-resolution (R ∼ 100) near-infrared spectroscopy between 0.8 and 1.7 µm.

Since 2012, the Space Telescope Science Institute has supported an observing mode called

“spatial scanning”, which slews the telescope over the course of an exposure to spread out

the spectrum in the spatial direction on the detector. This instrument mode is a crucial

advance because it enables longer exposures without saturating the detector, improving the

duty cycle for observations of bright targets by an order of magnitude. Spatial scanning also

diminishes instrument systematic noise caused by variation in sensitivity of individual pixels

on the detectors, because a scanned spectrum is spread over 10 − 100× more pixels than

a traditional staring mode spectrum. WFC3 has been used extensively by the atmosphere

characterization community and has consistently provided repeatable, photon-noise-limited

measurements of planet spectra (e.g. Deming et al., 2013; Kreidberg et al., 2014b; Knutson

et al., 2014a; Stevenson et al., 2014a; Wakeford et al., 2016).

The second breakthrough for atmosphere characterization has been the discovery of many

transiting planets orbiting bright stars. WFC3 observations are photon-noise limited, so

bright targets are essential for successful measurements with a reasonable amount of ob-

serving time. While NASA’s space-based Kepler mission takes the lead in the total number

of transiting planet detections, the best candidates for atmosphere characterization come

from ground-based surveys that are focused specifically on bright stars. These include the

WASP, HAT, KELT, MEarth, and TRAPPIST surveys (Pollacco et al., 2006; Bakos et al.,

2007; Pepper et al., 2007; Charbonneau et al., 2009; Gillon et al., 2016). According to the

Exoplanet Orbit Database (Han et al., 2014), over one hundred planets have been found to

transit stars with H magnitude less than 10 . Noteable among these discoveries are planets

transiting the smallest stars (M-dwarfs), which are favorable targets for atmosphere studies

due to their large transit depths.
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1.5 Chapter Summaries

Thanks to the technical advances described in the previous section, high precision atmosphere

characterization is now possible for transiting planets. In the remainder of this document,

I describe my work on intensive atmosphere characterization for a selection of exoplanet

archetypes.

Chapter 2 reports the measurement of a precise near-infrared transmission spectrum

for the super-Earth GJ 1214b. This planet lies directly between the Earth and Neptune

in size (R = 2.7R⊕, M = 6.5M⊕), so its composition cannot be deduced from mass and

radius measurements alone due to degeneracies between the core mass fraction and the

atmosphere. I made the first measurement of its spectrum that is precise enough to detect

features for cloud-free, high mean molecular weight compositions. However, the despite

the unprecedented precision of this measurement, the spectrum is flat – devoid of spectral

features. The best explanation for this result is that clouds or haze are present in the

atmosphere, blocking transmission of stellar flux up to high altitudes. This chapter is adapted

from Kreidberg et al. (2014b).

In Chapter 3, I investigate the atmospheric water abundance for the hot Jupiter WASP-

43b. In contrast to the Solar System gas giants, this planet is hot enough that water is in

the gas phase in its atmosphere, enabling a robust estimate of its abundance. I measured

precise transmisssion and emission spectra for WASP-43b and detected water absorption

features at high confidence in both. I used these data to retrieve the atmospheric properties

and find a water abundance that is consistent with expectations for a solar composition gas

(0.4− 3.5× solar at 1σ confidence). This measurement agrees with the Solar System trend

of decreasing atmospheric metallicity with increasing planet mass. It also illustrates the

potential exoplanets hold for precise composition measurements: such measurements can be

made for a much larger and more diverse sample of planets than the Solar System provides,

to put new constraints on theories of planet formation. This chapter is based on Kreidberg

et al. (2014a).
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Chapter 4 describes the measurement of the atmospheric composition of a second hot

Jupiter, WASP-12b. This planet has been held up as the canonical example of a carbon-rich

planetary atmosphere, implying an unusual formation history for the planet (Madhusudhan

et al., 2011c,a; Stevenson et al., 2014b). I measured a near-infrared transmission spectrum

for the planet that exhibits a strong water absorption feature. This is the first unambiguous

identification of a molecular absorber in the planet’s atmosphere. Suprisingly, the measure-

ment is inconsistent with the carbon-rich hypothesis: water is expected to be depleted in

carbon-rich chemistry, because all the oxygen atoms are bound up in CO and CO2. Further

work is needed to reconcile the measured water abundance with previous analyses of the

atmospheric composition. This chapter is adapted from Kreidberg et al. (2015).

Chapter 5 presents the batman code, an open-source Python package for modeling

exoplanet transit light curves. The package implements a new integration algorithm I de-

veloped to calculate the light curves for any radially symmetric stellar limb darkening law.

This chapter, based on Kreidberg (2015), describes the new algorithm and investigates the

performance of the code.

In Chapter 5, I discuss preliminary results from a spectroscopic phase curve observation

of the hot Jupiter WASP-103b. This result combines the new technique of phase-resolved

HST/WFC3 spectroscopy and traditional Spitzer photometry to the planet’s thermal emis-

sion over its entire orbital period. Compared to WASP-43b (the first planet studied with

this approach, Stevenson et al., 2014d), WASP-103b has similar rotation rate and surface

gravity, but a much higher equilibrium temperature, making it an excellent target for com-

parative planetology. The preliminary results show a qualitatively different thermal structure

for WASP-103b: the spectra are consistent with expectations for a blackbody, most likely

indicating that the dayside temperature pressure profile is isothermal.

Chapter 6 concludes.
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CHAPTER 2

CLOUDS IN THE ATMOSPHERE OF THE SUPER-EARTH

EXOPLANET GJ 1214b

2.1 Introduction

Recent surveys have revealed that planets intermediate in size between Earth and Neptune

(“super-Earths”) are among the most common planets in the Galaxy (Cassan et al., 2012;

Fressin et al., 2013; Petigura et al., 2013). Atmospheric studies are the next step toward

developing a comprehensive understanding of this new class of object (Adams et al., 2008;

Miller-Ricci et al., 2009a; Rogers & Seager, 2010b). Much effort has been focused on us-

ing transmission spectroscopy to characterize the atmosphere of the super-Earth archetype

GJ 1214b (Bean et al., 2010; Désert et al., 2011; Bean et al., 2011; Berta et al., 2012; Fraine

et al., 2013; Miller-Ricci & Fortney, 2010; Nettelmann et al., 2011; Miller-Ricci Kempton

et al., 2012; Howe & Burrows, 2012; Morley et al., 2013; Benneke & Seager, 2013), but

previous observations did not have sufficient precision to distinguish between two inter-

pretations for the atmosphere. The planet’s atmosphere could be dominated by relatively

heavy molecules, such as water (e.g., a 100% water vapor composition), or it could contain

high-altitude clouds that obscure its lower layers. Here we report a measurement of the

transmission spectrum of GJ 1214b at near-infrared wavelengths that definitively resolves

this ambiguity. These data, obtained with the Hubble Space Telescope, are sufficiently

precise to detect absorption features from a high mean molecular mass atmosphere. The

observed spectrum, however, is featureless. We rule out cloud-free atmospheric models with

water-, methane-, carbon monoxide-, nitrogen-, or carbon dioxide-dominated compositions

at greater than 5σ confidence. The planet’s atmosphere must contain clouds to be consistent

with the data.
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2.2 Observations and Data Reduction

We observed 15 transits of the planet GJ 1214b with the Wide Field Camera 3 (WFC3)

instrument on the Hubble Space Telescope (HST) between UT 27 September 2012 and 22

August 2013. Each transit observation consisted of four orbits of the telescope, with 45-

minute gaps in phase coverage between target visibility periods due to Earth occultation.

We obtained time-series spectroscopy from 1.1 to 1.7 µm during each observation. The data

were taken in spatial scan mode, which slews the telescope during the exposure and moves

the spectrum perpendicular to the dispersion direction on the detector. This mode reduces

the instrumental overhead time by a factor of five compared to staring mode observations.

We achieved an integration efficiency of 60 – 70%. We extracted the spectra and divided each

exposure into five-pixel-wide bins, obtaining spectro-photometric time series in 22 channels

(resolution R ≡ λ/∆λ ∼ 70). The typical signal-to-noise per 88.4 s exposure per channel

was 1,400. We also created a “white” light curve summed over the entire wavelength range.

Our analysis incorporates data from 12 of the 15 transits observed, because one observation

was compromised due to a telescope guiding error and two showed evidence of a starspot

crossing.

The raw transit light curves for GJ 1214b exhibit ramp-like systematics comparable to

those seen in previous WFC3 data (Berta et al., 2012; Deming et al., 2013; Swain et al.,

2013). The ramp in the first orbit of each visit consistently has the largest amplitude and a

different shape from ramps in the subsequent orbits. Following standard procedure for HST

transit light curves, we did not include data from the first orbit in our analysis, leaving 654

exposures. We corrected for systematics in the remaining three orbits using two techniques

that have been successfully applied in prior analyses (Berta et al., 2012; Deming et al., 2013;

Stevenson et al., 2013). The first approach models the systematics as an analytic function

of time. The function includes an exponential ramp term fit to each orbit, a visit-long slope,

and a normalization factor. The second approach assumes the morphology of the systematics

is independent of wavelength, and models each channel with a scalar multiple of the time
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series of systematics from the white light curve fit. We obtained consistent results from both

methods (see Table A.1), and report here results from the second. See the supplementary

information presented in Appendix A for more detail on the observations, data reduction,

and systematics correction.

We fit the light curves in each spectroscopic channel with a transit model (Mandel &

Agol, 2002) to measure the transit depth as a function of wavelength; this constitutes the

transmission spectrum. See Figure 2.1 for the fitted transit light curves. We used the second

systematics correction technique described above and fit a unique planet-to-star radius ratio

Rp/Rs and normalization C to each channel and each visit, and a unique linear limb darken-

ing parameter u to each channel. We assumed a circular orbit (Anglada-Escudé et al., 2013)

and fixed the inclination i = 89.1◦, the ratio of the semi-major axis to the stellar radius

a/Rs = 15.23, the orbital period P = 1.58040464894 days, and the time of central transit

Tc = 2454966.52488 BJDTDB. These are the best fit values to the white light curve.

The measured transit depths in each channel are consistent over all transit epochs (see

Fig. A.5), and we report the weighted average depth per channel. The resulting transmission

spectrum is shown in Figure 2.2. Our results are not significantly affected by stellar activity,

as we discuss further in Appendix A. Careful treatment of the limb darkening is critical to

the results, but our limb darkening measurements are not degenerate with the transit depth

(see Figure A.4) and agree with the predictions from theoretical models (see Figure A.6).

Our conclusions are unchanged if we fix the limb darkening on theoretical values. We find

that a linear limb darkening law is sufficient to model the data. For further description of

the limb darkening treatment, see Appendix A.

2.3 Implications for the Atmosphere

The transmission spectrum we report here has the precision necessary to detect the spectral

features of a high mean molecular mass atmosphere for the first time. However, the observed

spectrum is featureless. The data are best fit with a flat line, which has a reduced χ2 of
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Figure 2.1: Spectrophotometric Data for Transit Observations of GJ 1214b
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Panel a: Normalized and systematics-corrected data (points) with best-fit transit models
(lines), offset for clarity. The data consist of 12 transit observations and are binned in phase
in 5-minute increments. The spectroscopic light curve fit parameters are transit depth, a
linear limb darkening coefficient, and a normalization term to correct for systematics. A
unique transit depth is determined for each observation and the measured transit depths are
consistent from epoch to epoch in all channels. Panel b: Binned residuals from the best-fit
model light curves. The residuals are within 14% of the predicted photon-limited shot noise
in all spectroscopic channels. The median observed rms in the spectroscopic channels is 315
ppm, prior to binning. c, Histograms of the unbinned residuals (colored lines) compared to
the expected photon noise (black lines). The residuals are Gaussian, satisfying a Shapiro-
Wilk test for normality at the the α = 0.1 level in all but one channel (1.24 µm). The median
reduced χ2 value for the spectroscopic light curve fits is 1.02.
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Figure 2.2: The Transmission Spectrum of GJ 1214b
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Panel a: Transmission spectrum measurements from our data (black points) and previous
work (gray points)Bean et al. (2010); Désert et al. (2011); Bean et al. (2011); Berta et al.
(2012); Fraine et al. (2013), compared to theoretical models (lines). The error bars corre-
spond to 1σ uncertainties. Each data set is plotted relative to its mean. Our measurements
are consistent with past results for GJ 1214 using WFC3Berta et al. (2012). Previous data
rule out a cloud-free solar composition (orange line), but are consistent with a high-mean
molecular weight atmosphere (e.g. 100% water, blue line) or a hydrogen-rich atmosphere
with high-altitude clouds. Panel b: Detail view of our measured transmission spectrum
(black points) compared to high mean molecular weight models (lines). The error bars are
1σ uncertainties in the posterior distribution from a Markov chain Monte Carlo fit to the
light curves (see Appendix A for details of the fits). The colored points correspond to the
models binned at the resolution of the observations. The data are consistent with a fea-
tureless spectrum (χ2 = 21.1 for 21 degrees of freedom), but inconsistent with cloud-free
high-mean molecular weight scenarios. Fits to pure water (blue line), methane (green line),
carbon monoxide (not shown), and carbon dioxide (red line) models have χ2 = 334.7, 1067.0,
110.0, and 75.4 with 21 degrees of freedom, and are ruled out at 16.1, 31.1, 7.5, and 5.5σ
confidence, respectively.
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1.0. We compare several models to the data that represent limiting case scenarios in the

range of expected atmospheric compositions (Benneke & Seager, 2013; Fortney et al., 2013).

Depending on the formation history and evolution of the planet, a high mean molecular mass

atmosphere could be dominated by water (H2O), methane (CH4), carbon monoxide (CO),

carbon dioxide (CO2), or nitrogen (N2). Water is expected to be the dominant absorber

in the wavelength range of our observations, so a wide range of high mean molecular mass

atmospheres with trace amounts of water can be approximated by a pure H2O model. The

data show no evidence for water absorption. A cloud-free pure H2O composition is ruled

out at 16.1σ confidence. In the case of a dry atmosphere, features from other absorbers

such as CH4, CO, or CO2 could be visible in the transmission spectrum. Cloud-free atmo-

spheres composed of these absorbers are also excluded by the data, at 31.1, 7.5, and 5.5σ

confidence, respectively. Nitrogen has no spectral features in the observed wavelength range,

but our measurements are sensitive to a nitrogen-rich atmosphere with trace amounts of

spectrally active molecules. For example, we can rule out a 99.9% N2, 0.1% H2O atmo-

sphere at 5.6σ confidence. Of the scenarios considered here, a 100% CO2 atmosphere is

the most challenging to detect because CO2 has the highest molecular mass and a relatively

small opacity in the observed wavelength range. Given that the data are precise enough

to rule out even a CO2 composition at high confidence, the most likely explanation for the

absence of spectral features is a gray opacity source, suggesting that clouds are present in the

atmosphere. Clouds can block transmission of stellar flux through the atmosphere, which

truncates spectral features arising from below the cloud altitude (Fortney, 2005).

To illustrate the properties of potential clouds, we perform a Bayesian analysis on the

transmission spectrum with a code designed for spectral retrieval of super-Earth atmospheric

compositions (Benneke & Seager, 2012). We assume a two-component model atmosphere of

water and a solar mix of hydrogen/helium gas, motivated by the fact that water is the most

abundant icy volatile for solar abundance ratios. Clouds are modeled as a gray, optically

thick opacity source below a given altitude. See Figure 2.3 for the retrieval results. For this
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model, the data constrain the cloud top pressure to less than 10−2 mbar for a mixing ratio

with mean molecular mass equal to solar and less than 10−1 mbar for a water-dominated

composition (both at 3σ confidence). At the temperatures and pressures expected in the

atmosphere of GJ 1214b, equilibrium condensates of ZnS and KCl can form in the observable

part of the atmosphere. While these species could provide the necessary opacity, they are

predicted to form at much higher pressures (deeper than 10 mbar for a 50x solar metallicity

model; Morley et al., 2013), requiring that clouds be lofted high from their base altitude

to explain our measured spectrum. Alternatively, photochemistry could produce a layer

of hydrocarbons in the upper atmosphere, analogous to the haze on Saturn’s moon Titan

(Miller-Ricci Kempton et al., 2012; Morley et al., 2013).

2.4 Conclusions

The result presented here demonstrates the capability of current facilities to measure very

precise spectra of exoplanets by combining many transit observations. This observational

strategy has the potential to yield the atmospheric characterization of an Earth-size planet

orbiting in the habitable zone of a small, nearby star. Transmission spectrum features prob-

ing five scale heights of a nitrogen-rich atmosphere on such a planet would have an amplitude

of 30 ppm, which is comparable to the photon-limited measurement precision we obtained

with the Hubble Space Telescope. However, our findings for the super-Earth archetype

GJ 1214b, as well as emerging results for hot, giant exoplanets (Pont et al., 2008; Deming

et al., 2013), suggest that clouds may exist across a wide range of planetary atmosphere com-

positions, temperatures, and pressures. Clouds generally do not have constant opacity at all

wavelengths, so further progress in this area can be made by obtaining high-precision data

with broad spectral coverage. Another avenue forward is to focus on measuring exoplanet

emission and reflection spectra during secondary eclipse, because the optical depth of clouds

viewed at near-normal incidence is lower than that for the slant geometry observed during

transit (Fortney, 2005). Fortunately, the next generation of large ground-based telescopes
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Figure 2.3: Spectral Retrieval Results for a Two-Component (H/He and Water) Model
Atmosphere for GJ 1214b
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and the James Webb Space Telescope will have the capabilities to make these kinds of mea-

surements, bringing us within reach of characterizing potentially habitable worlds beyond

our Solar System.
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CHAPTER 3

A PRECISE WATER ABUNDANCE MEASUREMENT FOR

THE HOT JUPITER WASP-43b

The water abundance in a planetary atmosphere provides a key constraint on the planet’s

primordial origins because water ice is expected to play an important role in the core accretion

model of planet formation. However, the water content of the Solar System giant planets

is not well known because water is sequestered in clouds deep in their atmospheres. By

contrast, short-period exoplanets have such high temperatures that their atmospheres have

water in the gas phase, making it possible to measure the water abundance for these objects.

We present a precise determination of the water abundance in the atmosphere of the 2 MJup

short-period exoplanet WASP-43b based on thermal emission and transmission spectroscopy

measurements obtained with the Hubble Space Telescope. We find the water content is

consistent with the value expected in a solar composition gas at planetary temperatures

(0.4 − 3.5× solar at 1σ confidence). The metallicity of WASP-43b’s atmosphere suggested

by this result extends the trend observed in the Solar System of lower metal enrichment for

higher planet masses.

3.1 Introduction

Water ice is an important building block for planet formation under the core accretion

paradigm (Pollack et al., 1996). According to this model, protoplanetary cores form by

sticky collisions of planetesimals. Once the cores reach a threshold mass, they experience

runaway accretion of nearby material. Beyond the water frost line, water is expected to be

the dominant component by mass of planetesimals in solar composition protoplanetary disks

(Marboeuf et al., 2008; Johnson et al., 2012). Measurements of a planet’s water content can

therefore help constrain the disk chemistry, location, and surface density of solids where it

formed (e.g. Lodders, 2004; Mousis et al., 2009; Öberg et al., 2011; Madhusudhan et al.,
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2011b; Mousis et al., 2012; Helled & Lunine, 2014; Marboeuf et al., 2014).

Despite water’s important role in planet formation, there are few observational constraints

on the bulk abundance of water in gas giant planets. The Solar System giants have such

low temperatures that water has condensed into clouds deep in their atmospheres, and is

not easily accessible to remote observations (Guillot & Gautier, 2014). The Galileo probe

mass spectrometer entered Jupiter’s atmosphere and provided a direct measurement of the

water abundance, but found a surprisingly small value (0.29± 0.10× solar) which contrasts

with the 2− 5× solar enhancement of most other volatile species (Wong et al., 2004). The

reliability of the water measurement is uncertain given local meteorological effects at the

probe entry point (Showman & Ingersoll, 1998) and it is generally considered a lower limit.

One of the main goals of NASA’s JUNO mission, which is scheduled to arrive at Jupiter in

2016, is to make a new measurement of the atmospheric water abundance (Matousek, 2007).

In contrast to the Solar System planets, hot exoplanets should harbor gaseous water

in their observable atmospheres. Detections of water have been reported for a number

of giant exoplanets (Grillmair et al., 2008; Konopacky et al., 2013; Deming et al., 2013;

Birkby et al., 2013), and some previous measurements have yielded precise constraints on

the abundance of water in these objects (Lee et al., 2013; Line et al., 2014; Madhusudhan

et al., 2014b). However, interpretation of past results has been challenging for cases when

theoretical models do not provide good fits to the observed spectra (e.g. Line et al., 2014)

and when measurement reproducibility has been questioned (e.g. Swain et al., 2009; Gibson

et al., 2011).

The Wide Field Camera 3 (WFC3) instrument on the Hubble Space Telescope (HST )

has enabled transit and eclipse observations of exoplanets that give repeatable results over

year-long time baselines (Kreidberg et al., 2014b) and consistent measurements with multi-

ple analysis techniques (Deming et al., 2013; Kreidberg et al., 2014b; Knutson et al., 2014b;

McCullough et al., 2014). We use HST/WFC3 to measure precise transmission and emis-

sion spectra for the 2 MJup, short-period exoplanet WASP-43b that enable comparative
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planetology with gas giants in the Solar System.

3.2 Observations and Data Reduction

We observed three full-orbit phase curves, three primary transits, and two secondary eclipses

of WASP-43b with 61 HST orbits as part of GO Program 13467. During the observations,

we obtained low-resolution time series spectroscopy with the WFC3 G141 grism over the

wavelength range 1.1 to 1.7 µm. The phase curves each span the entire orbital period of

the planet (19.5 hours) and include coverage of a transit and eclipse, yielding a total of six

transit and five eclipse observations. Further details of the observing campaign are described

in (Stevenson et al., 2014d). We focus here on constraints on the planet’s water abundance

obtained from the transit and eclipse data.

We extracted spectroscopic light curves from the data using a technique outlined in past

work (Kreidberg et al., 2014b). In our analysis, we used a subset of the total observations,

including only spectra obtained within 160 minutes of the time of central transit or eclipse.

We fit the spectroscopic light curves to derive transmission and emission spectra, shown in

Figure 3.1.

The light curve fits consisted of either a transit or eclipse model (as appropriate, Mandel

& Agol, 2002) multiplied by an analytic function of time used to correct systematic trends in

the data. The dominant systematic is an HST orbit-long ramp (Berta et al., 2012; Deming

et al., 2013; Kreidberg et al., 2014b; Wilkins et al., 2014), which we fit with an exponential

function (using the model-ramp parameterization from Kreidberg et al., 2014b). The free

parameters in our transit model are the planet-to-star radius ratio and a linear limb darkening

coefficient. The eclipse model has one free parameter, the planet-to-star flux ratio. In all

of our spectroscopic light curve fits, we fixed the orbital inclination to 82.1◦, the ratio of

semimajor axis to stellar radius to 4.872, and the time of central transit to 2456601.02748

BJDTDB based on the best fit to the band-integrated (“white”) transit light curve. For the

eclipse data, we also fixed the planet-to-star radius ratio to Rp/Rs = 0.12. Our models use
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an orbital period equal to 0.81347436 days (Blecic et al., 2014). The secondary eclipse time

measured from the white eclipse light curve is consistent with a circular orbit, so we assume

zero eccentricity for our spectroscopic light curve fits.

We show the transit and eclipse depths from this analysis in Table 3.1 and the transmis-

sion and emission spectra in Figure 3.1. All of the fitted light curves have residuals within

10% of the predicted photon+read noise. The median reduced chi-squared for the fits is

1.0 (for both transit and eclipse light curves). We measure consistent depths from epoch

to epoch, which suggests that stellar variability does not significantly impact our measure-

ments. We obtained further confirmation of this from photometric monitoring of WASP-43

that shows minimal variation, indicating that the effect of starspots is below the precision

of our data.

3.3 Analysis

We retrieved the planet’s atmospheric properties by fitting the transmission and dayside

emission spectra with the CHIMERA Bayesian retrieval suite (Line et al., 2013b; Line &

Yung, 2013a; Line et al., 2014). The retrieval constrains the molecular abundances and

the temperature-pressure (T-P) profile of WASP-43b’s atmosphere. In addition to our HST

data, we included two high-precision, 3.6- and 4.5-µm broadband photometric Spitzer Space

Telescope/IRAC secondary eclipse measurements (Blecic et al., 2014) in the retrieval. We

found that using the highest-precision ground-based secondary eclipse measurements (Gillon

et al., 2012) did not significantly affect our results, so our final analysis incorporates data

from HST and Spitzer only.

We analyzed the transmission and emission spectra independently. In both cases, we

retrieved the abundances of H2O, CH4, CO, and CO2, which are expected to be the dom-

inant opacity sources at the observed wavelengths for a hydrogen-rich atmosphere. Our

model also includes collision-induced H2/He absorption. We explored the effects of includ-

ing the additional chemical species H2S, NH3, K, and FeH, and found that our results were
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Table 3.1. Transit and Eclipse Depths for WASP-43b

Wavelength Transit Deptha Wavelength Eclipse Depth
(µm) (ppm) (µm) (ppm)

1.135 – 1.158 96 ± 54 1.125 – 1.160 367±45
1.158 – 1.181 -14 ± 52 1.160 – 1.195 431±39
1.181 – 1.204 -24 ± 49 1.195 – 1.230 414±38
1.205 – 1.228 -134 ± 52 1.230 – 1.265 482±36
1.228 – 1.251 56 ± 49 1.265 – 1.300 460±37
1.251 – 1.274 -14 ± 52 1.300 – 1.335 473±33
1.274 – 1.297 -24 ± 49 1.335 – 1.370 353±34
1.297 – 1.320 -14 ± 50 1.370 – 1.405 313±30
1.320 – 1.343 6 ± 45 1.405 – 1.440 320±36
1.343 – 1.366 156 ± 50 1.440 – 1.475 394±36
1.366 – 1.389 126 ± 46 1.475 – 1.510 439±33
1.389 – 1.412 116 ± 49 1.510 – 1.545 458±35
1.412 – 1.435 36 ± 46 1.545 – 1.580 595±36
1.435 – 1.458 -34 ± 51 1.580 – 1.615 614±37
1.458 – 1.481 -84 ± 46 1.615 – 1.650 732±42
1.481 – 1.504 -44 ± 51
1.504 – 1.527 6 ± 47
1.527 – 1.550 6 ± 48
1.550 – 1.573 -14 ± 49
1.573 – 1.596 -54 ± 49
1.596 – 1.619 -74 ± 53
1.619 – 1.642 -74 ± 51

aTransit depths are given relative to the mean over all wave-
lengths, which is 2.5434%.

25



Figure 3.1: Emission and Transmission Spectra for WASP-43b
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Panel a: The emission spectrum measurements from HST/WFC3 (white circles) and
Spitzer/IRAC (white squares; inset). Panel b: The transmission spectrum from WFC3
(white circles). For both panels, the uncertainties correspond to 1 σ errors from a Markov
chain fit. The error bars for the Spitzer measurements are smaller than the symbols. We
show the best fit models from our retrieval analysis (dark blue lines) with 1- and 2-σ confi-
dence regions denoted by blue and cyan shading. The blue circles indicate the best fit model
averaged over the bandpass of each spectroscopic channel. The fits to both the emission and
transmission spectra have chi-squared values nearly equal to the number of data points n
(χ2/n = 1.2 for both).
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unchanged.

For the emission spectrum retrieval, we used a five-parameter model for the T-P profile

motivated by analytic gray radiative-equilibrium solutions (Parmentier & Guillot, 2014). The

model fits a one-dimensional T-P profile to the hemispherically averaged emission spectrum.

For the transmission spectrum modeling, we retrieved an effective scale height temperature,

a reference pressure at which the fiducial radius is defined, and an opaque gray cloud top

pressure, in addition to the molecular abundances (Line & Yung, 2013b). The distributions

of retrieved parameters are shown in Figure 3.2. The retrieved T-P profile for the dayside

emission spectrum is presented in Stevenson et al. (2014d).

3.4 Results

3.4.1 Constraints from the Emission Spectrum

The emission spectrum shows strong evidence for water absorption. We detect water at 11.7σ

confidence (6.4σ from the WFC3 data alone), according to the Bayesian information criterion

(BIC). The data constrain the volume mixing ratio of H2O in the planet’s atmosphere to

be 3.1 × 10−4 – 4.4 × 10−3 at 1σ confidence. Figure 3.3 shows the distribution of H2O

abundances that fit the observations.

Water is the only molecule significantly detected over the WFC3 wavelength range;

however, additional constraints from the Spitzer data suggest CO and/or CO2 are also

present in the planet’s atmosphere. We detect CO+CO2 at 4.7σ confidence in the combined

WFC3/IRAC spectrum. The measured abundance of CO2 is relatively high compared to

the expected thermochemical value for a solar composition gas (∼ 5× 10−8). We find that

a moderately super-solar metallicity composition has equilibrium H2O, CO2, and CO abun-

dances that are within the range of our retrieved values. However, the CO+CO2 constraints

are driven mainly by the photometric point from the Spitzer 4.5 µm channel. The bandpass

for this channel is about 1 µm wide, and covers features from CO, CO2, and H2O (Sharp
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Figure 3.2: Pairs Plots of Retrieved Parameters
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& Burrows, 2007). Making a robust determination of the abundances of these molecules re-

quires spectroscopic observations to resolve their absorption features. The main conclusions

of this work are unchanged if we exclude the Spitzer data from our analysis.

The best-fit thermal profile has decreasing temperature with pressure and is consistent

with predictions from a radiative-convective model for the substellar point over the range

of pressures to which our data are sensitive. We find no evidence for a thermal inversion.

Further details of the thermal structure of the planet’s atmosphere are available in Stevenson

et al. (2014d).

3.4.2 Constraints from the Transmission Spectrum

We obtain complementary results for the atmospheric composition based on a retrieval for

the transmission spectrum. Water absorption is detected at 5σ confidence and is visible in

the data, shown in Figure 4.3 (panel b). The transmission spectrum fit allows a water volume

mixing ratio between 3.3×10−5 and 1.4×10−3 at 1σ, which is consistent with the bounds

derived from the emission measurements. No other molecules are detected in the spectrum

according to the BIC. The constraints on the water abundance (shown in Figure 3.3) are

broader than those obtained from the emission spectrum because the abundance is correlated

with the reference pressure level, which is only weakly constrained by the observations. We

remind the reader that the size of features in the transmission spectrum is controlled by the

molecular abundances, the planet’s atmospheric scale height, and the radius of the planet

relative to the star (Miller-Ricci et al., 2009b).

In addition to probing the atmospheric composition, the data also constrain the temper-

ature at the terminator and the cloud top pressure. The 1σ confidence interval on the scale

height temperature is 500–780 K. We find no evidence for a cloud at the pressure levels to

which our observations are sensitive.
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3.4.3 Joint Constraint on the Water Abundance

We derive consistent water abundances for WASP-43b from the emission and transmission

spectra. This consistency matches the prediction from theoretical models of hot Jupiters

that water has a nearly uniform abundance with both pressure (from 10 to 10−8 bar) and

with temperature (Moses et al., 2011). Therefore, to obtain a more precise estimate of

WASP-43b’s water abundance, we assume the regions of the atmosphere probed by the

emission and transmission data have the same water content. Because the measurements are

independent, we can combine their constraints by multiplying the probability distributions

for water abundance retrieved from each data set. This yields a joint distribution, shown in

Figure 3.3, which constrains the water volume mixing ratio to 2.4× 10−4 – 2.1× 10−3 at 1σ

confidence. This measurement contrasts with the sub-solar water abundance values reported

for three other hot Jupiters by Madhusudhan et al. (2014b), and suggests that additional

observations are needed to understand the diversity in composition of these objects.

3.5 Discussion

3.5.1 Comparison with Solar System Planets

With our well-determined water abundance for the atmosphere of WASP-43b, we can begin

a comparative study with the giant planets in the Solar System. However, it is not possible

to directly compare water abundances, because the water content in the Solar System giants

is poorly constrained. We instead compare the planets’ metallicities, which we estimate

from chemical species with well-determined abundances. To calculate metallicity based on

a molecule X, we determine the planet’s enhancement in X relative to the volume mixing

ratio of X expected for a solar composition gas at planetary temperatures. We use solar

abundances from Asplund et al. (2009) for the calculation.

We infer the Solar System planets’ metallicities from the abundance of methane, which

has been precisely measured for all four giant planets. Jupiter’s methane abundance is from
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Figure 3.3: Water Abundance of WASP-43b
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(0.4− 3.5× solar) at 1σ confidence.

31



the Galileo probe (Wong et al., 2004), while those of the other planets are from infrared

spectroscopy (Fletcher et al., 2009; Karkoschka & Tomasko, 2011; Sromovsky et al., 2011).

The 1σ confidence intervals for the planets’ metallicities are 3.3–5.5, 9.5–10.3, 71–100, and

67–111× solar for Jupiter, Saturn, Neptune, and Uranus, respectively. These bounds are

shown in Figure 3.4.

We determine the metallicity of WASP-43b based on our measured water abundance.

The planet’s temperature is cooler at the terminator than at the substellar point. The

difference between these temperatures leads to a factor of two discrepancy in the expected

water volume mixing ratio for a solar composition gas. This difference is small relative

to the uncertainty in the planet’s measured water abundance, so we therefore adopt the

average predicted water volume mixing ratio (6.1 × 10−4). Using the joint constraint from

the transmission and emission spectra, we find the water abundance is 0.4 to 3.5× solar at

1σ confidence. The 3σ upper limit on the water enhancement is 20× solar.

We note that determining the metallicity relative to solar composition assumes that the

planets have a scaled solar abundance pattern. This assumption could lead to an incorrect

estimate of metallicity in the case of non-solar abundance ratios. For example, if WASP-43b

had a super-solar carbon-to-oxygen (C/O) ratio, we would expect a smaller fraction of the

total oxygen to be partitioned into H2O (Madhusudhan, 2012). We would therefore under-

estimate the planet’s metallicity based on our assumption of solar abundances. However,

given that the C/O ratio is poorly constrained by our data but broadly consistent with solar,

we proceed with the comparison with these caveats in mind.

The metallicity estimates for the Solar System planets show a pattern of decreasing metal

enhancement with increasing planet mass (see Figure 3.4). This trend is generally thought

to be controlled by the relative importance of accretion of solid planetesimals versus H/He-

dominated gas. Planet population synthesis models aim to match atmospheric metallicity to

planet mass (Fortney et al., 2013; Marboeuf et al., 2014), but there are limited data available

for planets outside the Solar System. The metallicity of WASP-43b indicates that the trend
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seen in the Solar System may extend to exoplanets.

3.5.2 Prospects for Future Work

WASP-43b, with twice the mass of Jupiter and an orbital period of less than one day, exem-

plifies the opportunity exoplanets provide to study planet formation over a larger parameter

space than what is available in our Solar System. A more insightful comparative planetology

study using WASP-43b could be performed by improving the precision of the water abun-

dance estimate and measuring the abundances of additional molecules. Such measurements

will be enabled by the broad wavelength coverage and increased sensitivity of next-generation

observing facilities such as the James Webb Space Telescope.

However, a planet’s chemical composition depends on many factors, including the planet’s

formation location within the protoplanetary disk, the composition, size and accretion rate

of planetesimals, and the planet’s migration history. Even perfect constraints on the abun-

dances of many chemical species for a small number of objects may not yield a unique model

for the origin of giant planets. Fortunately, the plethora of transiting exoplanets that have

already been found and will be discovered with future missions offer the potential for sta-

tistical studies. Measuring precise chemical abundances for a large and diverse sample of

these objects would facilitate the development of a more comprehensive theory of planet

formation.
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Figure 3.4: Atmospheric Metallicity Versus Planet Mass
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CHAPTER 4

A DETECTION OF WATER IN THE TRANSMISSION

SPECTRUM OF THE HOT JUPITER WASP-12b AND

IMPLICATIONS FOR ITS ATMOSPHERIC COMPOSITION

Detailed characterization of exoplanets has begun to yield measurements of their atmo-

spheric properties that constrain the planets’ origins and evolution. For example, past ob-

servations of the dayside emission spectrum of the hot Jupiter WASP-12b indicated that

its atmosphere has a high carbon-to-oxygen ratio (C/O > 1), suggesting it had a different

formation pathway than is commonly assumed for giant planets. Here we report a precise

near-infrared transmission spectrum for WASP-12b based on six transit observations with

the Hubble Space Telescope/Wide Field Camera 3. We bin the data in 13 spectrophotomet-

ric light curves from 0.84 - 1.67 µm and measure the transit depths to a median precision

of 51 ppm. We retrieve the atmospheric properties using the transmission spectrum and

find strong evidence for water absorption (7σ confidence). This detection marks the first

high-confidence, spectroscopic identification of a molecule in the atmosphere of WASP-12b.

The retrieved 1σ water volume mixing ratio is between 10−5 − 10−2, which is consistent

with C/O > 1 to within 2σ. However, we also introduce a new retrieval parameterization

that fits for C/O and metallicity under the assumption of chemical equilibrium. With this

approach, we constrain C/O to 0.5+0.2
−0.3 at 1σ and rule out a carbon-rich atmosphere com-

position (C/O> 1) at > 3σ confidence. Further observations and modeling of the planet’s

global thermal structure and dynamics would aid in resolving the tension between our in-

ferred C/O and previous constraints. Our findings highlight the importance of obtaining

high-precision data with multiple observing techniques in order to obtain robust constraints

on the chemistry and physics of exoplanet atmospheres.
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4.1 Introduction

The chemical composition of a planetary atmosphere provides a rich record of the planet’s

formation conditions and evolutionary history. Measurements of the composition can con-

strain the planet’s formation mechanism, its formation location in the protoplanetary disk,

the surface density and composition of planetesimals at the formation site, the relative ac-

cretion rates of gas and solids, and possible migration pathways (e.g. Atreya et al., 1999;

Owen et al., 1999; Gautier et al., 2001; Atreya et al., 2003; Hersant et al., 2004; Lodders,

2004; Dodson-Robinson et al., 2009; Öberg et al., 2011; Madhusudhan et al., 2011a, 2014a).

Because there are many factors that influence atmospheric chemical composition, a large

sample size of planets is required to develop a comprehensive theory of giant planet formation.

Fortunately, the sample of known extrasolar giant planets is large and growing, and recent

observations of these planets have begun to yield basic constraints on their atmospheric

chemistry. These include inferences of the carbon-to-oxygen ratio (C/O) and absolute water

abundance, which in some cases rival our knowledge of those quantities for the Solar System

planets (e.g. Madhusudhan et al., 2011c; Konopacky et al., 2013; Line et al., 2014; Kreidberg

et al., 2014a; Brogi et al., 2014; Madhusudhan et al., 2014c).

One of the best studied exoplanet atmospheres is that of the transiting hot Jupiter WASP-

12b. This planet is a 1.4MJup, 1.8RJup gas giant orbiting a late-F host star with a period of

just 1.1 days (Hebb et al., 2009). The brightness of the host star (H=10.2), the planet’s high

equilibrium temperature (2500 K), and the planet’s large size make WASP-12b a favorable

target for atmosphere characterization. The system has been observed extensively from the

ground and space to measure the planet’s transmission spectrum, dayside emission spectrum,

and thermal phase variation (López-Morales et al., 2010; Fossati et al., 2010; Campo et al.,

2011; Croll et al., 2011; Cowan et al., 2012; Crossfield et al., 2012; Haswell et al., 2012; Zhao

et al., 2012; Föhring et al., 2013; Sing et al., 2013; Swain et al., 2013; Mandell et al., 2013;

Copperwheat et al., 2013; Stevenson et al., 2014c,b; Burton et al., 2015; Nichols et al., 2015;

Croll et al., 2015).
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An intriguing possibility has emerged from these observations of WASP-12b, which is

that the planet has a carbon-rich atmospheric composition (C/O > 1, compared to the

solar value of 0.55; Asplund et al., 2009). The high C/O interpretation was first suggested

by Madhusudhan et al. (2011c) as the best explanation for the planet’s dayside emission

spectrum. This result was contested by subsequent work (Crossfield et al., 2012; Line et al.,

2014); however, the most recent comprehensive analysis of the dayside spectrum reaffirmed

the inference of high C/O (Stevenson et al., 2014b).

The claim of high C/O in WASP-12b’s atmosphere has motivated substantial theoretical

and observational work. This includes attempts to measure C/O for additional planets (e.g.

Brogi et al., 2014; Line et al., 2014), studies of the effect of C/O on atmospheric chemistry

(Madhusudhan et al., 2011a; Madhusudhan, 2012; Kopparapu et al., 2012; Moses et al., 2013;

Venot et al., 2015), inferences of C/O in exoplanet host stars (Teske et al., 2013, 2014), and

predictions of C/O from planet formation theory (Madhusudhan et al., 2011a; Öberg et al.,

2011; Madhusudhan et al., 2014a; Ali-Dib et al., 2014).

We note, however, that the evidence for a carbon-rich atmosphere on WASP-12b is not

definitive. The high C/O inference is based primarily on the photometric secondary eclipse

depth from Spitzer at 4.5 µm. The low brightness temperature for the planet in this bandpass

is best explained by absorption from carbon-bearing species (either CO, HCN, or C2H2; Mad-

husudhan et al., 2011c; Kopparapu et al., 2012; Moses et al., 2013; Stevenson et al., 2014c),

but photometry alone cannot uniquely identify which molecule is the dominant absorber.

No other molecular features have been confidently identified in the emission spectrum, and

measurements of the planet’s transmission spectrum have yielded even less conclusive con-

straints on the C/O (Sing et al., 2013; Mandell et al., 2013; Swain et al., 2013; Stevenson

et al., 2014c; Madhusudhan et al., 2014c). High-precision spectroscopy is thus needed to

obtain unambiguous determination of the atmospheric composition of this important planet.

In this work, we report a new, precise measurement of WASP-12b’s transmission spectrum

over the wavelength range 0.84 to 1.67 µm. The outline of the paper is as follows. In § 4.2
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we present the observations and data reduction. The light curves fits and measurement

of the transmission spectrum are outlined in § 4.3. We compare our results to previous

measurements in § 4.4. We describe a retrieval of the planet’s atmospheric properties based

on this transmission spectrum in § 4.5 and discuss implications for the chemical composition

in § 4.6. We conclude in § 4.7.

4.2 Observations and Data Reduction

4.2.1 Observations

We obtained time series spectroscopy during six transits of WASP-12b between UT 1 January

and 4 March 2014 using the Wide Field Camera 3 (WFC3) IR detector on the Hubble Space

Telescope (HST ) as part of HST GO Program 13467. Three of the transit observations used

the G102 grism, which provides spectral coverage from 0.82− 1.12 µm, and the other three

used the G141 grism, which spans the range 1.12−1.65 µm. The G141 grism has been widely

used for exoplanet transit spectroscopy, but these observations are the first to use the G102

grism for this purpose. The additional wavelength coverage from the G102 grism provides

access to features from more molecules and absorption bands, giving us greater leverage in

constraining the atmospheric composition of the planet. Each transit observation (called

a visit) consisted of five consecutive, 96-minute HST orbits. WASP-12 was visible during

approximately 45 minutes per orbit and occulted by the Earth for the remainder of the time.

We took a direct image of the target with the F126N narrow-band filter at the beginning

of each orbit for wavelength calibration. Example staring mode and spatial scan images are

shown in Figure 4.1.

The spectroscopic data were obtained in spatial scan mode with the 256x256 subarray,

using the SPARS10, NSAMP=16 readout pattern, which has an exposure time of 103.1 s.

The scan rates were 0.04 and 0.05 arcsec/second for the G102 and G141 grisms, respectively.

The spectra extend roughly 40 pixels in the spatial direction, with peak per-pixel counts
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Figure 4.1: Raw HST/WFC3 Images for WASP-12b
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Raw HST/WFC3 images taken with the G102 grism. Spatial scan and staring mode data are
shown in the top and bottom panels, respectively. The images are cutouts from a 256x256
pixel subarray. The spectrum of WASP-12A’s binary companion is visible in the bottom
panel near row 10.
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Table 4.1. Summary of Photometric Observations for WASP-12

Season Nobs Date Range Sigma Seasonal Mean
(HJD - 2,400,000) (mag) (mag)

2011-2012 126 55824-56059 0.00325 −0.28048± 0.00029
2012-2013 169 56189-56439 0.00297 −0.28119± 0.00023
2013-2014 133 56463-56799 0.00316 −0.28253± 0.00027

below 25,000 electrons for both grisms. We alternated between forward and reverse scanning

along the detector to decrease instrumental overhead time. This setup yielded 19 exposures

per orbit and a duty cycle of 74%.

In addition to the spatial scan data, we also obtained 10 staring mode spectra in each

grism during the first orbit of the first visit. WASP-12 is a triple star system: WASP-12 A

hosts the planet, and WASP-12 BC is an M-dwarf binary separated from WASP-12 A by

about 1” (Bergfors et al., 2013; Bechter et al., 2014). We use these staring mode data to

resolve the spectrum of WASP-12 A from WASP-12 BC, enabling us to correct for dilution to

the planet’s transit light curve due to the binary. The detector orientation was set to 178.7◦

in order to spatially separate the spectra. At this orientation, the spectra are separated

by 7.9 pixels (compared to the FWHM of 1.1 pixel at 1.4 µm). We describe the dilution

correction in detail in § 4.3.3.

We also obtained photometric monitoring of the WASP-12 system to search for stellar

activity. We acquired 428 out-of-transit R-band images over the 2011-2012, 2012-2013, and

2013-2014 observing seasons with Tennessee State University’s Celestron 14-inch automated

imaging telescope. We tested for variability from star spots by calculating differential mag-

nitudes for WASP-12 relative to 17 comparison stars (shown in Figure 4.2). The standard

deviation of the differential magnitudes is 0.3%, which is comparable to the photon noise for

the data. The brightness of the star increases by approximately 0.001 mag per year. There

are no significant periodicities between 1 and 200 days. To calculate the impact of star
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Figure 4.2: Photometric Monitoring
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Nightly Cousins R-band photometric observations of WASP-12 over three observing seasons
(points). The data are differential magnitudes relative to the average brightness of 17 com-
parison stars. The differential magnitudes have a mean of -0.281 and a standard deviation
of 0.003. The horizontal dashed line indicates the mean brightness from the first observing
season. The vertical dotted lines span the time range of the HST observations.
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Figure 4.3: Example Spectra
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Example extracted spectra (solid lines). The wavelength ranges covered by the transmission
spectra are indicated with dashed and dotted lines (for the G102 and G141 data, respec-
tively). The uncertainties on the spectra are smaller than the plot linewidth.

spots on our transmission spectrum, we took 0.3% as an upper limit for the variability of

WASP-12. Variability of this amplitude could be produced by star spots 300 K cooler than

the star’s effective temperature (6300 K; Hebb et al., 2009), covering 3% of the photosphere.

Based on the formalism outlined in Berta et al. (2011) and Désert et al. (2011), we calculated

that the maximum variation in transit depth due to spots with these properties is of order

10−5, which is below the precision of our transit depth measurements.

4.2.2 Data Reduction

We reduced the HST/WFC3 data using the custom pipeline described in Kreidberg et al.

(2014b). Example extracted spectra are shown in Figure 3.1. We bin the spectra into

24- and 15-pixel wide channels (for G102 and G141, respectively) to obtain a total of 13

spectrophotometric light curves at resolution R ≡ λ/∆λ = 15−25. We also sum the spectra

over the full wavelength range to create broadband (“white”) light curves for each grism.
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The uncertainty in the flux per exposure is determined by adding in quadrature the photon

noise, the read noise (22 electrons per differenced image), and the error in the estimate of

the background, which we determine from the median absolute deviation of the flux values

for the background pixels.

We also extract spectra from the staring mode data to determine the wavelength-

dependent flux ratio of WASP-12 BC to WASP-12 A. The spectra are spatially separated

on the detector, so to extract them we fit a double Gaussian model to each column of the

final detector read. We obtain final estimates and uncertainties for the spectra of WASP-

12 A and WASP-12 BC by taking the mean and standard deviation of the spectra from all

10 exposures. These extracted spectra are each assigned a wavelength solution using the

centroids of the stars in the direct image.

4.3 Light Curve Fits

4.3.1 Broadband Light Curves

We fit the broadband light curves with a transit model (Mandel & Agol, 2002) and an

analytic function to correct for instrument systematics. Transit light curve observations with

HST/WFC3 have several well-documented systematic trends in flux with time, including

visit-long slopes and orbit-long exponential ramps (Berta et al., 2012; Swain et al., 2013;

Kreidberg et al., 2014b; Stevenson et al., 2014d). The first orbit of a visit has a larger

amplitude ramp than subsequent orbits, so we follow established practice and do not use

this initial orbit in the light curve fits. We also discard the first exposure from the remaining

orbits, which improves the fit quality. We fit the remaining data (216 exposures for each

grism) with a systematics model based on the model-ramp parameterization of Berta et al.

(2012). The model M(t) has the form:
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M(t) = T (t)× (c S(t) + v tv)

× (1− exp(−a torb − b−D(t))). (4.1)

In our fits, T (t) is the transit model, or relative stellar flux as a function of time t (in

BJDTDB). The free parameters for the transit model are the planet-to-star radius ratio k, a

linear limb darkening parameter u, the ratio of semi-major axis to stellar radius a/Rs, the

orbital inclination i, and the time of mid-transit T0. The light curves have poor coverage

of the planet’s ingress, so we put priors on a/Rs and i to enable the measurement of T0.

We use Gaussian priors with mean and standard deviation 2.91 ± 0.02 and 80.56 ± 0.03◦

(for a/Rs and i, respectively), based on estimates of those parameters from Stevenson et al.

(2014c). We use an orbital period P = 1.091424 days and assume a circular orbit (Campo

et al., 2011). The data from the two grisms are fit separately, but for each grism the three

transits are fit simultaneously. We fit unique values of k and T0 to each transit, but tie the

values for u, a/Rs, and i over all the transits.

We fit the instrument systematics with a constant normalization term c, a scaling factor

S(t), a visit-long linear slope v, and an orbit-long exponential ramp with rate constant a,

amplitude b, and delay D(t). The timescale tv corresponds to time relative to the expected

transit midpoint for each visit, and torb is time since the first exposure in an orbit (both in

BJDTDB). The scaling factor S(t) is equal to 1 for exposures with forward spatial scanning

and s for reverse scanning; this accounts for a small offset in normalization between the scan

directions caused by the upstream-downstream effect of the detector readout (McCullough

& MacKenty, 2012). The function D(t) is equal to d for times t during the first fitted orbit

and 0 elsewhere. A negative value for d implies that the ramp amplitude is larger in the first

orbit than in subsequent orbits. The parameters u, a, b, and d were constrained to the same

value for all the transits, whereas k, s, c, and v were allowed to vary between transits.

44



Table 4.2. Transit Times

Observation Start Tc
a Uncertainty

(UT) (BJDTDB) (1σ)

Jan 01 2014 6659.07598 3.4E-4
Jan 16 2014 6674.35560 2.8E-4
Feb 05 2014 6694.00161 2.9E-4
Feb 15 2014 6703.82417 2.9E-4
Mar 02 2014 6719.10428 3.4E-4
Mar 04 2014 6721.28692 3.4E-4

aWe report the time of central transit Tc in
BJDTDB - 2,450,000.

There are a total of 21 free parameters in the fits to each grism’s broadband light curve.

We estimated the parameters and their uncertainties with a Markov chain Monte Carlo

(MCMC) fit to the data, using the emcee package for Python (Foreman-Mackey et al.,

2013). For the best-fit light curves, we calculated the Durbin-Watson statistic to test for

time-correlated noise. The values were 1.77 and 2.17 for the G102 and G141 white light

curves, indicating that the residuals are uncorrelated at the 1% significance level. The

reduced chi-squared values (χ2ν) for the best-fit light curves are 1.45 and 1.34, and the

residuals are 164 and 115 ppm (37 and 25% larger than the predicted photon+read noise)

for the G102 and G141 data, respectively.

To obtain conservative estimates of the errors for the white light curve transit parameters,

we redid the MCMC analyses with the per-exposure uncertainties scaled by a constant factor

(1.20 and 1.16) chosen to yield χ2ν = 1. We report the transit times from the white light

curve fits in Table 4.2. These values extend the baseline of precise transit times by two years

from the Stevenson et al. (2014c) measurements and will aid in testing the possibility of

perihelion precession for this system (first studied by Campo et al., 2011). The white light

curves are consistent with the priors on a/Rs and i but do not yield improved values for

those parameters due to the poor phase coverage of the transit ingress.

45



4.3.2 Spectroscopic Light Curves

Figure 4.4: Spectroscopic Light Curve Fit
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An example light curve fit to the 1.320 − 1.389 µm spectroscopic channel from the G141
grism. The top panel shows the best fitting model light curve (black line), overlaid with
the systematics-corrected data (points). Residuals from the light curve fit are shown in the
middle panel. The bottom panel shows a normalized histogram of the residuals compared to
a Gaussian probability density with mean zero and standard deviation equal to the predicted
photon+read noise (252 ppm).
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We fit the spectroscopic light curves with a similar model as we use for the broadband

data. The only differences are that we hold a/Rs and i fixed to the prior mean values and

fix the mid-transit times to the white light curve best fit values. We also solve for a constant

rescaling parameter for the photometric uncertainties in each spectroscopic channel to ensure

that the reduced χ2 for the light curve fits is unity. We chose to fix a/Rs, i, and Tc because

they impact the mean spectroscopic transit depth only, not the relative depths. Changes in

the mean transit depth do not significantly affect our retrieval results, as the planet-to-star

radius ratio is included as a free parameter in the atmospheric retrieval.

We fit each of the spectroscopic channel light curves independently. We achieve nearly

photon-limited precision: the median rescaling factor for the photometric uncertainties is

1.1. The light curves do not exhibit statistically significant time-correlated noise, based on

a Durbin-Watson test at the 1% significance level. An example spectroscopic light curve fit

for the 1.320 − 1.389 µm channel from the G141 grism is shown in Figure 4.4. We show a

pairs plot of the fit parameters for the same channel in Figure 4.5.

We tested an analytic model for the systematics that included a quadratic term for the

visit-long trend. Previous analyses of WFC3 data have suggested that a quadratic model

produces better light curve fits (Stevenson et al., 2014d). However, for this data set we

find that the quadratic model is disfavored according to the Bayesian Information Criterion

(BIC), with typical ∆ BIC values of 10 compared to the linear model. In any case, the main

consequence of adding a quadratic term is to shift the transmission spectrum up or down.

This affects our estimate of the planetary radius, but the effect is small relative to the error

introduced by uncertainties in the stellar radius.

We also explored modeling the instrument systematics with the divide-white technique,

which has been applied successfully to several other data sets (Stevenson et al., 2014c; Krei-

dberg et al., 2014b; Knutson et al., 2014c). This method assumes the systematics are inde-

pendent of wavelength. For the WASP-12 data, however, this assumption is not appropriate.

WFC3 instrument systematics are known to depend on detector illumination (Berta et al.,
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2012; Swain et al., 2013), and in our data the mean pixel fluence varies by 30% between the

spectroscopic channels (see Figure 3.1).

To illustrate the dependence of the systematics on the illumination level, we show in

Figure 4.6 the systematics decorrelation parameters from the analytic model as a function

of light curve normalization c. The value c represents the baseline flux level in each spec-

troscopic light curve. This value is directly proportional to the mean detector illumination

in the channel. We note several qualitative trends in the decorrelation parameters: with

increasing illumination, the visit-long slope decreases, the delay term increases toward zero,

and the ramp rate increases.

The upshot of these trends is that there are residual systematics for the divide-white

light curve fits that are correlated with detector illumination. We therefore only report the

results for the analytic model.

Limb Darkening Models

We tested fixing the limb darkening to values predicted by stellar models. We used theoretical

quadratic limb darkening coefficients from both PHOENIX and Kurucz models (Hauschildt

et al., 1999; Castelli & Kurucz, 2004) generated for Stevenson et al. (2014c). These theo-

retical coefficients yielded lower quality light curve fits than we obtained from empirically

estimating a linear limb darkening parameter. For both PHOENIX and Kurucz model coef-

ficients, the light curve residuals exhibited systematic trends near ingress and egress, and the

typical reduced chi-squared values increased. The poor match of theoretical limb darkening

coefficients to our data may arise from inaccurate assumptions about the stellar composition,

or inaccuracies in the models themselves. Similar disagreement with model limb darkening

has been seen for other high quality data (e.g. Knutson et al., 2007a).

Since incorrect limb darkening coefficients can introduce systematic bias in the measured

transit depths, we chose to estimate the limb darkening coefficients directly from the data.

Our light curves are not precise enough to constrain a two-parameter limb darkening model,
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so we instead fit for a single linear parameter in each channel. The data are sufficiently precise

to distinguish between the transit depth and the limb darkening coefficient, as evidenced by

the lack of correlation between those parameters in the pairs plot shown in Figure 4.5.

4.3.3 Correction of Dilution from Stellar Companions

The transit light curves are affected by dilution from WASP-12 A’s two companion stars,

WASP-12 BC, and from the planet’s nightside emission. Following Stevenson et al. (2014c),

we calculated a corrected transit depth δ′ for each spectroscopic channel using the formula

δ′ = δ(1 + αComp + αp) (4.2)

where δ is the measured transit depth, αComp is the ratio of flux from WASP-12 BC to

WASP-12 A, and αp is the ratio of the planet’s nightside emission to the flux of WASP-

12 A. We calculated αp using the same model as Stevenson et al. (2014c). We determined

αComp empirically using the spectra extracted from the staring mode observations. Each

visit is assigned a unique αComp value to account for differences in the orientation of the

spectra on the detector. We plot the dilution factor as a function of wavelength in Figure 4.7

(calculated by interpolating the companion spectrum to the same wavelength scale as the

WASP-12 A spectrum). The measured dilution is roughly 10% larger than the values used

by Stevenson et al. (2014c); this difference could result from systematic uncertainty in the

aperture photometry used to scale the dilution (Stevenson et al., 2014c).

To obtain final transit depths, we take the weighted average of the corrected transit depths

from each visit. Uncertainties in the dilution factor corrections are propagated through to

the final transit depth uncertainties. We report the corrected transit depth measurements in

Table 4.3, and we show the transmission spectrum in Figure 4.8. The corrected transit depths

are consistent between the visits, indicating that the estimated uncertainties are appropriate,

and confirming that stellar activity does not significantly influence the measured spectrum.
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4.4 Comparison with Previous Results

There are several other high-precision transit depth measurements for WASP-12b in addition

to the WFC3 spectrum we report here. The most precise of these are spectroscopy between

0.34 and 0.94 µm from HST/STIS (Sing et al., 2013), spectroscopy between 0.73 and 1.00 µm

from Gemini/GMOS (Stevenson et al., 2014c), a staring mode HST/WFC3 G141 spectrum

from Swain et al. (2013), and photometry at 3.6 and 4.5 µm from Spitzer/IRAC (Cowan

et al., 2012). Figure 4.9 shows past optical/near-IR transmission spectrum measurements

compared to our results.

Our transit depth measurements are consistent with the staring mode spectrum from

HST/WFC3 (Swain et al., 2013; Mandell et al., 2013; Stevenson et al., 2014c), modulo a

constant offset in the absolute transit depths. We chose not to incorporate this data set in our

analysis, however. The staring mode data has a low duty cycle and increases the amount of

in-transit exposure time by just 10% over the total from our three spatial scan observations.

Morever, there is uncertainty about the best instrument systematics model for this data

set (Stevenson et al., 2014c). Since the marginal improvement in measurement precision

is counteracted by increased systematic uncertainty, we chose to focus on the transmission

spectrum derived from the spatial scan data only.

Our spectrum agrees less well with the ground-based transmission spectrum from Gem-

ini/GMOS (Stevenson et al., 2014c). To compare the WFC3 and GMOS results, we com-

puted χ2 values for the data using the best fit model spectrum from the FREE retrieval

(described in § 4.5.1) over the wavelength range where the spectra overlap (0.86 - 1.00 µm).

We allowed a free offset in the model for the GMOS data to account for differences in the

absolute measured transit depths. We find that the GMOS data are inconsistent with the

model at > 4σ (χ2 = 38.7 for 9 degrees of freedom). Based on the track record of precise,

reproducible transmission spectra from WFC3 that are well-fit by theoretical models (e.g.

Kreidberg et al., 2014b,a; Stevenson et al., 2014a), we trust the reliability of the WFC3

measurements over those from GMOS. Ground-based transit observations exhibit strong
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time-correlated noise that makes estimating accurate confidence intervals challenging. Addi-

tional GMOS transit spectroscopy observations would help identify the number of repeated

observations with this instrument needed to make robust measurements.

The Spitzer transit depths measurements are approximately 0.1% smaller than the mean

WFC3 transit depth. Based on the random errors alone, this difference is significant. How-

ever, the Spitzer data have significant systematic uncertainties, because the relative transit

depths measured with IRAC channels 1 and 2 can shift by > 0.1% depending on the aperture

size used in the data reduction. There is no obvious optimal choice of aperture (see Figure

17, Stevenson et al., 2014c). We therefore chose not to incorporate the Spitzer results in our

analysis.

4.5 Retrieval of the Atmospheric Properties

Given the high precision of the WFC3 transmission spectrum, we can put more powerful

constraints on the planet’s atmosphere than has been possible with past measurements. No

previous data set for WASP-12b has shown conclusive spectroscopic evidence for molecular

absorption, but the WFC3 spectrum has a noticeable increase in transit depth near the

center of the water absorption band at 1.4 µm (see Figure 4.8).

To quantify the water abundance and other atmospheric properties based on the trans-

mission spectrum, we performed a retrieval using the CHIMERA suite (Line et al., 2013b,

2014). Modifications to the retrieval code and description of the transmission forward model

are provided in Line & Yung (2013a); Stevenson et al. (2014a); Kreidberg et al. (2014a);

Swain et al. (2014); Diamond-Lowe et al. (2014). We tested two different model parameter-

izations with CHIMERA. The first is the widely adopted approach of retrieving molecular

abundances without any constraints from chemistry (e.g. Madhusudhan & Seager, 2009).

For our second approach, we developed a new parameterization that retrieves C/O and

atmospheric metallicity under the assumption of chemical equilibrium. We refer to these

methods as the FREE approach and the CHEMICALLY-CONSISTENT (C-C) approach,
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Table 4.3. Transit Fit Parameters

Bandpassa (Rp/R?)
2b Limb- rms

(µm) (%) darkening u (ppm)

0.838 – 0.896 1.4441 ± 0.0069 0.27 ± 0.02 349
0.896 – 0.954 1.4422 ± 0.0055 0.28 ± 0.01 300
0.954 – 1.012 1.4402 ± 0.0052 0.27 ± 0.01 296
1.012 – 1.070 1.4428 ± 0.0051 0.26 ± 0.01 301
1.070 – 1.129 1.4391 ± 0.0053 0.25 ± 0.01 299

1.112 – 1.182 1.4386 ± 0.0047 0.26 ± 0.01 267
1.182 – 1.251 1.4365 ± 0.0045 0.26 ± 0.01 267
1.251 – 1.320 1.4327 ± 0.0041 0.21 ± 0.01 253
1.320 – 1.389 1.4582 ± 0.0040 0.22 ± 0.01 242
1.389 – 1.458 1.4600 ± 0.0043 0.18 ± 0.01 255
1.458 – 1.527 1.4530 ± 0.0045 0.20 ± 0.01 270
1.527 – 1.597 1.4475 ± 0.0058 0.16 ± 0.02 332
1.597 – 1.666 1.4332 ± 0.0055 0.16 ± 0.02 321

aThe measurements between 0.838 - 1.129 µm are from
the G102 grism; those from 1.112 - 1.666 µm are from the
G141 grism.

bTransit depths corrected for dilution from companion
stars and planet nightside emission. The light curve fits
had a/Rs and i fixed to 2.91 and 80.56◦, respectively.
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respectively. Both methods are described in more detail below. We also present a comparison

with results from the NEMESIS retrieval code (Irwin et al., 2008).

We elected to focus on the WFC3 data for our retrievals, based on the caveats for other

data described in § 4.4. We treated the spectra from the two WFC3 grisms as a single data

set, with no offset in transit depth between them. The transit depths are consistent between

the grisms because the influence of stellar activity is below the measurement precision (see

§ 4.2.1), so no offset is needed. We also tested including STIS data in some of the retrievals

(see § 4.5.1), but found that it does not affect the main conclusions of this work.

4.5.1 FREE Retrieval with CHIMERA

The FREE parameterization retrieves molecular abundances, cloud and haze properties, and

the altitude-independent scale height temperature.

Our model explored the dominant molecular opacities expected for a solar composition

gas at the temperatures and pressures probed by the observations. These are H2O, TiO, Na,

and K over the wavelength range of the WFC3 spectrum (Burrows & Sharp, 1999; Fortney

et al., 2008). The remaining gas is assumed to be a solar composition mixture of H2 and He.

We discuss results for including additional molecular species in § 4.5.1.

In addition to the molecular opacities, we included opacity from clouds and haze. Previ-

ous analyses of WASP-12b’s transmission spectrum have suggested that hazes are present in

the atmosphere, but the haze composition is poorly constrained (Sing et al., 2013; Stevenson

et al., 2014c). We therefore used a flexible model that includes a power law haze and an

opaque gray cloud deck. We modeled clouds as a gray opacity source that masks transmission

through the atmosphere below a fixed pressure level Pc. The haze opacity was parameterized

by σ(λ) = σ0(λ/λ0)γ , where the scattering amplitude σ0 and slope γ are free parameters

(as in Lecavelier Des Etangs et al., 2008). The scattering is presumed to happen throughout

the entire atmosphere as if it were a well mixed gas. The scattering amplitude is a scaling

to the H2 Rayleigh scattering cross section times the solar H2 abundance at 0.43 µm. More
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sophisticated models for clouds and haze would require additional free parameters that are

not justified by the precision of our data. Our simple parameterization is sufficient to capture

degeneracies between clouds/haze and the water abundance, which is the primary goal of

this investigation.

We also retrieved a “scale height temperature” parameter Ts. We assumed the atmo-

sphere is isothermal, with temperature equal to Ts at all pressures. We tested fitting for a

more complex temperature-pressure profile but found it did not affect our results because

the transmission spectrum is only weakly sensitive to the atmosphere’s thermal structure

(see Barstow et al., 2013, 2014).

The final free parameter in the retrieval was a scale factor for the planet’s 10 bar radius.

We assumed a baseline planet radius of 1.79 RJ and a stellar radius of 1.57 R� from Hebb

et al. (2009). The planet radius was scaled by a factor Rscale to account for uncertainty

in the pressure level in the atmosphere at a given radius. To first order, the effect of this

scaling is to shift the model transit depths by a constant factor. A second order effect is that

scaling the radius changes the amplitude of spectral features (see Equation 1 in Lecavelier

Des Etangs et al., 2008).

In sum, the retrieval had 8 free parameters: the abundances of H2O, Na+K (fixed at the

solar abundance ratio), and TiO, as well as clouds and haze, the scale height temperature,

and the planet radius scale factor. We refer to this 8-parameter fit as the FULL model.

The best fits for the FULL model and nested models within it are shown in Figure 4.10.

The best-fit models are those that produced the lowest χ2 values in the MCMC. We list

the retrieved water abundances, temperatures, and best fit χ2 values for these models in

Table 4.4. The distributions of retrieved parameters from the FULL model are shown in

Figure 4.11. We note that all of the nested models are nearly indistinguishable near the

water absorption feature at 1.4 µm. The best constrained molecular abundance is that of

water: we retrieved a water volume mixing ratio (VMR) of 1.6 × 10−4 − 2.0 × 10−2 at

1σ, which is consistent with expectations for a solar composition gas. The other molecular
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abundances are not as well constrained. We retrieved a 3σ upper limit on the VMR of

TiO equal to 2 × 10−4, and the abundance of Na+K is unbounded. The cloud and haze

properties are also poorly constrained. We discuss the implications of these measurements

for the atmosphere composition in detail in § 4.6.

Detection Significances

We performed nested model selection to identify how strongly each opacity source is detected

in the spectrum. The standard Bayesian approach for comparing models is to use Bayes fac-

tors, which can be converted to detection significances (Sellke et al., 2001; Trotta, 2008).

See also Benneke & Seager (2013) for an application of nested Bayesian model comparisons

as applied to super-Earth atmospheres. Bayes factors are the ratio of the Bayesian evidence

(marginal likelihood) of the two models under consideration. The evidence is a multidimen-

sional integral over the entire posterior volume, a non-trivial calculation, so here we use

two methods to approximate the integral. The first is the Numerical Lebesgue Algorithm

described in Weinberg (2012) (see also Swain et al., 2014, for an application to exoplanet

atmospheres and a comparison to the ∆χ2 test). The second is the Laplace approximation

(Kass & Raftery, 1995; Cornish & Littenberg, 2007). Most methods for computing Bayesian

evidence diverge for low detection significances, but they agree well for highly significant

detections (see Fig. 3 from Cornish & Littenberg, 2007).

Using these techniques, we determined the detection significances for the following pa-

rameter combinations: H2O, absorbers other than H2O, clouds and haze combined, clouds

only, haze only, and all opacity sources other than H2O. We computed the detection signifi-

cance for each nested model by calculating its Bayes factor relative to the FULL model. The

results are shown in Table 4.4. If a parameter has a low detection significance value (/ 3σ),

that parameter does not provide a statistically significant improvement to the model fit.

We find that H2O is detected at high confidence in the spectrum (7 σ). We also find

that the presence of all other opacity sources combined (clouds, haze, TiO, Na and K)
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Table 4.4. FREE Retrieval Results

Scenarioa Water abundanceb Temperatureb χ2c Weinberg
(VMR) (Kelvin) significanced(σ)

FULL (Ts, Rscale, Pc, H2O, TiO, Na+K, σ0, γ) 1.5 × 10−4 − 2.2 × 10−2 1040− 1870 2.82 –
No water (Ts, Rscale, Pc, TiO, Na+K, σ0, γ) – 130− 1560 47.0 6.9
No cloud, haze, other absorbers (Ts, Rscale, H2O) 1.1 × 10−5 − 1.5 × 10−2 730− 1170 11.1 3.2
No other absorbers (Ts, Rscale, Pc, H2O, σ0, γ) 6.9 × 10−5 − 2.9 × 10−2 1090− 1890 3.59 1.2
No haze (Ts, Rscale, Pc, H2O, TiO, Na+K) 5.8 × 10−5 − 8.3 × 10−3 910− 1470 2.87 1.6
No cloud (Ts, Rscale, H2O, TiO, Na+K, σ0, γ) 6.6 × 10−5 − 2.0 × 10−4 1000− 1840 2.86 –
No cloud/haze (Ts, Rscale, H2O, TiO, Na+K) 2.4 × 10−5 − 5.5 × 10−3 860− 1430 2.95 –

aIndicates the parameters that are removed from the FULL model. The remaining parameters are shown in parentheses.

bThe range of values corresponds to the 68% credible interval centered on the median retrieved value.

cχ2 values are calculated for the best fit model.

dScenarios where the detection significance is undefined (because the Bayes factor is less than 1) are marked by –. The
detection significance for the FULL model is also undefined because significances are defined relative to it.

is significant at > 3σ. However, no other combination of these opacities is significantly

detected (e.g., the detection significance for clouds alone is < 2σ). The reason for this is

that the parameters are degenerate. For example, both clouds and haze both have the effect

of truncating the height of the water feature. Similiarly, haze, the wings of the alkali metal

lines, and presence of TiO can all contribute to the rise in transit depths towards the blue

end of the spectrum. Therefore, if a few of these opacity sources are removed, the others can

compensate. However, removing all opacities besides water results in a significantly poorer

model fit (as can be seen in Figure 4.10). We therefore focus on results from the FULL

model because it accounts for the likely presence of some combination of these other species

and the degeneracies they may have with H2O.

Retrievals with Additional Molecules/Data

We explored many different combinations of models and data sets before we arrived at the

analysis presented above. One option we considered was to fit a WFC3 spectrum with smaller

wavelength bins. We created a “high-resolution” spectrum with R = 55 − 70, in contrast

to the “low-resolution” data (R = 15 − 25) we used for our final modeling. The spectra

are qualitatively similar, but the models fit the low-resolution data better (χ2ν = 0.6 versus
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1.5). The high-resolution spectrum has larger random scatter around the best fit model,

but no systematic trends indicating that the model is missing a particular physical effect.

The scatter could be due to undiagnosed systematics at the pixel level in the data, which is

remedied by increasing the number of pixels that contribute to each spectral channel.

The retrieved water abundances for both resolutions are very similar (1.5× 10−4− 2.2×

10−2 and 1.2× 10−4− 1.8× 10−2 for low- and high-resolution). On the other hand, the best

fit scale height temperatures differ by 1.4σ (1370+470
−340 versus 2020+320

−340 for low/high). This

difference is due to slight changes in the morphology of the water feature between the data

sets. It illustrates how retrieval results can be biased or have underestimated uncertainties

when the model does not provide a good fit to the data, either because of missing model

physics or underestimated data error bars.

Another test we performed was to fit the combined transmission spectrum from

HST/STIS and WFC3. The STIS spectrum covers optical wavelengths and exhibits a linear

increase in transit depth from red to blue (see Figure 4.9). Incorporating the STIS data in

the retrieval increased the detection significance of clouds and haze to > 3σ (because of the

rise in transit depth towards the blue), but otherwise did not significantly change the results.

We also tested including additional absorbing species in the retrieval. Previous work

has suggested WASP-12b has a carbon-rich atmosphere composition (e.g. Madhusudhan

et al., 2011c), so we wanted to confirm that our estimate of the water abundance is not

biased by only including absorbers expected for solar composition. We therefore ran a

retrieval including all the major opacity sources expected for either oxygen-rich or carbon-

rich compositions, including H2O, CO, CO2, NH3, TiO, VO, Na, K, CH4, C2H2, HCN,

H2S, FeH, N2, and collisionally-induced H2/He absorption (Burrows & Sharp, 1999; Fortney

et al., 2008; Madhusudhan, 2012). For this retrieval, we also fit the STIS data and used the

higher-resolution WFC3 spectrum. The retrieved water abundance of 2.5×10−4−2.0×10−2

is nearly identical to the results we obtained from the FULL model. No individual absorbers

were significantly detected besides H2O.
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Our conclusion from all the scenarios we fit is that the constraints on the water abundance

are not significantly impacted by the choice of data sets or the absorbers included in the

modeling.

4.5.2 CHEMICALLY-CONSISTENT Retrieval with CHIMERA

In addition to retrievals with the FREE parameterization (described in § 4.5.1), we also de-

veloped a reparameterized model to retrieve atmospheric properties that are consistent with

chemical equilibrium. Rather than varying the mixing ratios of individual gases, we made

C/O and metallicity free parameters and computed thermochemical equilibrium abundances

along the temperature/pressure (T/P) profile for major species. We retrieved the T/P profile

rather than a scale height temperature in order to explore any additional degeneracies due

to the profile shape. The T/P profile is modeled with a 5-parameter analytic function (Line

et al., 2013b) which produces physically realistic thermal profiles consistent with radiative

equilibrium (e.g. Guillot, 2010; Robinson & Catling, 2012; Heng et al., 2012; Parmentier

& Guillot, 2014). We calculated chemical profiles for H2, He, H2O, CH4, CO, CO2, NH3,

H2S, PH3, C2H2, HCN, Na, K, FeH, TiO, VO, and N2 to cover the full range of gases that

could contribute significant opacity in the near-IR. The equilibrium abundances are com-

puted using the NASA Chemical Equilibrium with Applications code (McBride & Gordon,

1996; Moses et al., 2011; Line et al., 2011). The chemical profiles were fed into the radiative

transfer model to calculate model transmission spectra for comparison with our data. The

model also included opacity from clouds and haze (using the same formalism described in

§ 4.5.1), and the reference radius Rp, for a total of 11 free parameters. While we reduced the

number of free absorber parameters to just C/O and metallicity, the overall number of free

parameters increased due to the more flexible T/P profile.

We ran retrievals using three different priors for C/O. The fiducial case had an unin-

formative prior constraint on C/O. We also ran retrievals that constrained the atmospheric

composition to be either oxygen-rich or carbon-rich. For the O-rich scenario, the prior proba-
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Table 4.5. C-C Retrieval Results

Scenario C/O Metallicity Water abundance Temperaturea(K) χ2

(× solar) (1σ) (1σ)

Fiducial 0.2− 0.7 0.3− 20 9.3× 10−5 - 5.3× 10−3 1090− 1760 2.43

O-rich 0.1− 0.7 0.3− 30 1.2× 10−4 - 1.5× 10−2 1090− 1890 2.75

C-rich 2.9− 51 0.2− 80 1.5× 10−5 - 8.6× 10−3 120− 550 29.2

aThe temperature range corresponds to a pressure level of 1 mbar.

bility was set to zero for C/O values greater than unity. Correspondingly, the C-rich scenario

had zero prior probability for C/O< 1. We show the best fit models for all three cases in

Figure 4.10. Figure 4.12 shows marginalized distributions of C/O and metallicity for each

scenario, as well as constraints on the temperature-pressure profiles. Table 4.5 gives the χ2

values of the best fits in each scenario. It also lists the 68% credible intervals for C/O,

metallicity, and the temperature and water abundance at 1 mbar pressure.

The fiducial and oxygen-rich scenarios give nearly identical constraints on C/O and the

atmospheric metallicity. Even though the fiducial model has an uninformative prior on C/O,

100% of the retrieved C/O values are less than unity for this case (suggesting the result is

data-driven rather than prior-driven). Both scenarios yield constraints on the molecular

abundances and thermal profile that agree well with results from the FULL model. The

median retrieved water abundances are 6.3×10−4 and 1.0×10−3 for the fiducial and O-rich

scenarios, respectively. The median 1 mbar temperatures are 1410 and 1450 K. We retrieved

metallicities in the range 0.3 − 30× solar (at 1σ). The retrieved cloud and haze properties

for these scenarios are consistent with the FULL model at 1σ.

By contrast, the carbon-rich scenario produced significantly different atmospheric prop-

erties. To reproduce the water absorption feature in the spectrum, the temperature was

driven to much lower values (the median is 320 K at 1 mbar). These low temperatures allow

for higher water abundances (see Figure 4.13), though they are unlikely for the terminator
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region given how highly irradiated the planet is. The median water abundance, 1.4× 10−4,

is comparable to that for the O-rich and fiducial scenarios. On the other hand, the median

methane abundance increases to 2.4× 10−3, versus 1.3× 10−11 for the fiducial case. These

differences have two main effects on the model transmission spectra. One is that absorp-

tion features have smaller amplitude because lower temperatures decrease the atmospheric

scale height. The second effect is that methane absorption is present in the spectrum. It

is especially noticeable in the window between water features at > 1.6µm wavelengths (see

the best-fit C-rich model in Figure 4.10). The consequence of these changes is that C-rich

models do not fit the measured spectrum as well as O-rich models. We discuss the strength

of the evidence for one scenario over the other in quantitative detail in § 4.6.

As a test, we also considered a scenario with clouds and haze removed. We computed

the Bayes factor for this nested model and found a detection significance of 3.7σ for the

cloud and haze parameters. The detection significance is higher than for the FREE model

parameterization because the assumption of chemical equilibrium breaks the degeneracy

between the cloud/haze and the other molecular abundances (Na+K, TiO); i.e. the other

molecular abundances can’t increase arbitrarily to make up for the absence of clouds/haze.

4.5.3 Retrieval with NEMESIS

We also compared the results from CHIMERA with output from an independent retrievel

code to test the robustness of our measurements against a different modeling approach

(optimal estimation versus MCMC). We fit the high-resolution WFC3 spectrum with the

NEMESIS code (Irwin et al., 2008). The model included H2O as the only molecular opacity

source. We modeled the atmosphere’s thermal structure as a scalar multiple of the dayside

temperature-pressure profile from Stevenson et al. (2014b). NEMESIS does not currently

incorporate cloud-top pressure as a free parameter, so we fixed the altitude of an opaque

gray cloud deck over a grid of pressures ranging from 10 to 10−3 mbar and retrieved the

atmospheric properties for each case (for further discussion of retrieving cloud properties
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with NEMESIS, see Barstow et al., 2013). The best fit model had a cloud deck at 1 mbar

and a retrieved water abundance of 4.0 × 10−4 − 1.7 × 10−3 at 1σ. Models with higher

altitude cloud decks (0.1 - 0.001 mbar) achieved nearly as good a fit, and had 1 σ upper

bounds on the water abundance of 3× 10−2. These results are in excellent agreement with

the results from CHIMERA.

4.6 Implications for Atmospheric C/O

In this section, we quantify the strength of the evidence for oxygen-rich compositions (C/O<

1) over carbon-rich compositions (C/O> 1) based on our retrieval results from two separate

modeling approaches. We focus first on constraints from the water abundance from the

FREE retrieval, since water is the only molecule that is unambiguously detected in the

spectrum. We then discuss constraints from the C-C model, which retrieves C/O directly

under the assumption of chemical equilibrium.

4.6.1 Constraints from the FREE Retrieval

Broadly speaking, a carbon-rich atmosphere is expected to have lower water abundance than

an oxygen-rich atmosphere, because most of the oxygen atoms are bound in CO in chem-

ical equilibrium at high temperatures (Madhusudhan et al., 2011a). Our water abundance

measurement is a qualitatively better match to predictions for an oxygen-rich composition.

In Figure 4.13, we show the retrieved H2O abundance for the FULL retrieval and nested

models in comparison with thermochemical equilibrium predictions for oxygen-rich (C/O =

0.55 = solar) and carbon-rich (C/O = 1) atmospheres. The predicted abundance depends

on pressure and temperature, so we plot the span of predictions over pressures from 0.1 to

10 mbar as a function of temperature.

To quantitatively compare our measurement to the models, we must marginalize over

the uncertainty in the pressure and temperature probed by the observations. To do this, we

61



compute an equivalent pressure level peq corresponding to an optical depth τ = 0.56 at 1.4

µm at each step in the MCMC chain. This quantity is representative of the typical pressure

level at which photons are absorbed by water molecules (Lecavelier Des Etangs et al., 2008).

Figure 4.14 shows the distribution of equivalent pressures from the MCMC chain. Note that

peq is not a retrieved quantity, but rather derived from the opacities at each MCMC step.

We show the distribution of equivalent pressures obtained from this method in Figure 4.14.

The pressures have a 1σ range of 0.05 to 5 mbar, with a peak at 0.5 mbar.

For a specified atmospheric composition, we can then calculate the predicted equilibrium

H2O abundance for a temperature and pressure equal to Ts and peq. This procedure yields

a “calculated” water abundance to compare with the “observed” water abundance at each

step in the MCMC chain. We show the distribution of observed minus calculated (“O - C”)

values for the oxygen-rich and carbon-rich models in Figure 4.13 (right panel).

To test how well each model agrees with the retrieved H2O abundance, we assess whether

the O-C distribution is consistent with zero. For the oxygen-rich model, zero is contained

in the 1σ credible interval centered on the median, indicating that this model is a good

match. By contrast, the O-C distribution for the carbon-rich model is in tension with zero

at approximately 2σ (the 95% credible interval is 0.1 − 6.4). The median O-C value is 3.7,

implying that the typical retrieved water abundances are nearly four orders of magnitude

larger than predicted for a carbon-rich composition.

We emphasize that these results are strongly dependent on the temperature and pressure

probed by the observations. Assuming a different local thermal profile can result in order-

of-magnitude differences in the predicted abundances (cf. Figure 2, Madhusudhan, 2012). It

is therefore essential to account for the temperature and pressure (and their uncertainties)

when estimating C/O.
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4.6.2 Constraints from the C-C Retrieval

We obtain more stringent constraints on the atmospheric C/O from the C-C retrieval than

from the FREE parameterization. By every metric we enumerate below, C/O values greater

than one are ruled out at high confidence. First, the entire posterior probability distribution

for C/O from the fiducial model is less than one. We calculate that there are roughly 3000

independent samples in the MCMC chain for that model, which is a sufficient number to

rule out C/O> 1 at greater than 3 σ confidence. Second, the χ2 values for the best fit

models provide additional evidence in favor of the O-rich scenario. The best fit O-rich model

has χ2 = 2.75 versus χ2 = 29.2 for the best fit C-rich case (for 2 degrees of freedom).

This difference in χ2 implies the O-rich model is 106 times more likely than the best fit

C-rich model, assuming Gaussian statistics. Third, the Bayes factor (the ratio of integrated

posterior probabilities) for the C-rich scenario to the O-rich scenario is 14, which constitutes

strong evidence in favor of the O-rich model (Jeffreys, 1998). In addition, the fact that the

temperature range drops unphysically low – below the condensation temperature of water –

is further evidence that the carbon-rich model is not appropriate for these data.

Taken together, these results rule out a carbon-rich composition for the atmosphere at

high confidence. This is a more definitive constraint than what we obtained from studying

the water abundance alone because the model is sensitive to both the presence of water

and the absence of absorption features from other molecules. For example, the fact that no

methane features are detected in the spectrum strengthens the case for an O-rich composition

beyond the constraints from the presence of water alone. The C-C model also assumes more

prior knowledge by imposing chemical equilibrium in the calculation of the model spectra.

4.7 Summary & Conclusions

We have measured a precise transmission spectrum for the hot Jupiter WASP-12b over the

wavelength range 0.84 to 1.67µm with HST/WFC3. The transmission spectrum is a factor
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of three more precise than previous measurements in this wavelength range (Swain et al.,

2013). We retrieved the atmospheric properties based on this spectrum with a variety of

models, including a new retrieval parameterization that fits for C/O and metallicity rather

than molecular abundances. Our conclusions about the nature of the planet are summarized

as follows:

1. Water is present in the atmosphere. Models that do not include water absorption are

excluded at 7σ confidence. This result is the first unambiguous spectroscopic detection

of a molecule in the planet’s atmosphere.

2. The 68% credible interval for the retrieved water abundance is 10−5− 10−2 for a wide

range of models. This result applies to scenarios where water is the only absorber

included in the model, where clouds and haze are added, where additional absorbers

are incorporated (CO, CO2, NH3, TiO, VO, Na, K, CH4, C2H2, HCN, H2S, FeH,

and N2), and where optical transit depth measurements from HST/STIS are also fit.

This range agrees well with the predicted equilibrium water abundance for a solar

composition atmosphere but is still consistent to within 2σ with the prediction for a

carbon-rich composition.

3. Stellar photons are absorbed at temperatures of 1000 − 1900 Kelvin and pressures of

0.1 − 10 mbar (based on 1σ ranges for Ts and Peq from the FULL model). These

estimates have large uncertainties because the transmission spectrum is only weakly

sensitive to the thermal structure of the atmosphere.

4. Based on a new retrieval parameterization that fits for C/O and metallicity under the

assumption of chemical equilibrium, we constrain the C/O to 0.5+0.2
−0.3 at 1σ and rule

out a carbon-rich atmosphere composition (C/O> 1) at > 3σ confidence. With this

model, we also detect the presence of clouds/haze at 3.7 σ confidence.

Our constraint on C/O is in tension with past studies of the planet’s atmosphere that

found a carbon-rich composition was the best explanation for the dayside emission spec-
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trum (e.g. Madhusudhan et al., 2011c; Stevenson et al., 2014b). We would hope for better

agreement between these analyses, as both results are based on very high precision data fit

with state-of-the-art retrieval models. This methodology has yielded consistent results for

other planets, notably the hot Jupiter WASP-43b, which shows excellent agreement between

estimates of the composition from the dayside emission and transmission spectra (Kreidberg

et al., 2014a).

We note that a caveat for our results from the C-C model is our assumption that the

atmosphere is in chemical equilibrium. Moses et al. (2013) considered the effects of photo-

chemistry and mixing for WASP-12b and found that the water abundance is either unchanged

from equilibrium values (for solar composition), or pushed even lower (for a C/O = 1 com-

position). Based on these results, it is unlikely that our high observed water abundance is

due to disequilibrium chemistry in a carbon-rich atmosphere. However, these calculations

were for the planet’s dayside and it would be worth exploring disequilibrium effects for the

terminator region specifically in future work.

Another assumption in our model is that the temperature structure is well approximated

as 1D. In reality, a photon’s slant path through the atmosphere traverses many different

temperatures and pressures. However, theoretical models predict that most of the stellar

radiation is attenuated in a fairly localized region within a few degrees of the terminator

(Fortney et al., 2010). The change in temperature and pressure over a region this size is

small compared to the uncertainty in our estimates of the thermal profile, so our assumption

of a 1D profile is unlikely to bias our assessment of the atmospheric composition. On the

other hand, the observations integrate over the entire limb of the planet, and there could be

large variations in temperature over this region due to atmospheric dynamics. It is therefore

possible that fitting the limb-averaged spectrum with a single 1D thermal profile could bias

the results.

One route to reconciling the disagreement between constraints on C/O from the trans-

mission and emission spectra is to determine the planet’s global thermal structure. This
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could be achieved by combining phase-resolved emission spectroscopy of the planet with

3D atmospheric circulation modeling, as has been done for WASP-43b (Stevenson et al.,

2014a; Kataria et al., 2014b). This combination would provide an independent measure of

the temperature structure at the terminator to strengthen our interpretation of the trans-

mission spectrum. It would also put the dayside temperature-pressure profile in context of

the planet’s global heat circulation and aid in understanding the dayside emission spectrum.

In addition, a spectroscopic phase curve would allow us to estimate the water abundance

for new regions of the planet’s atmosphere. Furthermore, the spectroscopic phase curve am-

plitudes themselves could provide an additional diagnostic of the atmosphere composition.

Day-night temperature differences for hot Jupiters are larger at lower pressures (Showman

et al., 2009; Stevenson et al., 2014a; Kataria et al., 2014a,b), so light curves in absorption

bands (which probe lower pressures) are expected to have larger amplitudes than those in

spectral windows. Measuring the wavelength dependence of the phase curve amplitude could

therefore provide an additional constraint on the atmospheric composition (Showman et al.,

2009; Stevenson et al., 2014a; Kataria et al., 2014a,b).

Finally, our results highlight the necessity of obtaining high-precision data with multiple

observing techniques (transmission spectroscopy, dayside emission spectroscopy, and phase

curves) in order to obtain robust constraints on the rich chemistry and physics of exoplanet

atmospheres. Studying the atmosphere from more than one angle (literally) is key to pro-

viding a detailed understanding of its thermal structure and dynamics, which is needed to

unambiguously determine the composition (and vice versa). In addition, high-precision mea-

surements are essential for revealing the small features present in exoplanet spectra. The

amplitude of these features has often been smaller than predicted for transiting planets,

due to the presence of clouds or haze and shallower thermal profiles (e.g. Fortney et al.,

2006; Charbonneau et al., 2002; Deming et al., 2013). Our WASP-12b spectrum is a new

example of this for transmission measurements, with features crossing just two scale heights.

We therefore advocate applying an intensive approach of high-precision spectroscopy from
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multiple angles to a larger sample of transiting exoplanets to shed light on their nature and

origins. Such measurements will help develop the observing strategies needed for defini-

tive characterization of exoplanet atmospheres, and prepare the community to make robust

measurements of potentially habitable worlds with future facilities.
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Figure 4.5: Pairs Plot for MCMC Fit to Light Curve
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A pairs plot showing distributions of MCMC fit parameters for the 1.320 − 1.389 µm light
curve. The off-diagonal panels show marginalized posterior probability for pairs of param-
eters, with 1, 2, and 3σ credible intervals indicated with black contours. The gray shading
corresponds to probability density (darker for higher probability). The panels on the diago-
nal show distributions of each parameter marginalized over the other model parameters, with
the median and 68% credible interval marked with dashed lines. The planet-to-star radius
ratio, k, is not strongly correlated with any of the other fit parameters. For parameters that
are allowed to vary between transit observations (k, c, s, and v), we show distributions for
the 16 Jan 2014 transit.

68



Figure 4.6: Trends in Systematics Decorrelation Parameters with Detector Illumination
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visit-long slope v, ramp rate constant a, ramp amplitude b, and ramp delay d. The normal-
ization constant c is linearly proportional to the per-pixel flux in a spectroscopic channel.
Measurements from the G102 and G141 data are shown in light and dark gray, respectively.
The error bars indicate 1σ uncertainties from an MCMC fit to the light curves using the
analytic model for instrument systematics.
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Figure 4.7: Dilution from Companion Star
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The dilution factor αComp, determined from the ratio of flux from WASP-12 BC to WASP-
12 A. The median dilution (over the 10 staring mode observations) is shown with black lines
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determined from the median absolute deviation. To calculate the dilution and uncertainty,
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70



Figure 4.8: WASP-12b Transmission Spectrum

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
Wavelength (µm)

1.42

1.43

1.44

1.45

1.46

1.47

Tr
an

si
t D

ep
th

 (%
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
ca

le
 H

ei
gh

ts

The transmission spectrum of WASP-12b measured with HST/WFC3 (points). The error
bars on the transit depths are 1σ uncertainties from an MCMC fit to the light curves. We
show the best fit model binned to the resolution of the data (blue squares). The shaded re-
gions indicate 1- and 2σ credible intervals in the retrieved spectrum (medium and light blue,
respectively), relative to the median fit (dark blue line). The secondary y-axis labels indicate
the atmospheric scale height. One scale height corresponds to 470 km (for a temperature of
1400 K). The increase in transit depth near 1.4µm corresponds to an H2O bandhead.

71



Figure 4.9: Comparison with Previous Transmission Spectra Measurements
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High-precision optical/near-IR transit depth measurements for WASP-12b. We show
measurements from HST/STIS (green diamonds), Gemini/GMOS (orange squares), and
HST/WFC3 (from this work, black circles; from staring mode data, pink circles). The best
fit model from the CHIMERA FULL retrieval is indicated by the gray line. Note that this
model was fit to the WFC3 data only. There may be small offsets between data sets due to
different corrections for the companion star dilution and the challenge of measuring absolute
transit depths in the presence of systematic errors (Stevenson et al., 2014c,d).
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Figure 4.10: Best Fit Models from Spectral Retrieval
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Figure 4.11: Pairs Plot for Retrieved Atmospheric Parameters
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Figure 4.12: Constraints on C/O, Metallicity, and Thermal Profile
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Retrieval results from the C-C parameterization. The left and middle panels show the
marginalized distribution for C/O and metallicity. The right panel shows the median (black
lines) and 1σ range (shaded regions) of 1000 randomly sampled temperature-pressure pro-
files for each scenario. Yellow, blue, and red shading correspond to constraints from the
fiducial scenario (an uninformative prior on C/O), the oxygen-rich scenario (C/O< 1), and
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Figure 4.13: Retrieved Water Abundance Compared to Chemical Equilibrium Predictions

500 1000 1500 2000 2500 3000
Temperature (Kelvin)

8

7

6

5

4

3

2

1

0

W
at

er
 A

bu
nd

an
ce

 (l
og

10
 V

M
R

)

C/O = 0.55 model
C/O = 1.00 model

FULL model
No other molecules
No cloud/haze
No haze
No cloud

0.1 mbar
1 mbar

10 mbar

0.1 mbar

1 mbar

10 mbar

2 0 2 4 6 8
O-C Water Abundance (log10 VMR)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
ro

ba
bi

lit
y 

D
en

si
ty

C/O = 0.55 model
C/O = 1.00 model

Left: Measurement of the water abundance and scale height temperature for WASP-12b
(points) compared to equilibrium chemistry predictions of the water content for different
atmospheric compositions (lines and shading). The black point indicates the water abun-
dance and temperature measurements from the FULL model from the CHIMERA fit to the
WFC3 spectrum. Results from other nested models are shown in gray. The black dashed
line and blue shading correspond to water abundance predictions for a solar C/O compo-
sition, and the black dotted line and red shading correspond to C/O = 1. Both models
have solar metallicity. For each model composition, the shading shows the span of predicted
water abundances over pressures ranging from 0.1 - 10 mbar. The black lines correspond to
1 mbar, which is the typical pressure level probed by our observations. Right: Histogram
of observed minus calculated water abundances for the FULL retrieval results relative to
different model compositions. The red histogram (dotted line) shows the comparison with
a carbon-rich model, and the blue histogram (dashed line) shows results for the oxygen-rich
model. The gray vertical line marks zero, where the observations are an exact match to the
model predictions.
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Figure 4.14: Pressure Levels Sensed by the Transmission Spectrum
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Histogram of equivalent pressures corresponding to an optical depth of 0.56 at 1.4 µm for
each step in the MCMC chain for the FULL retrieval. The dotted lines indicate the median
and surrounding 68% confidence interval.
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CHAPTER 5

BATMAN: BASIC TRANSIT MODEL CALCULATION IN

PYTHON

In this chapter, I introduce batman, a Python package for modeling exoplanet transit and

eclipse light curves. The batman package supports calculation of light curves for any radially

symmetric stellar limb darkening law, using a new integration algorithm for models that

cannot be quickly calculated analytically. The code uses C extension modules to speed

up model calculation and is parallelized with OpenMP. For a typical light curve with 100

data points in transit, batman can calculate one million quadratic limb-darkened models

in 30 seconds with a single 1.7 GHz Intel Core i5 processor. The same calculation takes

seven minutes using the four-parameter nonlinear limb darkening model (computed to 1

ppm accuracy). Maximum truncation error for integrated models is an input parameter that

can be set as low as 0.001 ppm, ensuring that the community is prepared for the precise

transit light curves we anticipate measuring with upcoming facilities. The batman package

is open source and publicly available at https://github.com/lkreidberg/batman.

5.1 Introduction

The transit technique has revolutionized the study of exoplanetary systems. Thanks largely

to the Kepler mission, thousands of planets have been discovered with this method (Rowe

et al., 2015). These discoveries have yielded transformative constraints on planet occurrence

rates over a wide range of planet sizes, orbital periods, and host star properties (Borucki

et al., 2011; Youdin, 2011; Howard et al., 2012; Fressin et al., 2013; Dong & Zhu, 2013; Morton

& Swift, 2014). They have also enabled the first estimates of the occurrence of habitable

planets (Traub, 2012; Dressing & Charbonneau, 2013; Petigura et al., 2013; Kopparapu,

2013; Foreman-Mackey et al., 2014; Dressing & Charbonneau, 2015). Transit light curves

can even reveal planets’ atmospheric temperature structure and composition (e.g. Seager &
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Sasselov, 2000; Charbonneau et al., 2002; Lecavelier Des Etangs et al., 2008; Sing et al.,

2011; Deming et al., 2013; Knutson et al., 2014a; Fraine et al., 2014; Kreidberg et al., 2015).

A number of current and planned observational facilities – including K2, TESS, CHEOPS,

JWST, and PLATO – will measure precise transit light curves for thousands of exoplanets

that will further advance our understanding of planet formation, evolution, and habitability.

Light curve models are a fundamental tool for transiting exoplanet science, but they are

not trivial to compute quickly and accurately. Accurate calculation is challenging because

the model must account for the planet’s size and position on the sky, as well as stellar limb

darkening, which causes the apparent brightness of the stellar disk to decrease from center to

edge. The stellar intensity profile can be fit with several functional forms, including a linear

limb darkening law (Schwarzschild & Villiger, 1906), quadratic (Kopal, 1950), square-root

(Diaz-Cordoves & Gimenez, 1992), logarithmic (Klinglesmith & Sobieski, 1970), exponential

(Claret & Hauschildt, 2003), and four-parameter nonlinear (Claret, 2000). For some of these

profiles, model transit light curves can be calculated analytically (Mandel & Agol, 2002;

Giménez, 2006; Abubekerov & Gostev, 2013). Other profiles do not have analytic solutions,

and models must be calculated by numeric integration of the stellar intensity over the disk

of the planet. In addition, speed is an important consideration because a large number of

models must typically be calculated to make a robust estimation of transit parameters and

their uncertainties.

A number of codes are available to calculate transit light curves. Mandel & Agol (2002)

provide Fortran and IDL routines to compute models for quadratic and nonlinear limb dark-

ening laws. The software packages TAP (Gazak et al., 2012) and EXOFAST (Eastman et al.,

2013) include IDL implementations of the Mandel & Agol (2002) algorithm for quadratic

limb darkening. JKTEBOP calculates models in Fortran for a broad range of limb darkening

laws (Southworth et al., 2004). Kjurkchieva et al. (2013) introduce the pure Python code

TAC-maker, which performs numeric integration for arbitrary limb darkening profiles. There

are also routines available to model simultaneous transits by one or more bodies (Kipping,
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2011; Pál, 2012). Most recently, Parviainen (2015) released the Python package PyTransit,

which implements analytic models from Mandel & Agol (2002) and Giménez (2006).

In this paper, I introduce the open source Python package batman. This package is

based on code that was used to model high-precision light curves obtained for atmosphere

characterization (Kreidberg et al., 2014a,b, 2015; Stevenson et al., 2014a,b,c,d). The batman

package enables fast computation of transit light curves for any radially symmetric limb

darkening law, and currently supports uniform, linear, quadratic, logarithmic, exponential,

and nonlinear limb darkening. Light curves for the first three of these are calculated analyt-

ically based on the formalism from Mandel & Agol (2002). Models for the remaining cases

are computed with an efficient new integration scheme, described in § 5.2. The package also

supports secondary eclipse modeling. I discuss batman’s features and performance in § 5.3

and conclude in § 5.4.

5.2 Algorithm

To calculate the fraction δ of stellar flux blocked by a transiting planet, one must integrate

the sky-projected intensity of the star (I) over the area obscured by the disk of the planet

(S):

δ =

∫∫
S
IdS (5.1)

where I is normalized such that the integrated intensity over the stellar disk is unity. This

expression is valid for any general stellar surface brightness map; however, it is slow to

evaluate numerically because the differential area elements must be small (. 10−6) in order

to achieve better than one part per million (ppm) accuracy.

On the other hand, if the stellar intensity profile is radially symmetric, the two-

dimensional calculation in Equation 5.1 can be reduced to one dimension and sped up greatly
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with the following algorithm:

δ =
n∑
i=1

I

(
xi + xi−1

2

)[
A(xi, rp, d)− A(xi−1, rp, d)

]
(5.2)

where x is the normalized radial coordinate 0 < x < 1, I(x) is the 1D stellar intensity profile,

rp is the planetary radius (in units of stellar radii), d is the separation of centers between the

star and the planet (in stellar radii), and A(x, rp, d) is the area of intersection between two

circles of radii x and rp, separated by a distance d. The sum is carried out over the range

x0 = MAX(d− rp, 0) to xn = MIN(d+ rp, 1). The intersecting area is given by:

A(x, rp, d) =


x2 cos−1 u+ r2p cos−1 v − 0.5

√
w, rp − d < x < rp + d

πx2, x ≤ rp − d

πr2p x ≥ rp + d

(5.3)

where

u = (d2 + x2 − r2p)/(2dx) (5.4)

v = (d2 + r2p − x2)/(2drp) (5.5)

w = (−d+ x+ rp)(d+ x− rp)(d− x+ rp)(d+ x+ rp). (5.6)

See Figure 5.1 for a schematic illustrating the geometry of the integration. The advantage

of this integration scheme is that the only error introduced is due to approximating the stellar

intensity as constant over the differential area element ∆A = A(xi, rp, d) − A(xi−1, rp, d).

Computation of ∆A is expensive, but it needs to be calculated relatively few times (<< 106

for sub-ppm accuracy). This makes the integration faster than a scheme with a simpler area

element (e.g., ∆A = ∆x∆y), that requires a much smaller step size to achieve the same

accuracy.

The integration can be further optimized by using a nonuniform step size. Typical stellar
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intensity profiles have larger gradients near the limb of the star than at the center (e.g.

Claret, 2000), so smaller steps are required at larger x values to achieve the same accuracy.

I adopt the following step-size scaling:

xi − xi−1 = f cos−1 (xi−1)

where f is a constant scale factor. This prescription is fast to compute and well-behaved at

the limits x = 0 and x = 1.

5.3 The batman package

The Python package batman implements the algorithm described in § 5.2 and several analytic

models to calculate transit light curves. batman is an open source project and is being devel-

oped on GitHub. Full documentation is available at https://github.com/lkreidberg/batman.

I summarize the main capabilities of the package here.

5.3.1 Limb Darkening Models

batman supports calculation of exoplanet transit light curves for uniform, linear, quadratic,

square-root, logarithmic, exponential, and four-parameter nonlinear stellar intensity profiles:

I(µ) = I0 (uniform) (5.7)

I(µ) = I0[1− c1(1− µ)] (linear) (5.8)

I(µ) = I0[1− c1(1− µ)− c2(1− µ)2] (quadratic) (5.9)

I(µ) = I0[1− c1(1− µ)− c2(1−√µ)] (square-root) (5.10)

I(µ) = I0[1− c1(1− µ)− c2µ lnµ] (logarithmic) (5.11)

I(µ) = I0 [1− c1(1− µ)− c2/(1− expµ)] (exponential) (5.12)

I(µ) = I0[1− c1(1− µ1/2)− c2(1− µ)− c3(1− µ3/2)− c4(1− µ2)] (nonlinear) (5.13)
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Figure 5.1: Schematic Illustration of Integration Scheme

0.0 0.2 0.4 0.6 0.8 1.0
x (stellar radii)

−0.4

−0.2

0.0

0.2

0.4

y 
(s

te
lla

r r
ad

ii)

d

Schematic illustration of the integration scheme. The star (large black circle; partially visible)
has a radius of 1 and is centered in the plane of the sky at (x, y) = (0, 0). The planet (smaller
black circle) is separated from the center of the stellar disk by a distance d (marked by the
solid black line). The star is partitioned into concentric circles (dotted lines) in order to
calculate the integral over the planet disk. A single integration element ∆A is shaded in
orange. The integration step size illustrated here is larger than for a typical calculation
for visual clarity. Note that because the stellar intensity profile is radially symmetric, the
coordinate system can be chosen such that the planet lies on the x-axis, as shown.
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where µ =
√

1− x2 and c1, ..., cn are limb darkening coefficients. The batman source distri-

bution also includes a template for the creation of a custom profile for any radially symmetric

function.

The square-root, logarithmic, exponential, nonlinear, and custom models are computed

with the numeric integration scheme from § 5.2. The uniform, linear, and quadratic models

are calculated analytically, with code based on the Fortran routines occultquad.f and

occultuniform.f provided by Mandel & Agol (2002). For the analytic models, I follow

Eastman et al. (2013) and use the algorithm from Bulirsch (1965) to improve calculation

speed and accuracy for elliptic integrals of the third kind.

5.3.2 Secondary Eclipse Model

batman can also model secondary eclipses. Eclipse light curves are generated with

f = 1 + fp(1− α)

where f is normalized flux, fp is the planet-to-star flux ratio, and α is the fraction of the

planet disk that is occulted by the star. The model is normalized such that the stellar flux

is unity. For a separation d, the occultation fraction α(d) = αt(d)/r2p, where 1−αt(d) is the

transit light curve with uniform limb darkening. Note that this model assumes the planet

flux is constant for all orbital phases.

5.3.3 Utilities

batman includes a utility function to calculate the separation of centers d between the star

and the planet based on orbital parameters of the system. The input parameters are the

planet semi-major axis a, inclination i, eccentricity e, longitude of periastron ω, period P ,
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and time of inferior conjunction t0. The separation of centers is given by:

d =
a(1− e2)

1 + e cos f

√
1− sin2 (ω + f) sin2 i

where f is the true anomaly. The true anomaly is calculated with the algorithm provided by

Murray & Correia in Chapter 1 of Seager (2010). For circular orbits, we adopt the convention

f = π/2.

batman provides utilities to calculate the time of periastron, time of inferior conjunction,

and the secondary eclipse time from the other transit parameters, using the method described

in §3.1 of Eastman et al. (2013). Note however that batman does not correct for the effects

of light travel time.

An additional utility is light curve supersampling, which allows the user to calculate the

average value of the light curve over a specified number of evenly spaced points during an

exposure.

5.3.4 Accuracy

Recent transit observations have yielded signal-to-noise greater than 1000 per exposure (e.g.

Kreidberg et al., 2014b; Knutson et al., 2014c). Accurate transit light curve calculation is

essential for modeling such high precision measurements and will be increasingly important

for data obtained with next-generation facilities. batman therefore enables the user to spec-

ify the maximum allowable truncation error for numeric integration. Figure 5.2 shows an

example transit light curve and its truncation error.

To ensure that the truncation error is below the specified threshold, the integration step

size is tuned during model initialization. Truncation error is measured relative to a model

calculated with a very small step size (f = 5×10−4). For typical limb darkening profiles, this

method is reliable for truncation errors down to ∼ 10−3 ppm. However, tuning the step size

is a slow operation because it requires computing several light curve models (∼ 10). As an
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alternative, methods are available to set the step size directly and calculate the corresponding

truncation error.

I tested the accuracy of the analytic model for quadratic limb darkening by comparing it

to a numerically integrated model with an error tolerance of 0.001 ppm. The analytic model

is accurate to 0.03 ppm for a test case with rp = 0.1, (c1, c2) = (0.1, 0.3), sampled at 106

evenly spaced points over the interval 0 < d < 1. The accuracy is somewhat worse than

machine epsilon because of error tolerance in the computation of special functions.

I also tested the accuracy of the widely-used Mandel & Agol (2002) code that uses

Numerical Recipes functions to calculate elliptic integrals (Press et al., 1992). The accuracy

was better than 0.005 ppm for most input values; however, for the case rp− d < ε, the error

in the light curve exceeded 2 ppm. By contrast, the Bulirsch (1965) algorithm for elliptic

integrals is well-behaved for this case and also faster.

5.3.5 Performance

Computationally intensive sections of code (including all of the transit model calculation) are

written as C extension modules with the Python/C API, which improves the performance

by a factor of 30 over a pure Python implementation for quadratic limb darkening. batman

also includes the option to parallelize at the C level with OpenMP, which further speeds

up the calculation. The number of processors is specified by the user. batman will raise an

exception if the user attempts to parallelize a calculation on a system where OpenMP is not

supported.

I tested batman’s performance over a range of typical use cases with a 1.7 GHz Intel

Core i5 processor. In Figure 5.3, I show the truncation error versus execution time for a

single transit light curve calculation using a nonlinear intensity profile, compared to the

execution time for a quadratic model computed analytically. The test case consists of 100

points evenly sampled in time during the planet’s transit. I used physical parameters for

the transiting planet GJ 1214b (Kreidberg et al., 2014b). The stellar intensity profile is the
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Figure 5.2: Example Transit Light Curve and Truncation Error
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An example transit light curve for a nonlinear stellar intensity profile (top panel) and trun-
cation error for the calculation (bottom panel). The error tolerance parameter was set to 1.0
ppm. The truncation error increases with distance from the center of the star up to around
±0.2 hours from the time of mid-transit, because the stellar intensity gradient is larger at
larger radii. The error decreases again during ingress and egress as the planet eclipses a
smaller fraction of the stellar disk.
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Figure 5.3: Performance for Numeric Integration Versus Analytic Model
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ear limb darkening law (black line). The execution time for a quadratic model (computed
analytically to better than 0.05 ppm accuracy) is indicated by the arrow. Calculations were
made with a 1.7 GHz Intel Core i5 processor.
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same for the nonlinear and quadratic models: the nonlinear limb darkening coefficients are

(0.0, 0.7, 0.0,−0.3) and the quadratic coefficients are (0.1, 0.3). Decreasing the truncation

error by a factor of 10 increases the computation time by a factor of three.

5.3.6 Comparison with Analytic Models for Nonlinear Limb Darkening

I explored using an analytic model to calculate transit light curves for the four-parameter

nonlinear limb darkening profile. The analytic solution for nonlinear limb darkening was

presented in Mandel & Agol (2002), but it is not used in any published software packages.

The original code provided by Mandel & Agol (2002) uses a numeric integration scheme that

is 20 times slower than the algorithm presented in § 5.2 (for an error tolerance of 1 ppm).

The analytic solution is challenging to compute because it uses the Appell F1 hyperge-

ometric function. This function is only convergent for certain regions of parameter space

and must be calculated with analytic continuation for other cases. Colavecchia & Gasaneo

(2004) provide a Fortran library for computing Appell F1. I used this library to implement

the analytic model for nonlinear limb darkening. However, the returned Appell F1 values

are not accurate for all input parameters, based on a comparison with Mathematica and

the pure Python library mpmath. Even for cases where F1 is correct, the computation is

over an order of magnitude slower than numeric integration (for an error tolerance of 0.1

ppm). I concluded that integration is a faster and easier solution than analytic models for

the four-parameter nonlinear limb darkening law.

5.4 Summary

I introduced a new algorithm for computing transit light curves for any radially symmet-

ric stellar limb darkening law. I also described the open-source Python package batman,

a versatile code to generate model transit and eclipse light curves. Uniform, linear,

quadratic, logarithmic, exponential, and four-parameter nonlinear limb darkening laws are
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currently supported. batman uses C extension modules to compute light curves and is

parallelized with OpenMP to optimize performance. Light curves can be calculated with

accuracy better than 0.001 ppm, ensuring that the community is prepared to model the

extraordinarily precise data we anticipate from upcoming facilities. batman is available at

https://github.com/lkreidberg/batman and is also hosted on the Python Package Index

under the name batman-package.
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CHAPTER 6

A SPECTROSCOPIC PHASE CURVE FOR THE HOT

JUPITER WASP-103b

In this chapter, I describe preliminary results for the phase-resolved thermal emission spec-

trum of the hot Jupiter WASP-103b. This work is based on data from Spitzer Program

11099 (PI: L. Kreidberg).

6.1 Introduction

Thermal phase curves measurements are a direct probe of exoplanet climate. The phase

curve technique uses time-series observations of a planet’s thermal emission over an entire

revolution on its spin axis. As the planet’s orbital phase changes, different regions of the

atmosphere are observable, enabling measurements of the variation in temperature with

longitude (Cowan & Agol, 2008). Figure 1.2 illustrates the geometry of phase curve obser-

vations.

Short-period planets are ideal candidates for phase curves. They are expected to be

tidally locked, so their rotation periods are known. Moreover, tidally-locked planets should

have large temperature gradients with longitude, because they have one face continuously

blasted by intense stellar radiation (the dayside), and the other in perpetual darkness (the

nightside). Accordingly, the first thermal phase curve observations were measured for hot

Jupiters with Spitzer/IRAC (e.g., Harrington et al., 2006; Knutson et al., 2007b; Cowan

et al., 2007). These measurements have revealed climates vastly different from those in the

Solar System. For example, the hottest planets have poor heat redistribution, leading to

temperature contrasts between day- and nightside in excess of 1000 Kelvin (e.g., Cowan

et al., 2012). Hot Jupiters have also been shown to have high wind speeds (> 1 km/s), based

on comparisons between the observed phase variation and atmospheric circulation models

(Showman et al., 2009).

91



Recently, Stevenson et al. (2014d) made the first spectroscopic phase curve observation.

They targeted the hot Jupiter WASP-43b with HST/WFC3 and measured its phase-resolved

thermal emission spectrum from 1.1 − 1.7µm. Spectroscopy is an important advance over

previous photometric observations with Spitzer : with photometry alone, we cannot distin-

guish between phase variations caused by changes in temperature at a given altitude, versus

changes in opacity that result in sensing a different altitude. Spectroscopic observations

break this degeneracy between composition and thermal structure by unambiguously re-

solving spectral features. A further advantage of WFC3 observations is that they cover

the wavelength region near the peak of the planet’s spectral energy distribution, enabling

a robust accounting of its energy budget. Using spectroscopic phase curve measurements,

Stevenson et al. (2014d) retrieved WASP-43b’s temperature-pressure profile at 15 distinct

orbital phases. The best fit models have temperature decreasing with altitude at all phases,

which is consistent with expectations from 3D circulation models (Kataria et al., 2014a).

They also found that WASP-43b has poor heat redistribution, a low Bond albedo, and an

altitude-dependent hot spot.

Here we make spectroscopic phase curve observations for a second planet, the newly

discovered hot Jupiter WASP-103b (Gillon et al., 2014). WASP-103b orbits an F8 star every

22 hours, making it one of the most highly irradiated transiting planets known (Teq = 2500

K). It is an ideal candidate for comparative planetology with WASP-43b, because it has a

similar orbital period and surface gravity but much higher equilibrium temperature. It is so

hot that the atmosphere may be partially ionized and coupled to the planet’s magnetic field,

resulting in qualitatively different dynamics (e.g., Batygin et al., 2013). The measurements

presented here are the first study of WASP-103b’s atmosphere.

6.2 Observations and Data Reduction

We observed four complete phase curves in total for WASP-103b: two with HST/WFC3 and

one each with Spitzer/IRAC 3.6 and 4.5 µm channels.
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6.2.1 HST/WFC3

The HST observations consisted of two visits on 26-27 February and 2-3 August 2015. Each

visit was 15 orbits in duration and spanned 23 hours. We took a direct image of the star with

the F126N filter at the beginning of each orbit to determine the wavelength solution. The

remainder of the orbit consisted of time-series spectroscopy with the G141 grism and the

256 x 256 pixel subarray. We used the SPARS10/NSAMP = 15 read-out mode, which has

an exposure time of 103 seconds. The exposures were taken with the spatial scan observing

mode with a scan rate of 0.03”/s, alternating between forward and backward scanning on the

detector to diminish overhead time. The scan height was 25 pixels and the peak counts were

30k photoelectrons per pixel. We collected a total of 18 spatial scan exposures per orbit.

Our analysis also uses secondary eclipse observations of WASP-103b from HST program

13660 (PI: M. Zhao), which obtained time series spectroscopy with the G141 grism using a

similar setup. Further description of the observational design for this program is given in

Star Cartier (in prep).

We reduced the data from both programs using a custom pipeline that has been developed

for past analyses of WFC3 data (for details see Kreidberg et al., 2014b,a, 2015). The raw

data exhibit time-dependent systematic trends typically seen in WFC3 light curves, which

we correct using a systematics model of the form:

Fsys(t) = (c S(t) + v1 tv + v2 tv)(1− exp(−a torb − b)) (6.1)

where tv is time elapsed since the first exposure in a visit and torb is time since the first

exposure in an orbit. S(t) is a scale factor equal to 1 for exposures with spatial scanning

in the forward direction and s for reverse scans. In the fit, c, v1, v2, a, b, and s are free

parameters. The first orbit in each visit shows larger systematic trends than subsequent

orbits, so we exclude these data in our final analysis (a common practice; see e.g. Kreidberg

et al., 2014b).
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We fit the systematics model simultaneously with the physical parameters for the system.

The complete model is

F (t) = Fsys(t) [T (t) + (E(t)− 1)(1 + A cos(2π(t− θ)/P ))] (6.2)

where T (t) is a transit model, E(t) is an eclipse model, P is the planet orbital period, and A

and θ are free parameters to fit the amplitude and offset for the thermal phase variation. The

free parameters for the transit and eclipse model are the planet-to-star radius ratio rp/rs, the

planet-to-star flux ratio fp/fs, and a linear limb darkening parameter. The eclipse model

is normalized such that the flux during eclipse is 1 and out of eclipse is fp/fs, and the

transit model is normalized to unity out of transit. The planet’s orbital parameters are

poorly constrained by the WFC3 light curve due to incomplete phase coverage, so we fix

the inclination to i = 84.54◦, the semi-major axis to stellar radius a/Rs = 2.925, based

on the best fit to the Spitzer Channel 2 light curve (described below). We use the orbital

period P = 0.925545613 day, and time of inferior conjunction t0 = 2456836.2964455 from

Southworth et al. (2015). All free parameters were assumed to have a common value for

both HST visits, with the exception of c, v1 and v2, which were allowed to vary between

visits. We explored adding an additional cosine term to model the thermal phase variation,

but the additional degrees of freedom are not justified according to the Bayesian Information

Criterion (BIC). The transit and eclipse models were calculated with the batman package

(Kreidberg, 2015). Figure 6.1 shows the fitted broadband phase curve.

6.2.2 Spitzer/IRAC

The Spitzer observations had the following setup. Each phase curve observation consisted of

30 hours of time series photometry, which covered a full orbital revolution of the planet. The

observations were timed to contain two eclipses with three hours of baseline on either side.

We used 12 s exposures to maximize the duty cycle without saturating the detector. The
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Figure 6.1: Band-Integrated WFC3 Phase Curve for WASP-103b
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The WASP-103b phase curve from HST/WFC3 compared to the best-fit model (top) and
the residuals from the fit (bottom). This is the “white” light curve, with flux integrated over
the entire wavelength region covered by the spectrum. Blue and green points correspond to
visits 1 and 2, respectively. The secondary eclipse occurs at phase 0.5 and the thermal phase
variation is clearly apparent with an amplitude of about 1000 parts per million.
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dominant systematic in high-precision Spitzer time series is the intrapixel effect (variations

in flux caused by imprecise pointing). To minimize this effect, we used PCRS peak-up to im-

prove the pointing accuracy. We began each observations with a 30-minute position settling

period, followed by three Astronomical Observation Requests (AORs) of equal duration. At

the beginning of each AOR, the telescope was repointed to position the target in the “sweet

spot” of the detector.

We reduced the data using the POET pipeline and fit the systematics with the BLISS

mapping technique (Stevenson et al., 2012). This technique creates a map of the intrapixel

sensitivity while simultaneously fitting for other systematics and the physical parameters of

the system. In addition to the intrapixel sensitivity map, we fit the data for a linear trend

in time and used the same transit, eclipse, and phase variation model as in Equation 6.2.

We tested the light curve fits for time-correlated noise by calculating the root mean

square (rms) of the fit for a range of bin sizes. For white noise, the rms should decrease

as the square root of the number of points in the bin. The 4.5 µm phase curve data follow

this trend; however, the 3.6 µm data have larger than expected rms at large bin sizes. The

time-correlated noise is also noticeable in the residuals to the light curve fit (Figure 6.2). To

account for additional uncertainty due to the correlated noise in this channel, we use the

wavelet technique of Carter & Winn (2009).

6.2.3 Spitzer/IRAC

Companion Star Characterization

WASP-103b has a faint companion at an orbital separation of 0.2” (Wöllert & Brandner,

2015). We obtained high contrast AO imaging of the system with Keck/NIRC2 on 2016 Jan

25. We reduced the data with the pipeline of Ngo et al. (2015) and measured a primary to

secondary flux ratio of 9.348 ± 0.255, 7.702 ± 0.070, and 6.109 ± 0.106, in J , H, and Ks,

respectively.
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Figure 6.2: Spitzer Phase Curves for WASP-103b

Spitzer phase curves for WASP-103b at 3.6 and 4.5 µm (top and bottom panels). The data
are binned in intervals of 10 minutes for display purposes only. The phase curves show are
qualitatively similar to the HST phase curve, with poor heat redistribution from day to
night side and peak brightness occuring near secondary eclipse.
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Figure 6.3: WASP-103b Companion

A Ks band image of the WASP-103 system from Keck/NIRC2.

We characterized the properties of the companion by fitting a model to the primary to

secondary flux ratios of the form:

F1
F2

=
f ×

∫
φ(λ)I(λ, T1)∫

φ(λ)I(λ, T2)
(6.3)

where F1/F2 is the flux ratio, I(λ, T ) is the blackbody intensity, φ(λ) is the filter throughput,

and f is a scale factor to account for the unknown distance and size of the companion. We

assume a stellar temperature T1 = 6110 K based on Gillon et al. (2014). The best fit

companion temperature is T2 = 3600 ± 90 and the scale factor is 2.25 ± 0.15. Assuming

the primary and secondary are equidistant, which is reasonable given their small projected

separation, this scale factor implies a ratio of areas R2
1/R

2
2 = 2.25. The radius of WASP-103

is 1.7R�, giving a companion radius R2 = 1.1R� – an unphysically large value for a star

with temperature T2 = 3600. However, we obtain a physically plausible solution assuming

WASP-103 is a triple system with two low-temperature companions each with radius of
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about half that of the Sun.

We correct the transit depths for the presence of these companions according to δ′ =

(1 + α)δ, where δ is the uncorrected depth and α is the ratio F2/F1 based on Equation 6.3.

Similarly, the planet-to-star flux ratio is corrected by (fp/fs)
′ = (1 + α)(fp/fs).

6.3 Preliminary Results

Using the reduced data from the previous section, we created phase-resolved emission spectra

for WASP-103b based on model fits to the spectroscopic phase curves. At each wavelength

bin, we ran an MCMC to explore the range of model parameters that provide a good fit to

the data. We then took the mean and 68% credible interval for the planet-to-star flux at a

selection of orbital phases (0.15, 0.3, 0.45, 0.6, 0.75, and 0.9). The phase-resolved emission

spectra are shown in Figure 6.4 (WFC3 data only).

We note that the uncertainties for the phase-resolved spectra may not be robust. We

initially chose to compute uncertainties based on the model fits because this approach can

account for correlations with other model parameters and the presence of red noise. How-

ever, the model can be evaluated at an arbitrarily large number of orbital phases, so the

phase-resolved spectra created with this technique are not statistically independent. We are

exploring alternative approached to determining errors for the spectra and stress that the

measurements presented here are preliminary.

Nevertheless, the spectra show some qualitative trends that are worth discussing. The

most noteworthy feature is the sharp increase in planet-to-star flux near phase 0.5. The

nightside flux is nearly 0, which suggests poor heat redistribution, in agreement with other

results for the shortest period hot Jupiters (Komacek & Showman, 2016). The spectra to do

not exhibit noticeable features corresponding to any of the expected absorbing species (e.g.

water, carbon monoxide, carbon dioxide, or methane).

We investigate the atmospheric composition in detail with the thermal emission spec-

trum. We measured the dayside planet-to-star flux with a total of four eclipse observations
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(shown in Figure 6.5). The error bars correspond to the 68% credible intervals on fp/fs

from an MCMC fit to the full phase curve, which we consider a reliable estimate of the

uncertainty. The dayside spectrum is surprising because it does not exhibit the strong water

absorption feature predicted for a solar composition model atmosphere; rather, the spectrum

is consistent with expectations for a blackbody with temperature T = 2700 K.

We considered three possible explanations for the lack of features in the dayside spectrum.

One is that the atmosphere has a carbon-rich composition (with a ratio of carbon to oxygen

C/O = 1). This composition results in a depleted water abundance because most of the

oxygen atoms are bound in CO and CO2. We also considered a metal-poor composition, with

[Fe/H] = −2. The third possibility is that the dayside hemispherically averaged temperature-

pressure profile has a weak gradient, so we calculated the best fit model with an isothermal

dayside.

All three of these models provide an adequate fit to the data; however, we consider the

third option to be the most plausible. Studies of other hot Jupiters have shown that high

C/O ratios and metal-poor compositions are unlikely (Line et al., 2014; Sing et al., 2016).

On the other hand, 3D models of atmospheric circulation have shown that the dayside

temperature profile should have a weaker gradient than is predicted from simpler 1D models

(Fortney et al., 2006). However, this result is qualitatively different from the spectrscopic

phase curve we measured for WASP-43b, which showed decreasing temperature with pressure

at all orbital phases (Stevenson et al., 2014d). We will further explore the difference between

WASP-103b and WASP-43b with the next steps for this analysis, outlined below.

6.4 Future Work

Future plans for this analysis are to:

• Develop a robust method for determining uncertainties for the phase-resolved emission

spectra.
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• Perform a complete retrieval analysis with the CHIMERA Bayesian Retrieval suite

(Line et al., 2013b; Line & Yung, 2013b; Line et al., 2014, 2013a) to determine the

range of atmospheric compositions and thermal structure allowed by the data.

• Compute the planet’s Bond albedo and heat redistribution efficiency and compare with

results for other hot Jupiters.

• Compare the atmospheric thermal structure to predictions from 3D general circulation

models (e.g. Kataria et al., 2014b) to constrain the atmospheric dynamics and assess

whether a weak dayside temperature gradient is a natural outcome.

These results will serve as a benchmark for interpreting the dayside spectra of other hot

Jupiters, a test case for a 3D models of atmospheric circulation, and a preview of the high

precision results we expect from future observations with JWST.
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Figure 6.4: Phase Resolved Emission Spectra for WASP-103b

1.1 1.2 1.3 1.4 1.5 1.6 1.7

Wavelength (microns)

0

500

1000

1500

2000
P
la

n
e
t-

to
-s

ta
r 

fl
u
x
 (

p
p
m

)

0.15

0.3

0.45

1.1 1.2 1.3 1.4 1.5 1.6 1.7

Wavelength (microns)

0

500

1000

1500

2000

P
la

n
e
t-

to
-s

ta
r 

fl
u
x
 (

p
p
m

)

0.6

0.75

0.9

Emission spectra for WASP-103b at six distinct orbital phases. The top panel shows phases
0.15, 0.3, and 0.45; the bottom shows 0.6, 0.75, and 0.9. The planet-to-star increases toward
phase 0.5, where the planet experiences peak insolation.
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Figure 6.5: WASP-103b Dayside Emission Spectrum
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The dayside thermal emission spectrum of WASP-103b based on four eclipse observations
with HST/WFC3 (black points). The data are compared to the best fit models for four
different scenarios: (1) a carbon-rich atmosphere composition with C/O = 1 (red line), (2)
a low metallicity composition (0.01x solar, orange line), (3) a solar composition atmosphere
with an isothermal dayside temperature (blue line), and (4) a nominal model with solar
composition and decreasing temperature with altitude (gray line).
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CHAPTER 7

CONCLUSIONS & FUTURE PROSPECTS

7.1 Conclusions

In this thesis, I have presented work to characterize the atmospheres of four extrasolar planets

to reveal their composition, climate, and cloud properties. There are several take-away points

from these investigations that are worth emphasizing:

• The more data the better. All the results presented here rely on repeated observations

of the target – as many as 15, in the case of GJ 1214b (Kreidberg et al., 2014b).

This approach breaks degeneracies between instrument systematics (which change with

every visit) and the astrophysical signal (which remains constant), enabling photon-

limited measurement precision. Stacking observations can therefore successfully reveal

tiny spectral features (or lack thereof) – down to∼ 100 ppm in amplitude. For GJ 1214,

this strategy yielded a measurement precise enough to detect an Earth-like atmospheric

composition for the first time, which bodes well for similarly intensive study of small

planets with JWST.

• Spectral features from planetary atmospheres may be smaller than expected. For

example, we saw for GJ 1214b that high altitude clouds or haze must be present in the

atmosphere, obscuring high altitude layers and truncating features in the transmission

spectrum. Clouds have been seen for other planets as well, and are fairly common over

a range of temperatures and surface gravities (Sing et al., 2016). Based on these results,

it is worth keeping in mind that cloud-free atmosphere models may not be realistic.

For future observations we will either need to acquire higher precision data, to see

features above the cloud deck (as we did for WASP-12b), or focus instead on emission

spectroscopy or reflected light spectra, which are less affected by clouds (Fortney, 2005;

Morley et al., 2015).
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• Observing a planet from more than one angle – either by combining transit and eclipse

measurements or obtaining a full orbit phase curve – can provide stronger constraints on

the nature of the atmosphere than any one of these techniques alone. As one example,

Kreidberg et al. (2014a) made independent water abundance measurements for WASP-

43b using both the transmission spectrum and emission spectrum. The combination of

these data sets showed that the abundance measurement was robust (they agreed), and

also improved the precision to a level that is on par with the constraints for the Solar

System planets. Similarly, phase curve observations can uniquely constrain a planet’s

energy budget, climate, and even wind speeds – even at a distance of hundreds of

parsecs! (Stevenson et al., 2014d, Kreidberg et al., in prep).

• Spectroscopy beats photometry. As Burrows (2014) wrote, the interpretation of pho-

tometry suffers from the problem of “too few data points in pursuit of too many

quantities”. This challenge is apparent in the case of WASP-12b, where we obtained

spectroscopy (Kreidberg et al., 2015) that disagrees with past inferrence of the at-

mospheric composition driven by photometry (Madhusudhan et al., 2011c; Steven-

son et al., 2014c). Further work is needed to reconcile the measurements, but the

spectroscopy is much easier to interpret because it uniquely identifies the dominant

absorbing species (water).

Together, these results show that intensive study of a small number of benchmark objects

is a powerful strategy to reveal the nature of exoplanet atmospheres. Planets are complicated

objects – especially tidally locked worlds with large temperature gradients from day- to

nightside – and obtaining robust constraints on their chemistry and physics will require

high-precision, spectroscopic observations of thermal emission and transmission. In the next

sections, I discuss future plans and prospects for making these kinds of measurements.
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7.2 Near Future Prospects

There are two upcoming missions that bear heavily on the future of exoplanet atmosphere

characterization. The first is NASA’s TESS mission, which is designed to search for transit-

ing planets around the brightest stars in the sky. The predicted yield for TESS is roughly

1700 planets, including 130 that are smaller than 2R⊕ transiting stars with K magnitude

brighter than 9 (Sullivan et al., 2015). These detections will open the door to atmosphere

characterization for Neptune and smaller planets, which has so far been limited by the num-

ber of observable targets.

The second upcoming mission is of course JWST, which will enable stunningly precise

spectroscopy from the optical to the infrared. JWST has a number of major advantages over

the current exoplanet atmosphere studies with HST and Spitzer. In addition to an order

of magnitude improvement in sensitivity, JWST will also provide higher resolution spectral

coverage over a much wider wavelength range (from optical to infrared). Furthermore, JWST

has continuous coverage and a stabilized thermal environment, in contrast to HST ’s low

Earth orbit. With a single JWST transit or eclipse observation of a hot Jupiter, we expect

to measure the carbon-to-oxygen ratio to better than 0.2 dex (Greene et al., 2016).

With the combination of TESS and JWST, it will also be possible to begin studying the

atmospheres of Earth-like, potentially habitable planets. The nearest transiting, terrestrial

planet in the habitable zone of a small star is predicted to be within 10 parsecs (Dressing

& Charbonneau, 2015), and such a planet will be detected by TESS. To illustrate the po-

tential for studying its atmosphere, Figure 7.1 shows model spectra for an Earth-size, Earth

temperature planet compared to what we measured for GJ 1214b. Detecting water in the

atmosphere will require an improvement in measurement precision of a factor of three, which

is within reach of an intensive observing program on JWST.
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Figure 7.1: The Road to Earth 2.0
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Simulated Measurements for an Earth-Like Planet

Model transmission spectra for GJ 1214b (top) and Earth 2.0 (bottom). The models assume
an Earth-like atmosphere composition: nitrogen-rich with trace amounts of water. Earth
2.0 has an Earth-like temperature and surface gravity, but orbits a star the size of GJ 1214.
The top panel shows the measured spectrum for GJ 1214b from (Kreidberg et al., 2014b),
and the bottom panel shows a simulated spectrum with measurement precision improved by
a factor of three. Such a measurement is sufficient to detect spectral features from water
and will be possible with an intensive JWST observational campaign.
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7.3 Far Future Prospects

This chapter has focused on the benefits of detailed characterization for individual objects,

and JWST will make revolutionary measurements in this regard. However, the biggest

advantage of studying exoplanets is that it gives us the chance to study a vast number of

systems, and JWST time is too limited to fully realize this potential.

There are two missions currently being designed that will each enable the study of hun-

dreds of planetary atmospheres. The first is a dedicated exoplanet atmosphere survey mission

(either FINESSE or ECHO, Swain, 2012; Tinetti et al., 2015), designed to measure the com-

position and climate for planets with a wide range of sizes, orbital periods, and host star

spectral type. The goal of this mission is to provide a large enough sample to carry out

statistical analyses of planet formation and evolutionary histories.

The second mission is focused on Earth analogs and the search for life. Although JWST

will make the first studies of Earth-like atmospheres, it will only be possible for a few of

the best candidate planets (with the nearest and smallest host stars). Even if we detected

potential biosignature gases in the atmosphere of one planet, which would be a monumental

achievement, it will not necessarily constitute iron-clad evidence that the planet is inhab-

ited. There are many potential false positive biosignatures, especially abiotic production of

molecular oxygen (e.g., Tian et al., 2014; Schwieterman et al., 2016).

Our best chance of detecting life outside the Solar System is therefore to characterize

the atmospheres of large number of Earth analogs, to study their properties in a range of

contexts and search for patterns. This is the goal of the proposed High-Definition Space

Telescope (HDST ), a 12 m class observatory capable of directly imaging dozens of Earths

(Dalcanton et al., 2015). HDST is designed to be a flagship mission to succeed JWST in

the 2030s, and will serve the general astrophysics community in addition to its exoplanet

mission.

Both of these missions are big steps into the unknown, and are certain to deliver many

surprises, if the history of exoplanet science is any indication. What is better known, however,
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is the Earth-bound challenge of making these telescopes a reality, especially one as ambitious

as HDST. It will require great feats of engineering – directly imaging reflected light from

an Earth analog requires a contrast ratio of 10−10. But these missions will also require

tremendous cooperation and perseverance in the astronomical community, which may be

the greater challenge. Let’s make it happen.
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APPENDIX A

SUPPLEMENTARY INFORMATION FOR GJ 1214b RESULTS

This appendix contains supplementary information describing the observations, data reduc-

tion, systematics correction, and light curve fitting for transit observations of the super-Earth

GJ 1214b.

A.1 Observations

We observed 15 transits of the super-Earth exoplanet GJ 1214b with the Wide Field Camera

3 (WFC3) instrument on the Hubble Space Telescope (HST) between UT 27 September 2012

and 20 August 2013. Each transit observation (or visit) consisted of four 96-minute HST

orbits of time series spectroscopy, with 45-minute gaps in data collection in each orbit due to

Earth occultation. We employed the G141 grism, which covers the wavelength range 1.1 to

1.7µm. The spectra were binned at resolution R ≡ λ/∆λ ∼ 70. To optimize the efficiency

of the observations, we used spatial scan mode, which moves the spectrum perpendicular

to the dispersion direction during the exposure. Spatial scanning enables longer exposures

for bright targets that would otherwise saturate, such as GJ 1214. We used a 0.12”/second

scan rate for all exposures, which yielded peak per pixel counts near 23,000 electrons (30%

of saturation). An example raw data frame is shown in Figure A.1.

The observations had the following design. At the beginning of each orbit, we took a

direct image with the F130N narrowband filter to establish a wavelength zero-point. For

the remainder of each orbit, we took spatially scanned exposures with the G141 grism.

Each observation used the 256 × 256 subarray. During the first five transit observations,

we took 88.4 s exposures with the SPARS10, NSAMP=13 readout mode and scanned in the

forward direction only. Each exposure contains NSAMP non-destructive reads. For transit

observations 6 – 15, we modified our approach to reduce overhead time: we increased the

exposure time to 103.1 s using the mode SPARS10, NSAMP=15, and scanned successively
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Figure A.1: A Sample Raw Data Frame
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An example spatially scanned raw data frame. The exposure time was 88.4 s.

forward and backward. These approaches yielded 67 and 75 spectra per visit with duty cycles

of 58% and 76%, respectively. One transit observation (UT 12 April 2013) was unsuccessful

because the Fine Guidance Sensors failed to acquire the guide stars. We do not use data

from this observation in our analysis. We also exclude data from the transit observations on

UT 4 August 2013 and UT 12 August 2013, which showed evidence for a starspot crossing.

Our final analysis therefore used 12 transit observations.
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A.2 Data reduction

Our data reduction process begins with the “ima” data product from the WFC3 calibration

pipeline, calwf3. These files are bias- and dark current-subtracted and flagged for bad

pixels. For spatially scanned data, each pixel is illuminated by the stellar spectrum for only

a small fraction of the exposure; the remainder of time it collects background. To aid in

removing the background, we form subexposures of each image by subtracting consecutive

non-destructive reads. A subexposure thus contains photoelectrons gathered during the

7.4 s between two reads. We reduce each subexposure independently, as follows. First we

apply a wavelength-dependent flat field correction. Next we mask bad pixels that have been

flagged data quality DQ = 4, 32, or 512 by calwf3. To estimate the background collected

during the subexposure, we draw conservative masks around all stellar spectra, measure the

background from the median of the unmasked pixels, and subtract it. We compute a variance

for the spectrum accounting for photon shot noise, detector read noise, and uncertainty in

the background estimation.

We next correct for the wavelength dependence of the spectrum on detector position.

The grism dispersion varies along the spatial direction of the detector, so we calculate the

dispersion solution for each row in the subexposure and interpolate the photoelectron counts

in that row to the wavelength scale corresponding to the direct image position. This inter-

polation also corrects bad pixels. We then create a 40-pixel tall extraction box centered on

the middle of the spatial scan and extract the spectrum with an optimal extraction routine.

Because each row has been interpolated to a common wavelength scale, the final spectrum is

constructed by summing by column the spectra from all the subexposures. The unit of time

sampling in the light curve is thus a single exposure, which is the sum of 12 subexposures.

See Figure A.2 for an example extracted spectrum.

Finally, we account for dispersion-direction drift of the spectra during each visit and

between visits. Using the first exposure of the first visit as a template, we determine a shift

in wavelength-space that minimizes the difference between each subsequent spectrum and
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Figure A.2: GJ 1214b Extracted Spectrum
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An example extracted spectrum for an 88.4 s exposure. The dotted lines indicate the wave-
length range over which we measure the transmission spectrum.

the template. The best-fit shift values are less than 0.1 pixel, both within each visit and

between visits. We interpolate each spectrum to an average wavelength scale, offset from

the template by the mean of the estimated wavelength shifts. This step does not have a

significant effect on our results. We bin the spectra in 5-pixel-wide channels, obtaining 29

spectroscopic light curves covering the wavelength range 1.05 – 1.70µm. The data near the

edges of the grism response curve exhibit more pronounced systematics, so we restrict our

analysis to 22 spectroscopic channels between 1.15 and 1.63µm. The limits are shown in

Figure A.2.
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A.3 Systematics correction

The light curves exhibit a ramp-like systematic similar to that seen in other WFC3 transit

spectroscopy data10,18,19. The ramp has a larger amplitude and a different shape in the

first orbit compared to subsequent orbits, so we exclude data from the first orbit in our light

curve fits, following standard practice. We correct for systematics in orbits 2 – 4 using two

methods:

Method 1: model-ramp

This method fits an analytic model to the light curve10. The model has the form:

M(t) = M0,λ(t)[Cλes + Vλetv][1−Rλeoe−tb/τλ ] (A.1)

where M0,λ(t) is the model for the systematics-free transit light curve, t is a vector of

observation times, tv is a vector with elements tv,i equal to the time elapsed since the

first exposure in the visit corresponding to time ti, tb is a vector with elements tb,i equal

to the time elapsed since the first exposure in the orbit corresponding to time ti, Cλes

is a normalization, Vλe is a visit-long slope, Rλeo is a ramp amplitude, and τλ is a ramp

timescale. The subscripts λ, e, s, and o denote whether a parameter is a function of

wavelength, transit epoch, scan direction, and/or orbit number, respectively.

Method 2: divide-white

The second method assumes the systematics are wavelength-independent and can be modeled

with a scaled time series vector of white light curve systematics, denoted Z(t)18,20. We fit

the white light curve W (t) with the model-ramp technique to determine Z(t):

Z(t) = W (t)/M0(t), (A.2)

where M0(t) is the best-fit model to the white light curve. An example white light curve fit,
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including the Z vector, is shown in Figure A.3.

Figure A.3: White Light Curve, Raw and Systematics-Corrected
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used in the divide-white technique.

The spectroscopic light curves Sλ(t) are modeled as

Sλ(t) = Cλes · Z(t) · S0,λ(t) (A.3)

where S0,λ(t) is the systematics-free transit light curve model for a given wavelength channel

and Cλes is a normalization constant. We observe that the systematics have similar ampli-
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tude and form across the wavelength range of our observations, hence the viability of the

divide-white technique. The dominant systematics in our data are related to persistence,

which depends on the peak per pixel fluence19, but as can be seen in Figure A.2 , the product

of the stellar spectrum and the G141 grism response is nearly uniform over the 1.1 – 1.7µm

range.

A.4 Light curve fits

We fit the spectroscopic light-curves with both the divide-white and model-ramp meth-

ods and determined the best-fit parameters and errors with a Markov chain Monte Carlo

(MCMC) algorithm. We divided the light curves into 19 data sets (12 visits, with 2 data

sets for 7 of the visits), separated by transit epoch and spatial scan direction, to account for

a normalization offset between the forward-scanned and reverse-scanned light curves. We

fit the data sets in each spectral channel with five 105 step MCMC chains, with 2.5 × 104

burn-in steps removed from each chain. We tested for convergence using the Gelman-Rubin

diagnostic. The results reported are from the five chains combined.

We analyzed each spectral channel independently. The free parameters for the

divide-white fit are a normalization constant Cλes, a linear limb darkening parameter

uλ, and the planet-to-star radius ratio Rp/Rs,λ,e. The model-ramp fit had these same free

parameters, plus an additional visit-long slope parameter Vλe, ramp amplitudes Rλeo, and

a ramp timescale τλ. We constrained the ramp amplitudes for orbits 3 and 4 to be equal

within each data set. For both methods, we held the following orbital parameters fixed at

the best-fit values for the white light curve: inclination i = 89.1◦, the ratio of the semi-major

axis to the stellar radius a/Rs = 15.23, the orbital period P = 1.58040464894 days, and the

time of central transit Tc = 2454966.52488 BJDTDB. We assume a circular orbit. There

were a total of 32 and 67 free parameters per channel for the divide-white and model-ramp

fits, respectively. The priors for each free parameter were uniform. We checked that the light

curves are sufficiently precise to fit for all the free parameters by visually inspecting pairs
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plots for the fit parameters. As an example, we show the posterior distributions of the pa-

rameters for the divide-white fit of the 1.40 µm channel in Figure A.4, and note that there

is little correlation between parameters.

Figure A.4: Pairs Plot for Light Curve Fit Parameters
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each parameter. The off-diagonal panels show contour plots for pairs of parameters, with
lines indicating the 1, 2, and 3σ confidence intervals for the distribution. The normalization
constant is divided by its mean.

We report the measured transit depths, limb darkening parameters, and χ2ν values for

both the divide-white and model-ramp methods in Table A.1. The transit depths given

are the weighted averages over all epochs, minus the mean transit depth over all channels
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Table A.1: Derived Parameters for the Light Curve Fits for the divide-white (d-w) and
model-ramp (m-r) Techniques

Wavelength (µm) Transit Depth (ppm) Limb Darkening χ2ν
d-w m-r d-w m-r d-w m-r

1.135− 1.158 −39± 31 6± 33 0.27± 0.01 0.28± 0.01 1.12 1.20
1.158− 1.181 −28± 30 12± 32 0.26± 0.01 0.27± 0.01 1.01 1.24
1.181− 1.204 34± 30 29± 30 0.25± 0.01 0.26± 0.01 1.04 1.44
1.205− 1.228 −48± 28 −32± 29 0.26± 0.01 0.28± 0.01 0.90 1.22
1.228− 1.251 27± 28 25± 29 0.26± 0.01 0.28± 0.01 0.85 1.29
1.251− 1.274 5± 27 −6± 29 0.26± 0.01 0.26± 0.01 0.97 1.29
1.274− 1.297 13± 27 12± 27 0.23± 0.01 0.23± 0.01 1.00 1.50
1.297− 1.320 14± 26 0± 27 0.23± 0.01 0.25± 0.01 0.96 1.38
1.320− 1.343 29± 26 2± 28 0.26± 0.01 0.27± 0.01 1.08 1.52
1.343− 1.366 −2± 27 −15± 28 0.30± 0.01 0.32± 0.01 0.99 1.44
1.366− 1.389 32± 27 35± 26 0.28± 0.01 0.29± 0.01 0.97 1.42
1.389− 1.412 31± 27 33± 28 0.28± 0.01 0.29± 0.01 0.96 1.39
1.412− 1.435 −5± 27 −33± 28 0.29± 0.01 0.31± 0.01 1.15 1.51
1.435− 1.458 29± 29 17± 28 0.29± 0.01 0.30± 0.01 1.01 1.39
1.458− 1.481 −8± 28 1± 29 0.32± 0.01 0.33± 0.01 1.01 1.33
1.481− 1.504 27± 28 28± 28 0.28± 0.01 0.29± 0.01 0.94 1.37
1.504− 1.527 −11± 28 −23± 29 0.27± 0.01 0.29± 0.01 1.15 1.58
1.527− 1.550 20± 28 1± 29 0.27± 0.01 0.29± 0.01 1.17 1.56
1.550− 1.573 −21± 28 0± 28 0.28± 0.01 0.29± 0.01 1.20 1.62
1.573− 1.596 −65± 28 −62± 30 0.26± 0.01 0.28± 0.01 1.08 1.46
1.596− 1.619 −17± 28 −6± 29 0.26± 0.01 0.27± 0.01 1.34 1.69
1.619− 1.642 −17± 30 −26± 30 0.22± 0.01 0.24± 0.01 1.16 1.59

(0.013490 for divide-white and 0.013489 for model-ramp). For the results given in the

main text, we use the divide-white spectrum because the light curve fits from this method

have fewer free parameters and lower χ2ν values.

We performed several consistency checks as part of our analysis, enumerated below.

1. We verified that the transmission spectra obtained with the divide-white and

model-ramp methods are consistent within 1σ, and that the main conclusions of the

paper are not affected by which method we chose.

2. We confirmed that the measured transit depths are consistent from epoch to epoch,

as shown in Figure A.5. As a test, we fit separate transit depths to the forward- and
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reverse-scanned data, and found that the transit depths are consistent for the two scan

directions.

3. We tested the effects of using an inaccurate white light curve model (M0) for the

divide-white method and found that the results are robust to changes in M0. For

example, changing the model transit depth by 5σ from the best-fit white light curve

value affects the relative spectroscopic transit depths by less than 1 ppm.

4. We compare our results to the previously published WFC3 transmission spectrum for

GJ 1214b10. Our relative transit depths are within 1σ for 18 wavelength channels

and within 2σ for the other four channels. The 2σ differences are not clustered in

wavelength.

We also considered the effects of stellar activity on the transmission spectrum and found

that it does not impact our results. The measured transit depths are consistent over all

epochs in the white light curve and the spectroscopic light curves, which suggests that the

influence of stellar activity on the spectrum is minimal. To confirm this, we simulated the

effect of star spots (Désert et al., 2011) assuming they are 300 K cooler than the 3250 K

stellar photosphere22, and find that their influence is below our measurement precision. We

also considered the possibility that the star spots have excess water due to their cooler

temperature. This could introduce a water feature in the transmission spectrum, but it

would not cancel out water features from the planet’s atmosphere. Given that we do not see

evidence for water absorption in the spectrum, any contribution from water in unocculted

star spots must be below the level of precision in our data. As a check, we computed

the transmission spectrum from three transits occurring over a timespan of just two weeks,

during which time the spot coverage should be roughly constant. Even with just these three

transits, we rule out a pure H2O atmosphere at > 5σ confidence, which confirms that any

noise introduced by unocculted spots does not change our conclusion.

The derived limb darkening coeffients are shown in Figure A.6. We fit a single limb
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Figure A.5: Transit Depths for Individual Visits
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darkening coefficient to each channel and constrained the value to be the same for all the

transits. Our limb darkening fits illustrate the importance of careful treatment of limb

darkening for cool stars. There is a peak in the coefficients near 1.45µm that is due to the

presence of water in the star. As a result of this, fixing the limb darkening coefficients to a
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constant value in all spectral channels introduces a spurious water feature in the transmission

spectrum. However, we can fit the limb darkening precisely with our data and it is non-

degenerate with the transit depth. The uncertainty in our limb darkening fits introduces an

uncertainty in the transit depth of less then 1 ppm. To confirm that fitting a linear limb

darkening parameter is appropriate for our data, we simulated a data set using a model

water vapor atmosphere, quadratic limb darkening coefficents from a 3250 K stellar model,

and the residuals and systematics from the real data. We analyze this mock data set in the

same way we treat the real data and find that we fully recover the water vapor transmission

spectrum with a single limb darkening parameter.

Figure A.6: Fitted Limb Darkening Coefficients Compared to Models
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