
THE UNIVERSITY OF CHICAGO

DRY ATMOSPHERIC CIRCULATIONS OF ROCKY EXOPLANETS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF THE GEOPHYSICAL SCIENCES

BY

DANIEL DRAGOMIR BENEDIKT KOLL

CHICAGO, ILLINOIS

DECEMBER 2016



Copyright c© 2016 by Daniel Dragomir Benedikt Koll

All Rights Reserved



You can grow ideas

in the garden of your mind.

— Mister Rogers



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 DECIPHERING THERMAL PHASE CURVES OF TIDALLY LOCKED EXOPLAN-
ETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Sensitivity of phase curves to nondimensional parameters . . . . . . . . . . . 15
2.4 Application to JWST observations . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 TEMPERATURE STRUCTURE AND ATMOSPHERIC CIRCULATION OF TIDALLY
LOCKED EXOPLANETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Importance of atmospheric dynamics . . . . . . . . . . . . . . . . . . 34
3.1.2 Previous work and open questions . . . . . . . . . . . . . . . . . . . . 35
3.1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 A two-column radiative-convective model . . . . . . . . . . . . . . . . . . . . 43
3.4 A heat engine scaling for wind speeds . . . . . . . . . . . . . . . . . . . . . . 49
3.5 A two-column radiative-convective-subsiding model . . . . . . . . . . . . . . 56
3.6 Transition to large day-night temperature gradients . . . . . . . . . . . . . . 64
3.7 Effects of rapid rotation on temperature structure . . . . . . . . . . . . . . . 71
3.8 Implications for Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 ENTROPY BUDGET CONSTRAINS GENERAL CIRCULATIONS OF DRY AT-
MOSPHERES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Model and Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 Constraining the circulation strength . . . . . . . . . . . . . . . . . . . . . . 90
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 SUMMARY AND OUTLOOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

iv



APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A BASIC EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

B TIDALLY LOCKED COORDINATE SYSTEM . . . . . . . . . . . . . . . . . . . 110

C COMPUTING PHASE CURVES . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

D FINDING ALL DIMENSIONAL TRANSFORMATIONS THAT ONLY AFFECT
ONE NONDIMENSIONAL PARAMETER . . . . . . . . . . . . . . . . . . . . . 113

E DRAG TIMESCALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

F WIND SPEED SCALING FROM WORDSWORTH (2015) . . . . . . . . . . . . . 119

G NUMERICAL SOLUTION FOR THE RCS MODEL . . . . . . . . . . . . . . . . 120

v



LIST OF FIGURES

2.1 Slowly rotating tidally locked planets are approximately symmetric about the
substellar point. Surface temperature from the reference simulation in Table
2.1 is shown in two different coordinate systems. The black dashed line is the
terminator. Left: In standard coordinates, longitude λ ą 90˝ corresponds to the
nightside and the substellar point is located at latitude/longitude pθ, λq “ p0˝, 0˝q.
Right: In tidally locked coordinates, tidally locked latitude θTL ă 0˝ corresponds
to the nightside and the substellar point is located at tidally locked latitude
θTL “ 90˝ (see Appendix B). For illustration, black dots mark every 64th GCM
grid point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Atmospheres have identical dynamics if their nondimensional parameters are
identical. Top row: Colored curves show simulations in which we vary the nondi-
mensional parameters. In contrast, gray dashed curves are simulations in which
dimensional parameters are varied, but nondimensional parameters stay fixed (see
Table 2.1a). Bottom row: the deviation from the reference when nondimensional
parameters stay fixed is ď 1% for surface temperature (left) and generally À 3%
for wind velocities (right). Notice the difference in y-range between the top and
bottom row. In addition, plots are shown in tidally locked coordinates and all
quantities are averaged over tidally locked longitude (see Fig. 2.1). The merid-
ional wind is given by the mass-weighted vertical average of meridional wind
between 0.15 ď p{ps ď 0.5. Wind velocities are negative because the flow is away
from the substellar point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 For many terrestrial planets, the phase curve’s peak-to-trough amplitude is sen-
sitive to changes in the atmospheric parameters whereas hot/cold spot offsets
are small. The dashed black line shows the phase curve for the reference simu-
lation in Table 2.1, and the vertical line indicates secondary eclipse. We explore
different atmospheric scenarios by varying each nondimensional parameter that
influences the atmospheric dynamics while keeping the other nondimensional pa-
rameters fixed (Table 2.1b). The approximately constant curves correspond to
optically thick atmospheres (τLW ě 10). The simulations shown here all assume
pa,Ω, Teqq “ paC, 2π{r50 dayss, 283 K); for symbol definitions see Table 2.2. . . 20

2.4 Except for hot and rapidly rotating planets, the phase curve peak-to-trough
amplitude is primarily sensitive to twave{trad and τLW . As in Figure 2.3, we
vary each nondimensional parameter while keeping the other nondimensional
parameters fixed. The nondimensional parameters are defined in Section 2.2.
Dashed black lines show the phase amplitude of the reference simulations, blue
dots show the phase amplitude as nondimensional parameters are varied, and
vertical bars indicate the maximal variation of amplitude, i.e., sensitivity, for
each nondimensional parameter. Left: reference simulation assumes pa,Ω, Teqq “
paC, 2π{r50 dayss, 283 K). Right: reference simulation assumes pa,Ω, Teqq “
p2aC, 2π{r2 dayss, 600 K). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vi



2.5 This figure illustrates how the observed phase curve amplitude, rFmax´Fmins{F˚,
(y-axis) can be used to infer the surface pressure of a planet (colors). Black dots
indicate simulations, and the color scale is interpolated between simulations. A
given amplitude is compatible with both a thin atmosphere that is opaque to
longwave radiation (large κLW ) and a thick atmosphere that is transparent to
longwave radiation (small κLW ). If κLW is known, for example from transit
spectroscopy, then the phase curve constrains surface pressure and atmospheric
mass. We assume a super-Earth around a GJ1214b-like star, such that a bare rock
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ABSTRACT

Rocky planets orbiting nearby cool stars are extremely common, and next-generation space

telescopes will allow us to begin studying them within the next few years. The extent to

which we can make sense of these planets, let alone deduce whether any of them might

host life, depends crucially on how well we can understand their atmospheres. This thesis

develops a series of theoretical models for the atmospheric circulations of dry and tidally

locked planets in particular, and of dry planets in general.

First, we motivate the detailed study of atmospheric dynamics for rocky exoplanets. We

demonstrate that a tidally locked planet’s thermal phase curve, which is set by the atmo-

spheric redistribution of heat between the day- and the nightside, can be used to measure

a planet’s surface pressure and thus distinguish between planets with thick and thin atmo-

spheres. Second, we develop a theory for the temperature structure and circulation strength

of tidally locked planets. We show that the atmospheres of tidally locked planets act as large-

scale heat engines, which allows us to predict their wind speeds and day-night temperature

gradients. Our theory shows that rocky planets can exhibit large day-night temperature

gradients at far bigger distances from their host star than can be explained by theories de-

veloped for hot Jupiters. Third, we extend our heat engine theory to atmospheres that are

not tidally locked. We show that dry atmospheres primarily act to maintain a vertical, not

a horizontal, temperature structure. We quantify this balance using entropy budgets and

constrain the entropy production necessary for maintaining an atmosphere’s vertical tem-

perature structure, which in turn allows us to predict the strength of frictional dissipation

and surface winds across a wide range of dry atmospheres.

xiii



CHAPTER 1

INTRODUCTION

Thanks to the exoplanet discoveries of the past decades we now know that the Milky Way is

full of planets (Burke et al., 2015; Dressing & Charbonneau, 2015). Much information about

these worlds can be gleaned from their mere existence, their sizes and masses, and their

orbital configurations. To learn what these worlds are like, however, requires us to address

their atmospheres.

Atmospheres are dynamical entities. They evolve, they produce winds and weather, they

transport heat and drive chemistry, and they can be overcast or cloud-free. Observational

astronomers have taken on the challenge of studying these entities and, over the past decade,

have begun characterizing the wind speeds, three-dimensional temperature structure, and

atmospheric compositions of hot and large gaseous planets (Knutson et al., 2007; Snellen

et al., 2010; Stevenson et al., 2014; Kreidberg et al., 2015). The same researchers are now

preparing the next generation of instruments that will allow them to perform similar mea-

surements for nearby cool and small rocky exoplanets, in the hope of ultimately detecting

bio-signatures on another world (Tinetti et al., 2012; Beichman et al., 2014; Dalcanton et al.,

2015). A comparable endeavor is required from theoretical scientists to ensure that we will

be able to make sense of these discoveries.

The goal of this thesis is to develop a theoretical foundation for understanding the at-

mospheric circulations that we will encounter on rocky extrasolar planets. Although such

theories have been developed for Earth’s atmosphere (Held & Hou, 1980; Schneider & Walker,

2006; Jansen & Ferrari, 2013), Earth is likely a misleading template for thinking about extra-

solar planets. First, the rocky exoplanets most accessible to near-future observations lie on

orbits of a few tens of days or less around a host star that is smaller than the Sun. The tidal

interaction between these planets and their host star is substantially stronger than between

Earth and the Sun, and acts to damp the planets’ rotation (Kasting et al., 1993). This

means many exoplanets that have recently been discovered, such as GJ 1132b and Proxima

1



Centauri b, are likely tidally locked and possess one permanent dayside and one permanent

nightside. Second, water vapor and its effects play a major role in Earth’s atmosphere, but

many rocky exoplanets might be devoid of water due to the stochastic nature of volatile

delivery during planet formation (Raymond et al., 2004) as well as the photodissociation of

water and its loss to space, similar to how Venus is thought to have lost its water (Ingersoll,

1969; Wordsworth & Pierrehumbert, 2013; Barnes et al., 2016; Ribas et al., 2016). Moreover,

theories developed for Earth’s atmosphere first had to address the dynamics of dry atmo-

sphere to provide a starting point for understanding the additional effects of moisture (e.g.,

O’Gorman, 2010). In this thesis we pursue a similar logic and focus on dry atmospheres.

In Chapter 2 we motivate the detailed study of atmospheric dynamics for tidally locked

planets. We present a method for inferring a planet’s surface pressure by considering how its

observable thermal phase curve signature reflects its underlying atmospheric dynamics. This

is important because the main observational technique to date, transit spectroscopy, probes

only the upper-most layers of a planet’s atmosphere and cannot distinguish between a planet

with a moderately thin atmosphere, like Earth, and a planet with a thick atmosphere, like

Venus.

In Chapter 3 we present a theory for the temperature structure and wind speeds of tidally

locked planets. We show that the atmospheres of tidally locked planets resemble heat en-

gines, which are driven by the temperature difference between the hot dayside and the cold

upper atmosphere and which act to balance friction on the turbulent dayside. We derive

a thermodynamic speed limit for the circulations of these planets, and use it to constrain

their day-night temperature gradient as well as vertical temperature structure. Our theory

explains why the atmospheres of rocky planets develop large day-night temperature gradi-

ents at a substantially smaller threshold than that predicted by theories developed for hot

Jupiters. Our results are important because atmospheres of tidally locked planets had pre-

viously been studied with a range of complex numerical models, but without understanding

the behavior of these models it is impossible to distinguish between physically robust behav-
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ior and potential model particularities. We capture the large-scale features of tidally locked

atmospheres using relatively simple expressions, lending confidence to our ability to interpret

actual observations of rocky exoplanets. Moreover, numerical models used in isolation pro-

duce numbers, not understanding. An interplay between complex models and simple theory

is necessary to ensure that we can draw meaningful insight from future observations, and in

the process also gain a richer understanding of Earth. Finally, analytical theories allow us to

consider a much wider range of scenarios than numerical models and to make comparisons

that cannot be obtained otherwise. In particular, the observed day-night temperature gra-

dients of hot Jupiters tend to be small for planetary equilibrium temperatures below about

2000 K, which translates into orbital periods of a few days or less. In contrast, our theory

makes the testable prediction that rocky planets can exhibit large and observable day-night

temperature gradients at much lower equilibrium temperatures and even inside their host

star’s habitable zone.

In Chapter 4 we use entropy budgets to extend our heat engine theory from Chapter 3

to other dry atmospheres, such as present-day Mars or Earth’s atmosphere during Snowball

Earth episodes. In doing so, we show that dry atmospheres primarily produce entropy to

maintain their vertical temperature structure. We then constrain the entropy production

necessary for doing so, which allows us to predict the frictional dissipation and mean surface

winds in dry atmospheres. This is important because entropy budgets have mainly been

considered in the context of predicting the behavior of moist convection in Earth’s tropics,

whereas our result provides a proof-of-principle that entropy budgets can be used to gain

predictive insight into large-scale circulations. Furthermore, in bridging the gap between

tidally locked and rapidly rotating atmospheres, our results demonstrate how the study of

exoplanet atmospheres can help us better contextualize our own planet.

Finally, we present a summary of our results and an outlook for future observations in

Chapter 5.
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CHAPTER 2

DECIPHERING THERMAL PHASE CURVES OF TIDALLY

LOCKED EXOPLANETS

Next-generation space telescopes will allow us to characterize terrestrial exoplanets. To

do so effectively it will be crucial to make use of all available data. We investigate which

atmospheric properties can, and cannot, be inferred from the broadband thermal phase

curve of a dry and tidally locked terrestrial planet. First, we use dimensional analysis to

show that phase curves are controlled by six nondimensional parameters. Second, we use an

idealized general circulation model (GCM) to explore the relative sensitivity of phase curves

to these parameters. We find that the feature of phase curves most sensitive to atmospheric

parameters is the peak-to-trough amplitude. Moreover, except for hot and rapidly rotating

planets, the phase amplitude is primarily sensitive to only two nondimensional parameters:

1) the ratio of dynamical to radiative timescales, and 2) the longwave optical depth at

the surface. As an application of this technique, we show how phase curve measurements

can be combined with transit or emission spectroscopy to yield a new constraint for the

surface pressure and atmospheric mass of terrestrial planets. We estimate that a single

broadband phase curve, measured over half an orbit with the James Webb Space Telescope,

could meaningfully constrain the atmospheric mass of a nearby super-Earth. Such constraints

will be important for studying the atmospheric evolution of terrestrial exoplanets as well as

characterizing the surface conditions on potentially habitable planets.

2.1 Introduction

Data from the Kepler telescope indicate that „ 50-100% of nearby cool stars host a rocky

planet (Dressing & Charbonneau, 2013; Morton & Swift, 2014). If we were able to charac-

terize even a fraction of these planets we could vastly expand our understanding of processes

fundamental for terrestrial planets, including planet formation, atmospheric escape, photo-
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chemistry, and atmospheric dynamics. The observational best-case scenario is a transiting

planet, whose orbit we happen to view edge-on, so that the planet periodically passes in

front of and behind its star. Broadly speaking, to characterize such a planet we would want

to determine its atmospheric composition, temperature structure, and atmospheric mass1.

The composition reflects how the planet formed, how its atmosphere subsequently evolved

(e.g., via degassing from the interior or atmospheric escape), and the chemical state of its

atmosphere. The temperature structure indicates the dynamical regime of the atmosphere

and, if retrievable down to the surface, whether the planet could be habitable. The atmo-

spheric mass reflects the planet’s atmospheric evolution and also determines its habitability

(by controlling whether water can exist as a liquid).

The most mature techniques for characterizing transiting planets are transit spectroscopy,

in which starlight is measured as it filters through a planet’s atmosphere, and emission

spectroscopy, in which a planet’s thermal emission is measured just before the planet is

occulted by its star. In theory, high-resolution transit and emission spectra both contain

enough information to uniquely constrain atmospheric composition, temperature structure,

atmospheric mass, and planetary mass (Madhusudhan & Seager, 2009; Benneke & Seager,

2012; Line et al., 2012; Lee et al., 2012; de Wit & Seager, 2013). In practice, it is difficult to

comprehensively characterize even hot Jupiters with any single spectroscopic technique due

to measurement error and observational degeneracies (e.g., Burrows, 2014; Hansen et al.,

2014; Griffith, 2014).

It is therefore desirable to seek additional methods for characterizing terrestrial planets

that complement high-resolution spectroscopy. One simple approach is to observe a planet’s

broadband thermal phase curve, which is the net infrared flux the planet emits as it orbits

its star. Before the planet passes in front of its star we observe flux emitted from the planet’s

nightside, and just before the planet passes behind its star we observe flux from the planet’s

1. The mass of an atmospheric column with unit surface area is ps{g, where ps is the surface pressure
and g is the surface gravity.

5



dayside. The resulting phase curve can then be used to infer five pieces of information: the

planet’s average thermal emission, the location of hot and cold spots and the flux emitted at

the hot and cold spots (Cowan & Agol, 2008). This technique has already been applied to

hot Jupiters. For example, Knutson et al. (2007) were able to infer equatorial superrotation

on HD 189733b from the fact that its hot spot is shifted eastward of the substellar point,

consistent with the theoretical prediction of Showman & Guillot (2002). It will be more

challenging to measure thermal phase curves of smaller and cooler planets, but it should be

possible to perform such measurements using next-generation instruments like the James

Webb Space Telescope (JWST ; Deming & Seager, 2009).

Although thermal phase curve measurements of terrestrial planets will soon be technically

feasible, more work is needed to determine how they can be fully exploited. A natural starting

point is to assume that planets accessible to near-future observations will be tidally locked

(even though planets could also be trapped in higher-order spin resonances, see Section 2.5).

For a tidally locked planet the phase curve depends largely on the atmospheric redistribution

of energy between dayside and nightside. Many researchers have therefore proposed using

phase curves to characterize tidally locked planets (Seager & Deming, 2009; Cowan & Agol,

2011; Selsis et al., 2011; Menou, 2012a; Yang et al., 2013; Mills & Abbot, 2013; Perez-Becker

& Showman, 2013; Yang & Abbot, 2014; Kataria et al., 2014). At the same time, these

results have also shown that phase curves are sensitive to multiple atmospheric parameters,

which makes them difficult to interpret. For example, a small phase curve amplitude is

compatible with: 1) a massive atmosphere because thicker atmospheres transport heat more

effectively (Selsis et al., 2011), 2) an atmosphere containing large amounts of H2, which has

a higher heat capacity than high mean-molecular-weight gases and therefore loses heat more

slowly as air is advected to the nightside (Menou, 2012a), 3) relatively weaker absorption

of shortwave radiation, so that stellar energy is deposited at higher pressures before being

reemitted to space (Burrows et al., 2010; Heng et al., 2011a), and 4) a low magnetic drag in

ionized atmospheres, which allows higher wind speeds and thus more efficient heat transport
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(Rauscher & Menou, 2012).

In this paper we disentangle how different atmospheric parameters affect phase curves and

show how the phase curve amplitude can be used to constrain atmospheric mass. We focus

on the phase curve amplitude because we find that, for many terrestrial planets, hot/cold

spot offsets will be small (see Section 2.3). We focus on atmospheric mass because it will be

difficult to infer from either transit or emission spectroscopy, as can be seen from the following

argument. Following Lecavelier des Etangs et al. (2008), the maximum pressure that can be

probed in transit is pmax “ 0.56ˆg{κminˆ
a

H{p2πaq, where g is the acceleration of gravity,

κmin is the opacity per unit mass in the most transparent part of the spectrum, H is the scale

height, and a is the planetary radius2. If we assume that Rayleigh scattering dominates the

transit spectrum up to 0.75 µm and that this is the most transparent part of the spectrum,

then, for an N2 atmosphere, κmin „ 2.59ˆ10´6 m2 kg´1 (Table 5.2, Pierrehumbert, 2011b).

For an Earth analog with a “ aC, g “ 10 m s´2 and H “ 8 km, we find that pmax “ 0.3

bar. In reality it would be even harder to probe an atmosphere this deeply in transit due

to clouds and hazes (Fortney, 2005) or atmospheric refraction (Bétrémieux & Kaltenegger,

2014; Misra et al., 2014). Emission spectroscopy generally probes deeper into an atmosphere

than transit spectroscopy. Atmospheric mass can then be constrained using the fact that

pressure-broadening widens molecular absorption features at higher pressures. Nevertheless,

pressure and molecular abundances are largely degenerate in their effect on emission spectra,

which complicates the interpretation of emission spectra. For example, von Paris et al. (2013)

estimate that emission spectroscopy of a cool Earth analog with a 1 bar atmosphere could

place an upper bound on the surface pressure of about 5.6 bar. Obtaining the upper bound

would require a low-resolution spectrum (λ{∆λ “ 20) with a signal-to-noise ratio (SNR) of

10 (their Table 3). To estimate how much observation time this would require on JWST,

we use the SNR maps in Belu et al. (2011) as a guideline. We estimate that, for a cool M-

2. Compared to Section 4.1 in Lecavelier des Etangs et al. (2008), we additionally define κ ” σ0{µ,
R ” k{µ and H ” RT {g.
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dwarf at 5 pc, SNR “ 10 at this spectral resolution would require „ 14 days of continuous

monitoring3. This amounts to observing roughly every eclipse the planet makes during

JWST ’s five-year mission lifetime. The pressure-dependent formation of O2 dimers offers

another method for measuring atmospheric mass (Misra & Meadows, 2014). However, being

able to detect the dimer spectral signature requires an atmosphere with O2 concentrations

similar to Earth’s. The observation time necessary would again amount to „ 12 days of

continuous observation, or almost all available transits over JWST ’s mission lifetime. Such

long-term and detailed observations could be feasible for high-priority observation targets,

but even in those cases it would be desirable to have an independent and less time-consuming

way of estimating the atmospheric mass.

In the following sections we first analyze the dynamical and radiative equations relevant

for terrestrial planet atmospheres. We specifically consider atmospheres that are “dry”

(i.e., condensation is negligible) and tidally locked. For such atmospheres we identify six

nondimensional parameters that could influence phase curves (Section 2.2). Next, we use

an idealized GCM to numerically test which of the six parameters phase curves actually are

sensitive to (Section 2.3). Except for hot and rapidly rotating planets with optically thick

atmospheres, we do not find significant hot/cold spot offsets. We therefore focus on how the

phase curve amplitude can be used to constrain an atmosphere’s properties. We find that,

except for hot and rapidly rotating planets, the phase curve amplitude is mainly sensitive to

two nondimensional parameters. We then show how the phase amplitude can be combined

with information from transit or emission spectroscopy to constrain the atmospheric mass

of a terrestrial planet (Section 2.4). We estimate that one measurement of a nearby super-

Earth’s phase amplitude with JWST, taken over half the planet’s orbit, could constrain the

atmospheric mass to within a factor of two.

3. We assume SNR “ 10 for the detection of CO2 at 15 µm (Fig. 16b in Belu et al., 2011) is representative
for the entire thermal range, which is optimistic (compare to their Fig. 15b). To allow comparison with
Section 2.3, we additionally assume a 0.2 solar mass host star and rescale the required observation time for
a target at 10 pc, which is „ 3% of the JWST main mission or „ 1.8 months, to a target at 5 pc.
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2.2 Methods

We adopt a basic, yet comprehensive, model for the phase curve of a terrestrial planet. We

assume the planet is tidally locked and in a circular orbit. This regime is particularly relevant

for planets orbiting smaller main-sequence stars, that is, K- and M-dwarfs. At minimum,

the phase curve of such a planet is set by atmospheric fluid dynamics, radiative transfer,

and surface-atmosphere exchange of energy and momentum. As is standard for planetary

atmospheres, we model the atmospheric fluid dynamics using the primitive equations (Vallis,

2006). The primitive equations assume hydrostatic equilibrium and that horizontal length

scales are much larger than vertical ones, both of which tend to be excellent approximations

for large-scale motions. We focus on atmospheres cooler than 1000 K, for which magnetic

effects should be negligible (Menou, 2012b). We use bulk aerodynamic formulae for the

surface exchanges of energy and momentum. We model the radiative transfer as two-band

(shortwave and longwave) gray radiation. We neglect scattering and assume that longwave

and shortwave opacities increase linearly with pressure. The linear dependency approximates

the effects of pressure broadening and continuum absorption in a well-mixed atmosphere

(Robinson & Catling, 2014).

We assume that the thermodynamics are dry. This is a natural starting point for a

theoretical investigation, but our results should apply to a wide range of actual atmospheres.

First, we expect that many terrestrial planets will be dry because post-formation delivery

of volatiles via planetesimals and comets is a stochastic process (Morbidelli et al., 2000). In

addition, for planets hotter than Earth, volatiles can be lost via atmospheric escape (the so-

called moist greenhouse; Kasting, 1988). On tidally locked planets, volatiles can also become

cold-trapped on the nightside (Leconte et al., 2013; Menou, 2013). Moreover, the dry regime

is a useful approximation even for atmospheres like Earth’s with moderate amounts of a

condensing substance (Schneider et al., 2006). We therefore expect that insight gained in

the dry regime will carry over to the moist case. For example, if the atmospheric dynamics

were insensitive to one parameter in the dry regime (e.g., surface friction), this suggests
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that moist atmospheres could be similarly insensitive. Finally, observations will be able to

control for cases in which our analysis no longer applies. For example, condensation and

cloud formation would lead to anomalously high bond albedos and could also reverse the

expected day-night phase curve pattern (Yang et al., 2013).

The equations of our assumed model, shown in Appendix A, contain twelve dimensional

parameters. The parameters are: stellar constant, L˚, planetary albedo, α, rotation rate,

Ω, planetary radius, a, surface gravity, g, specific heat capacity, cp, specific gas constant, R,

shortwave and longwave opacities at some reference pressure, κSW and κLW , the Stefan-

Boltzmann constant, σSB , surface pressure, ps, and surface drag coefficient, CD. For a

single gas species the specific gas constant is R ” kB{pmpMq, where kB is the Boltzmann

constant, mp is the mass of a proton, and M is the molecular weight of a gas molecule.

For multiple species in a well-mixed dry atmosphere one can similarly assign bulk values

of R and cp (Caballero, 2014). The opacities κSW and κLW are defined at a reference

pressure, p0. The choice of p0 is arbitrary and one could set it equal to ps, so it does not

provide an additional dimensional parameter. To better compare our choices of κSW and

κLW with previous work, we keep p0 and ps distinct. We also note that L˚, α, and σSB

are not independent. The product L˚p1 ´ αq only appears in the stellar forcing term of

the radiative equations, and σSB only appears in the radiative equations (Appendix A). We

account for the degeneracy between L˚, α, and σSB by defining a characteristic temperature,

Teq “ rL˚p1 ´ αq{p4σSBqs
1{4, which is the equilibrium emission temperature of a spatially

homogeneous planet. This reduces the number of dimensional parameters to ten.

Following Frierson (2005), we use the Buckingham-Pi theorem to express ten dimensional

parameters measured in four different units (mass, length, time, and temperature) as only

six nondimensional parameters (Buckingham, 1914). There is no unique choice for these

nondimensional parameters; we form them using characteristic scales that we consider most

appropriate for relatively slowly rotating tidally locked atmospheres. Our choice of scales

nevertheless leads to nondimensional parameters that are well-known in the literature. As a

10



characteristic velocity scale we choose the speed of gravity waves, c „ NH, where N is the

Brunt-Väisälä frequency and H ” RTeq{g is the scale height. Adjustment via gravity waves

is key in setting the day-night temperature gradients, and hence phase curves, of relatively

slowly rotating planets (Perez-Becker & Showman, 2013; Showman et al., 2013). The Brunt-

Väisälä frequency is given by N2 “ g{T pg{cp ` dT {dzq. The lapse rate, dT {dz, is a priori

unknown for any atmosphere. To place an upper bound on the velocity scale we assume an

isothermal atmosphere, dT {dz „ 0, so cwave “
a

R{cp ˆ
?
gH. This amounts to assuming

that gravity waves are very fast (on the order of the speed of sound, csound “
a

γaRTeq “
?
γagH, where γa is the adiabatic index; cf. Heng & Kopparla, 2012). As a characteristic

length scale we choose the planetary radius a. We note that another potential length scale

is given by the equatorial Rossby deformation radius, LRo “
a

acwave{p2Ωq, which is the

maximum distance that equatorial waves can travel poleward under the influence of rotation.

For slowly rotating planets the Rossby radius exceeds the planetary radius, LRo ą a, and

equatorial waves can propagate planet-wide. We estimate that our choice of a as the length

scale is valid for planets with orbital period Á Op6q days4. From conservation of mass, we

choose a vertical velocity scale cwave ˆ ps{a. The remaining scales and nondimensionalized

equations are shown in Appendix A.

We arrive at the following six nondimensional parameters:
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¸
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˜
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¸
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The six parameters are related to physical processes as follows: the adiabatic coefficient

R{cp controls the lapse rate and is also identical to the ratio 2{p2 ` nq, where n is the

degrees of freedom of a gas (Pierrehumbert, 2011b). The nondimensional Rossby radius

4. Assuming R “ RN2 , cp “ cp,N2 , Teq “ 300K, and a “ aC, LRo ą a for a planet beyond a 5.8-day
orbital period.
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a2{L2
Ro governs the latitudinal extent over which equatorial waves can transport energy

and momentum (Matsuno, 1966; Showman & Polvani, 2011; Leconte et al., 2013). We

emphasize that instead of a2{L2
Ro one could choose different scales and arrive at, for example,

a Rossby number or a nondimensionalized Rhines scale (Showman et al., 2010, 2013). Which

scale to choose depends on the processes under consideration, and our anticipation of wave

adjustment processes naturally leads to a2{L2
Ro. Our results support our analysis, and we

find that phase curves are largely insensitive to planetary rotation when a2{L2
Ro À 1, that

is, as long as waves propagate planet-wide (Section 2.3). The ratio twave{trad compares the

time it takes for waves to redistribute energy across the planet, twave ” a{cwave, to the

atmosphere’s radiative cooling time, trad ” cpps{pgσSBT
3
eqq (Showman et al., 2013; Perez-

Becker & Showman, 2013). The atmospheric shortwave and longwave optical thicknesses at

the surface are τSW ” κSW p0{gˆpps{p0q
2 and τLW ” κLW p0{gˆpps{p0q

2, and their ratio

is γ. We note that the precise forms of τSW and τLW depend on details such as pressure

broadening and scattering (e.g., Pierrehumbert, 2011b; Heng et al., 2014). Our definition of

γ is equal to the more commonly used ratio of shortwave to longwave opacities (e.g., Guillot,

2010) when shortwave and longwave opacities have the same pressure dependency. The

influence of surface friction and surface heating on the atmosphere is governed by CDa{H.

Two atmospheres governed by the equations that we assume are guaranteed to be dy-

namically similar (identical dynamics in statistical equilibrium) if their six nondimensional

parameters are identical (also see Section 2.5). We note that only the nondimensionalized

dynamics will be similar; the physical values of, for example, temperature gradients or wind

speeds could be quite different. We also note that dynamical similarity does not depend

on how we nondimensionalize the equations, that is, our particular choice of characteristic

scales and nondimensional parameters. Nondimensionalization therefore allows us to identify

atmospheres that one might consider distinct based on their dimensional parameters, but

that turn out to be dynamically similar.

We test this idea in an idealized GCM. The model is based on the GFDL Flexible Model
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System (FMS; Held & Suarez, 1994) and was subsequently modified by Frierson et al.

(2006) and Merlis & Schneider (2010). This model has already been used to simulate the

atmospheres of Earth (Frierson et al., 2006), Jupiter (Liu & Schneider, 2011), hot Jupiters

(Heng et al., 2011a), tidally locked terrestrial planets (Merlis & Schneider, 2010; Mills &

Abbot, 2013), and non-synchronously rotating terrestrial planets (Kaspi & Showman, 2015).

For our simulations, we remove moisture and replace the model’s convective parametrization

with an instantaneous dry convection scheme (Manabe et al., 1965). We run all simulations

for at least 1000 days with a spatial resolution of either 64 ˆ 128 ˆ 30 or 48 ˆ 96 ˆ 20 grid

points (latitudeˆlongitudeˆvertical, corresponding to T42 or T31 spectral resolution). We

use model time-steps between 30 and 1200 seconds. We vary the time-step because hot atmo-

spheres require smaller time-steps for numerical stability, whereas colder atmospheres can be

integrated using longer time-steps but also take longer to reach equilibrium. We expect this

behavior, given that cwave9
?
T , so that hotter atmospheres are more likely to violate the

Courant-Friedrichs-Lewy criterion. We consider a simulation equilibrated once the global-

averaged radiative imbalance between incoming stellar and outgoing longwave radiation has

fallen below at least 1% of the incoming stellar radiation. We note that the GCM simulates

additional higher-order physics, and therefore contains additional parameters, which we did

not include in the derivation of the six nondimensional parameters. In particular, the model

contains a full Monin-Obukhov surface boundary layer scheme which self-consistently com-

putes the depth of the boundary layer, diffusion of surface fluxes, and surface drag. This

means the drag coefficient, CD, is computed by the model instead of being a fixed parame-

ter5. For example, for a neutrally stratified boundary layer CD “ pkvk{ logrz{z0sq
2, where

kvk is the von Karman constant, z is the height of the lowest model layer and z0 is the

roughness length. Because z and z0 only enter into this equation logarithmically we modify

CD by adjusting kvk. Similarly, the GCM requires additional parameters for its numerical

5. For the same reason the values for CDa{H shown in our results are only approximate. We estimate
CDa{H assuming neutral stratification and z “ 10m.
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Figure 2.1: Slowly rotating tidally locked planets are approximately symmetric about the
substellar point. Surface temperature from the reference simulation in Table 2.1 is shown in
two different coordinate systems. The black dashed line is the terminator. Left: In standard
coordinates, longitude λ ą 90˝ corresponds to the nightside and the substellar point is
located at latitude/longitude pθ, λq “ p0˝, 0˝q. Right: In tidally locked coordinates, tidally
locked latitude θTL ă 0˝ corresponds to the nightside and the substellar point is located at
tidally locked latitude θTL “ 90˝ (see Appendix B). For illustration, black dots mark every
64th GCM grid point.

algorithms. For example, the momentum equations are implemented using numerical dissi-

pation via horizontal ∇8 hyperdiffusion. The hyperdiffusivity is chosen to damp the smallest

resolved scale on a time scale of 12 hours, which sets a dissipative timescale. The dynamical

core also uses a Robert-Asselin time filter, which is controlled by another nondimensional

parameter. Our assumption, which we test in Section 2.3, is that the equations described in

Appendix A capture the most important physics simulated by the GCM.

Although the GCM uses standard latitude-longitude coordinates, we adopt a tidally

locked coordinate system to present our numerical results. Tidally locked planets in rela-
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tively long-period orbits tend to exhibit a strong symmetry about the axis connecting the

substellar and antistellar points. Figure 2.1 shows the surface temperature in our first ref-

erence simulation, which is a cool, slowly rotating, Earth-sized planet with pa,Ω, Teqq “

paC, 2π{r50dayss, 283Kq (see Table 2.1). The surface temperature is symmetric because the

reference simulation is in a slowly rotating dynamical regime, a2{L2
Ro ! 1. The symmetry

is not perfect, but it captures the dominant spatial variability. We therefore define a tidally

locked coordinate system with a tidally locked latitude θTL and longitude λTL, where θTL

is the angle away from the terminator and λTL is the angle about the substellar point (see

Fig. 2.1b, Appendix B).

To compute phase curves we follow Cowan & Agol (2008) and assume an edge-on viewing

geometry (see Appendix C). We normalize the disk-integrated fluxes by Frock ” 2{3ˆL˚p1´

αq, which is the dayside-averaged observer-projected flux emitted by a planet without an

atmosphere. A bare rock will therefore have a nondimensional phase curve, F {Frock, that

varies between zero and one. On the other hand, a planet with efficient heat transport will

have a constant phase curve equal to6 F {Frock “ σSBT
4
eq{Frock “ 3{8. We also define the

phase curve peak-to-trough amplitude as the normalized difference between the phase curve

maximum and minimum, pFmax ´ Fminq{Frock.

2.3 Sensitivity of phase curves to nondimensional parameters

First, we test whether our model (with six nondimensional parameters) captures the main

physics of dry, tidally locked atmospheres. We consider our model adequate if different GCM

simulations produce identical climates when their nondimensional parameters are identical.

Our reference case is a cool, slowly rotating, Earth-sized planet (Table 2.1). Figure 2.2

compares the reference case to simulations in which we change dimensional parameters, but

keep the six nondimensional parameters fixed (parameter choices are shown in Table 2.1a).

6. We note that the ratio is not 1{2. It would be 1{2 if we were comparing only dayside-averaged fluxes.
The ratio is less here because we have to additionally account for the observer-projected viewing geometry,
i.e., hotter regions closer to the substellar point appear more prominent to the observer.
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Figure 2.2: Atmospheres have identical dynamics if their nondimensional parameters are
identical. Top row: Colored curves show simulations in which we vary the nondimensional
parameters. In contrast, gray dashed curves are simulations in which dimensional parameters
are varied, but nondimensional parameters stay fixed (see Table 2.1a). Bottom row: the
deviation from the reference when nondimensional parameters stay fixed is ď 1% for surface
temperature (left) and generally À 3% for wind velocities (right). Notice the difference in
y-range between the top and bottom row. In addition, plots are shown in tidally locked
coordinates and all quantities are averaged over tidally locked longitude (see Fig. 2.1). The
meridional wind is given by the mass-weighted vertical average of meridional wind between
0.15 ď p{ps ď 0.5. Wind velocities are negative because the flow is away from the substellar
point.

We find that the nondimensional surface temperature, Ts{Teq, differs less than 1% between

the reference simulation and the simulations with fixed nondimensional parameters. The

nondimensional meridional wind velocity, v{cwave, in the upper troposphere is more variable,

and differs by À 3% over most of the model domain. The largest deviation in meridional

wind is „ 30% near the antistellar point. The deviation partly arises because we project
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simulated wind speeds into a tidally locked coordinate system, which mixes the wind vector

components. If we instead consider the total wind speed,
?
u2 ` v2{cwave, the deviation

is ă 10%. Moreover, v Ñ 0 at the antistellar point, requiring longer averaging periods,

and wave breaking occurs on the nightside, creating small-scale structure and numerical

dissipation. Both effects can lead to deviations from dynamical similarity. For comparison

we show some simulations in which we vary the nondimensional parameters (colored curves in

Figure 2.2). In these simulations surface temperature and wind velocities change up to 300%

compared with the reference, which demonstrates that the dynamical similarity predicted

by the nondimensionalization is not trivial. We conclude that the above six nondimensional

parameters are sufficient to capture the most important dynamics of the idealized GCM

simulations.

Next, we explore how sensitive phase curves are to each of the nondimensional parameters.

We consider different reference simulations and vary their nondimensional parameters one

at a time to see how this affects the resulting phase curves. For the reference simulations

we consider different scenarios where a,Ω, and Teq are fixed. We do so because a,Ω, and

Teq are relatively easily constrained for a transiting planet. To vary one nondimensional

parameter at a time we first find all possible transformations of the dimensional parameters

that only modify a given nondimensional parameter (see Appendix D). For example, to

decrease twave{trad we could increase ps but adjust κSW and κLW such that γ and τLW

remain constant. We then use these transformations to vary each nondimensional parameter

over its largest range compatible with fixed pa,Ω, Teqq and the constraints in Table 2.2.

We find that, for most planets, only the phase curve peak-to-trough amplitude is robustly

sensitive to changes in the nondimensional parameters. We start with the above reference

scenario of a cool, slowly rotating planet. The dashed curve in Figure 2.3 shows the phase

curve of the reference simulation. The planet’s thermal flux is phase-locked with the incoming

stellar radiation, that is, there is no hot spot phase offset. The phase-locking arises because

all stellar radiation is absorbed at the ground (γ “ 0), while a significant part of this energy
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Dimensional and Nondimensional parameters
Reference:

a “ aC, Ω “ 2π{p50 daysq, Teq “ 283K, R “ RN2 , cp “ cp,N2 ,
´

R
cp
, a2{L2

Ro,
twave

trad
, γ, τLW , CD

a
H

¯

ps=1 bar, g “ 10 m s´2, κLW “ 10´4 m2 kg´1, κSW=0 “
`

0.29, 0.12, 5.1ˆ 10´3, 0, 1, 1.4
˘

(a) In 16 simulations we vary the dimensional parameters while keeping all nondimensional pa-
rameters fixed. For comparison, in the bottom three simulations we allow the nondimensional
parameters to change. Below: relative to reference.

pR, cp, CDq ˆ 2,Ωˆ 21{2, ps ˆ 2´3{2, κLW ˆ 23 same as reference

pR, cp, CDq ˆ 2´1,Ωˆ 2´1{2, ps ˆ 23{2, κLW ˆ 2´3 . . .

pR, cp, gq ˆ 2,Ωˆ 21{2, ps ˆ 2´1{2, κLW ˆ 22 . . .

pR, cp, gq ˆ 2´1,Ωˆ 2´1{2, ps ˆ 21{2, κLW ˆ 2´2 . . .

pR, cp, gq ˆ 5,Ωˆ 51{2, ps ˆ 5´1{2, κLW ˆ 52 . . .

pR, cp, gq ˆ 5´1,Ωˆ 5´1{2, ps ˆ 51{2, κLW ˆ 5´2 . . .
pΩ, g, κLW q ˆ 2, aˆ 2´1 . . .
pΩ, g, κLW q ˆ 2´1, aˆ 21 . . .

Ωˆ p 54 q
1{2, pTeq, gq ˆ

5
4 , ps ˆ p

5
4 q

7{2, κLW ˆ p 54 q
6 . . .

Ωˆ p 45 q
1{2, pTeq, gq ˆ

4
5 , ps ˆ p

4
5 q

7{2, κLW ˆ p 45 q
6 . . .

pa,R, cpq ˆ
3
2 , pΩ, psq ˆ p

3
2 q
´1{2, κLW ˆ 3

2 . . .

pa,R, cpq ˆ 2, pΩ, psq ˆ 2´1{2, κLW ˆ 2 . . .

pa,R, cpq ˆ
2
3 , pΩ, psq ˆ p

2
3 q
´1{2, κLW ˆ 2

3 . . .

pa,R, cpq ˆ
1
2 , pΩ, psq ˆ p

1
2 q
´1{2, κLW ˆ 1

2 . . .

pR, cp, CDq ˆ 5,Ωˆ 51{2, ps ˆ 5´3{2, κLW ˆ 53 . . .

pR, cp, CDq ˆ
1
5 ,Ωˆ p

1
5 q

1{2, ps ˆ p
1
5 q
´3{2, κLW ˆ p 15 q

3 . . .
κLW ˆ 2 τLW ˆ 2
Ω “ 2π{p2 daysq a2{L2

Ro ˆ 25
ps{10, κLW ˆ 102 twave{trad ˆ 10
(b) This illustrates how we vary one nondimensional parameter at a time, while keeping other
nondimensional parameters fixed (also see Appendix D). The dimensional parameters remain
within the constraints shown in Table 2.2. Below: relative to reference.

cp ˆ 1.5, pR, gq ˆ 1.51{2, ps ˆ 1.5´1{2, κLW ˆ 1.53{2 R{cp ˆ 0.82

pR, cp, CDq ˆ 0.75, ps ˆ 0.75´3{2, κLW ˆ 0.753 a2{L2
Ro ˆ 1.15

pR, cp, CDq ˆ 4.64, ps ˆ 4.64´3{2, κLW ˆ 100 a2{L2
Ro ˆ 0.46

ps ˆ 6.32´1, g ˆ 2.5, CD ˆ 2.5´1, κLW ˆ 100 twave{trad ˆ 15.8
ps ˆ 0.1, κLW ˆ 100 twave{trad ˆ 10
ps ˆ 0.5, κLW ˆ 4 twave{trad ˆ 2

ps ˆ 21{2, κLW ˆ 0.5 twave{trad ˆ 0.71
ps ˆ 3.162, κLW ˆ 0.1 twave{trad ˆ 0.32
ps ˆ 2, g ˆ 2.5´1, CD ˆ 2.5, κLW ˆ 0.1 twave{trad ˆ 0.2
κSW “ 5ˆ 10´5 γ “ 0.5
κSW “ 10´4 γ “ 1
κLW ˆ 100 τLW ˆ 100
κLW ˆ 0.1 τLW ˆ 0.1
CD ˆ 10, pg, psq ˆ 2.5, κLW ˆ 0.4 CDa{H ˆ 25
CD ˆ 10 CDa{H ˆ 10
CD ˆ 0.1 CDa{H ˆ 0.1
CD ˆ 0.1, pg, psq ˆ 2.5´1, κLW ˆ 2.5 CDa{H ˆ 0.04

Table 2.1: (a) Parameters for the simulations in Figure 2.2. (b) Parameter bounds for the
simulations in Figures 2.3 and 2.4a. The drag coefficient CD is not a fixed parameter in
the model, so the values shown for CD

a
H is only approximate. Symbols for dimensional

parameters are defined in Table 2, nondimensional parameters are defined in Section 2.2.
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Dimensional Parameter Symbol Unit Min. value Max. value
Planetary radius a aC 1 2

Rotation rate Ω days´1 2π{50 2π{2
Equilibrium temperature Teq K 100 600

Surface gravity g 10 m s´2 2
5 ˆ pa{aCq

5
2 ˆ pa{aCq

Specific heat capacity cp J kg´1 K´1 820 14230

Specific gas constant R J kg´1 K´1 190 4157

Surface pressure ps bar 10´2 10

Longwave opacitya κLW m2/kg 10´5 10´2

Shortwave opacitya κSW m2/kg 0 10´2

Surface drag coefficient CD, via kvk - ˆ0.1 ˆ10
aOpacities are defined at a reference pressure of p0 “ 1 bar.

Table 2.2: Maximal range of dimensional values we consider. For a given reference simulation
we fix pa,Ω, Teqq, and change the remaining dimensional parameters such that only one
nondimensional parameter varies at a time. CD is not a fixed parameter, so we vary the
von-Karman constant kvk to increase and decrease CD by an order of magnitude. We vary
R and cp, but require that R{cp stays within the range of diatomic and triatomic gases
(0.22 À R{cp ď 0.29; section 2.3.3, Pierrehumbert, 2011b). The maximum value of R and
cp corresponds to H2, the minimum value to CO2. In addition we require that shortwave
optical depth does not exceed longwave optical depth (γ ď 1).

can also escape directly from the ground to space without being advected (τLW “ 1). We

note that the cold spot offset is larger than the hot spot offset; however, it would be difficult

to detect the cold spot offset because the phase curve is approximately constant near the

antistellar point (dashed curve in Fig. 2.3). Next, we vary each nondimensional parameter

while keeping the other nondimensional parameters fixed (Table 2.1b). The grey lines in

Figure 2.3 show how the phase curve varies in response to changes in the nondimensional

parameters. We find that the phase curve generally stays phase-locked with the stellar

radiation. This only changes once the atmosphere becomes optically thick (τLW " 1), but

in those cases the offset would again be hard to detect because the planet’s thermal emission

essentially does not vary (approximately constant curves in Fig. 2.3). In contrast to the

negligible hot/cold spot offsets, the phase curve amplitude is much more sensitive to changes

in the nondimensional parameters (Fig. 2.3).

We explore other reference simulations to see when hot/cold spot offsets become signif-

icant. We find that significant hot/cold spot offsets only occur when the the atmosphere is
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Figure 2.3: For many terrestrial planets, the phase curve’s peak-to-trough amplitude is sen-
sitive to changes in the atmospheric parameters whereas hot/cold spot offsets are small. The
dashed black line shows the phase curve for the reference simulation in Table 2.1, and the ver-
tical line indicates secondary eclipse. We explore different atmospheric scenarios by varying
each nondimensional parameter that influences the atmospheric dynamics while keeping the
other nondimensional parameters fixed (Table 2.1b). The approximately constant curves
correspond to optically thick atmospheres (τLW ě 10). The simulations shown here all
assume pa,Ω, Teqq “ paC, 2π{r50 dayss, 283 K); for symbol definitions see Table 2.2.

optically thick, τLW " 1, the planet has a high rotation rate, a2{L2
Ro Á 1, and is relatively

hot, twave{trad Á 0.01. Table 2.3 summarizes our results. While a cool and slowly rotating

planet with τLW “ 10 shows a hot spot offset of up to 82˝, the phase curve in that case is

almost constant and the offset therefore not detectable (second-to-bottom row in Table 2.3).

Only in the hottest and most rapidly rotating scenario with τLW " 1 that we consider do

we find a large hot spot offset of 26˝ which would also be detectable (bottom row in Table

2.3). If future observations found a large hot spot offset, this would therefore not only imply

that the planet has an atmosphere, but also that the atmosphere would have to be optically

thick. Many terrestrial planets, however, should have small hot spot offsets (Table 2.3). For
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(b) Hot, rapidly rotating super-Earth

Figure 2.4: Except for hot and rapidly rotating planets, the phase curve peak-to-trough
amplitude is primarily sensitive to twave{trad and τLW . As in Figure 2.3, we vary each
nondimensional parameter while keeping the other nondimensional parameters fixed. The
nondimensional parameters are defined in Section 2.2. Dashed black lines show the phase
amplitude of the reference simulations, blue dots show the phase amplitude as nondi-
mensional parameters are varied, and vertical bars indicate the maximal variation of
amplitude, i.e., sensitivity, for each nondimensional parameter. Left: reference simula-
tion assumes pa,Ω, Teqq “ paC, 2π{r50 dayss, 283 K). Right: reference simulation assumes
pa,Ω, Teqq “ p2aC, 2π{r2 dayss, 600 K).

the rest of this paper we therefore focus on the phase amplitude, and how it could be used

to characterize the atmosphere of a planet.

We find that, except for hot and rapidly rotating planets, the phase amplitude is pri-

marily sensitive to the ratio of dynamical to radiative timescales, twave{trad, and the optical

depth, τLW . We again start with the reference scenario of a cool, slowly rotating planet.

The dashed line in Figure 2.4a shows the reference phase amplitude, pFmax ´ Fminq{Frock,

and the vertical lines show how sensitive the phase amplitude is to changes in each nondi-

mensional parameter. The phase amplitude is far more sensitive to twave{trad and τLW

than to any of the other nondimensional parameters. For example, when we vary twave{trad

(primarily by changing g and ps, while adjusting other parameters; see Table 2.1b), the

phase amplitude varies between 0.2 and 0.6. In contrast, when we vary the nondimensional

Rossby radius, a2{L2
Ro (by changing R, and thus cwave, while adjusting other parameters),

the phase amplitude varies by less than 0.01. We emphasize this does not mean that the
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atmospheric dynamics or phase curve are insensitive to a2{L2
Ro in general. As we show in

the next paragraph, a2{L2
Ro can affect phase curves when a2{L2

Ro Á 1. However, for this

particular scenario, once pa,Ω, Teqq are known then a2{L2
Ro is already constrained to be

much smaller than one. The remaining observational uncertainty in a2{L2
Ro barely affects

our interpretation of the planet’s phase curve amplitude. Figure 2.4a therefore shows that,

for cool, slowly rotating planets with known pa,Ω, Teqq, a phase curve measurement contains

essentially no information about the parameters R{cp, a
2{L2

Ro, γ, and CDa{H. On the other

hand, a measurement of the phase amplitude would constrain the combination of twave{trad

and τLW .

We explore other reference simulations to determine whether there are regimes in which

the phase amplitude is sensitive to other parameters. Similar to our result for hot spot offsets,

we find that phase amplitude only becomes sensitive to a2{L2
Ro, γ, and CDa{H for large,

hot, and rapidly rotating planets. Specifically, a planet has to have both a2{L2
Ro Á 1 and

twave{trad Á 0.01 for additional nondimensional parameters to affect the phase amplitude.

Our results are summarized on the right-hand side of Table 2.3. We find that, in all scenarios,

the phase amplitude is most sensitive to twave{trad and τLW . We also find that a2{L2
Ro and

twave{trad both have to be large for the phase amplitude to become sensitive to additional

parameters; a large value of a2{L2
Ro by itself is not sufficient (third-to-bottom row in Table

2.3). Together with our above result that hot spot offsets also require a2{L2
Ro Á 1 and

twave{trad Á 0.01, this suggests that a regime shift occurs in the atmospheric dynamics near

this threshold. Figure 2.4b shows the scenario in which phase amplitude is most sensitive

to additional parameters (** in Table 2.3). This scenario corresponds to a super-Earth with

pa,Ω, Teqq “ p2aC, 2π{r2dayss, 600Kq. In this scenario the phase amplitude is additionally

sensitive to variations in a2{L2
Ro, γ, and CDa{H (Fig. 2.4b). For such a planet, a measure-

ment of the phase amplitude would be degenerate with multiple atmospheric parameters,

although the hot/cold spot offsets could provide additional information (Table 2.3). Many

terrestrial planets, however, will have phase amplitudes that are, to good approximation,
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only sensitive to twave{trad and τLW (Table 2.3).

2.4 Application to JWST observations

For planets whose phase curves primarily depend on the ratio of dynamical to radiative

timescales, twave{trad, and the optical depth, τLW , we consider how a phase curve could

constrain an atmosphere’s properties. Expanded in terms of dimensional quantities, the

two nondimensional parameters are agσSBT
5{2
eq {ppsRc

1{2
p q and κLW p2

s{pgp0q. The most im-

portant unknowns are the longwave opacity at a reference pressure, κLW , and the surface

pressure, ps, because the other dimensional parameters are relatively easy to constrain. For

a transiting planet, the planetary radius, a, would be known. One can constrain the equi-

librium temperature, Teq, because a planet’s broadband thermal emission averaged over

one orbit is equal to σSBT
4
eq. The specific gas constant and heat capacity, R and cp, vary

most significantly between H2-dominated atmospheres and high mean-molecular-weight at-

mospheres. Because R also sets the atmospheric scale height, a transit spectrum could be

sufficient to distinguish between an H2 and a high mean-molecular-weight atmosphere. If

one can determine whether an atmosphere is H2-dominated or not, the detailed value of R

and cp is secondary; for example, twave{trad only varies by a factor of 2 between a pure

N2 atmosphere and a pure CO2 atmosphere. The surface gravity, g, can be constrained via

radial-velocity or transit-timing measurements. Moreover, interior models indicate that bulk

compositions ranging from water ice to iron would only change the bulk density, and thus g,

by a factor of „ 2 (Seager et al., 2007). In contrast, κLW and ps can change the values of

twave{trad and τLW by several orders of magnitude.

This means a planet’s phase amplitude can be used to characterize longwave opacity,

κLW , and surface pressure, ps. To evaluate the feasibility of doing so, we estimate the observ-

able phase amplitude signal and the precision possible with JWST. For the signal we assume

an optimistic scenario similar to that assumed by Yang et al. (2013). Specifically, we assume a

cool super-Earth with pa, Teq,Ω, g, R, cpq “ p2aC, 300K, 2π{r10dayss, 20m s´2, RN2
, cp,N2

q,
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orbiting a GJ1214-like star with pa˚, T˚q “ p0.2a@, 3000Kq. We assume the star is 5 pc away,

and the phase curve is observed between transit and secondary eclipse, for 5 days total. This

planet would have a2{L2
Ro „ 1. That is roughly the regime for which our findings start to

apply, i.e., the planet’s phase amplitude largely depends on only two nondimensional param-

eters. Cooler and/or smaller planets would be even more solidly in the slowly rotating and

cool regime, but more difficult to observe. We performed simulations that explore the phase

amplitude as a function of κLW and ps. For a given simulation we compute the normal-

ized phase amplitude pFmax ´ Fminq{Frock. We multiply this amplitude by the planet-star

contrast of a bare rock, Frock{F˚, to get the phase amplitude relative to the stellar flux,

pFmax´Fminq{F˚. To compute Frock{F˚ we approximate the planetary and stellar emission

as blackbody radiation. Following Yang et al. (2013), the planet-star contrast in some band

rλ1, λ2s is then

Frock
F˚

“

ˆ

a

a˚

˙2
şλ2
λ1
BpTrock, λqdλ

şλ2
λ1
BpT˚, λqdλ

.

Here B is the Planck function, and Trock is the dayside-averaged observer-projected tem-

perature of a bare rock (Appendix C). We assume 16.5 ď λ ď 19.5 µm, which cor-

responds to the F1800W filter on JWST ’s Mid-Infrared Instrument (MIRI). We choose

this band because it avoids the 15 µm CO2 absorption feature, but other spectral win-

dow regions would be similarly suitable. For a bare rock the phase amplitude would be

pFmax´Fminq{F˚ “ pFrock´0q{F˚ “ 358 ppm, while an atmosphere with perfect day-night

heat transport would have a phase amplitude of 0 ppm.

To estimate the precision possible with JWST, we assume that the observational error is

dominated by stellar photon noise. In the photon noise limit the precision is σ{F˚ “ 1{
?
N ,

where the number of stellar photons N is

N “ π

ˆ

D

2

˙2

∆t
´a˚
d

¯2
ż λ2

λ1

BpT˚, λq

Epλq
dλ.

Here D is the diameter of JWST ’s mirror (=6.5m), ∆t is the length of observation, d is the
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Figure 2.5: This figure illustrates how the observed phase curve amplitude, rFmax´Fmins{F˚,
(y-axis) can be used to infer the surface pressure of a planet (colors). Black dots indicate
simulations, and the color scale is interpolated between simulations. A given amplitude is
compatible with both a thin atmosphere that is opaque to longwave radiation (large κLW )
and a thick atmosphere that is transparent to longwave radiation (small κLW ). If κLW
is known, for example from transit spectroscopy, then the phase curve constrains surface
pressure and atmospheric mass. We assume a super-Earth around a GJ1214b-like star,
such that a bare rock would exhibit a phase curve amplitude near 18 µm of 358 ppm.
The black square shows a representative 1 bar atmosphere, and the error bars show our
optimistic estimate for JWST ’s ˘1σ precision on the phase amplitude (see Section 2.4). For
reference, opacities in Solar System atmospheres tend to fall within an order of magnitude
of κLW „ 10´3 m2 kg´1 (Robinson & Catling, 2014).

distance between observer and star, and Epλq “ hc{λ is the energy per photon. We first

make an optimistic estimate for the precision. Recent measurements with the Hubble Space

Telescope almost reached the photon noise limit (Kreidberg et al., 2014; Knutson et al.,

2014), and we assume JWST will do similarly well. To account for imperfect instrument

throughput and detector efficiency we degrade the photon-limited precision by a factor of

1{3 (Fig. 3, Glasse et al., 2010). We find that, over a 12 hour integration, JWST should
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be able to measure the planet-star flux ratio with a precision of 12 ppm7. Because the

phase amplitude is the difference between two fluxes, the 3σ uncertainty interval for the

phase amplitude is8
?

2 ˆ 3 ˆ 12 ppm = 51 ppm. For a pessimistic estimate we repeat the

previous calculation, but additionally impose a noise floor of 40 ppm. This floor represents

unexpected instrumental systematics, zodiacal light or other noise sources. With this noise

floor, a 12 hour integration would only reach 10% of the photon noise limit. Given that

Spitzer measurements were able to reach „ 30% of the photon noise limit (Fig.3, Cowan

et al., 2012), we consider this estimate very pessimistic. In this case a 2σ (3σ) measurement

of the phase amplitude would have a precision of
?

2ˆ 2ˆ 40 “ 113 (170) ppm.

Figure 2.5 shows our simulation results and optimistic 1σ precision estimate. We find

that thin atmospheres (ps ď 0.2 bar) have phase amplitudes close to 358 ppm for small and

moderate values of κLW (ď 10´3 m2 kg´1). Taking into account measurement uncertainties

of „ 50 ppm, these atmospheres would be difficult to distinguish from bare rocks. Similarly,

thick atmospheres (ps ą 5 bar) tend to have phase amplitudes close to zero. A phase curve

would constrain atmospheric mass most effectively between those two limits. Figure 2.5 also

shows that, between those limits, the phase amplitude is sensitive to both κLW and ps. We

find that any observed phase amplitude would be compatible with both a thin atmosphere

that is opaque to longwave radiation (large κLW ) and a thick atmosphere that is transparent

to longwave radiation (small κLW ). Nevertheless, if transit or emission spectroscopy could

determine the concentration of greenhouse gases in an atmosphere, and therefore κLW , the

phase amplitude would yield the value of ps. As an example we highlight a simulation with a

1 bar atmosphere and κLW “ 4ˆ 10´4 m2 kg´1 (black square in Fig. 2.5). The exact value

of this atmosphere’s phase amplitude is 152 ppm. The observed phase amplitude would

7. We note that Yang et al. (2013) similarly estimate JWST precisions assuming the photon noise limit.
However, those calculations contained an error and the resulting estimates are too small by a factor of a few
(N. Cowan, personal communication).

8. The factor of
?

2 assumes that uncertainties between different observation periods are uncorrelated.
The uncertainty on the phase amplitude is then related to the uncertainty of a single observation period as

σamplitude “
b

σ2
single ` σ

2
single “

?
2σsingle.
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therefore be 152 ˘ 51 ppm with 3σ confidence, which constrains the surface pressure to

0.7 ď ps ď 1.3 bar. Even using our pessimistic precision estimate, we find that JWST would

be able to constrain surface pressure to 0.5 ď ps ď 2.3 bar, albeit only with 2σ confidence

(152 ˘ 113 ppm). We further note that our pessimistic precision estimate would only place

a lower bound on the surface pressure, ps ě 0.2 bar, with 3σ confidence (152 ˘ 170 ppm).

These values are the most precise constraints that the phase curve amplitude can place on

surface pressure, because we assumed the other dimensional parameters (κLW ,R,cp, etc.) are

already well characterized via transit or emission spectroscopy. Observational uncertainties

in the other dimensional parameters would increase the uncertainty in the inferred surface

pressure. Nevertheless, our results show that a phase amplitude measurement can place

meaningful bounds on a planet’s atmospheric mass, while the necessary observation time is

competitive with the time required to constrain atmospheric mass via transit or emission

spectroscopy (cf. Section 2.1).

2.5 Discussion

Dimensional analysis is a crucial tool in comparative planetology and the study of exo-

planets (Golitsyn, 1970; Mitchell & Vallis, 2010; Showman et al., 2010; Read, 2011; Potter

et al., 2013; Del Genio, 2013; Mitchell et al., 2014). Our approach highlights the util-

ity of the Buckingham-Pi theorem for the study of planetary atmospheres (cf. Frierson,

2005). We show that the primitive equations coupled to the two-stream equations are gov-

erned by a fairly small set of nondimensional parameters. These nondimensional parameters

also encapsulate the atmospheric dynamics of an idealized GCM. Our analysis reveals ba-

sic dimensional degeneracies, which could allow modelers to sample large parameter spaces

more efficiently (Fig. 2.2, Appendix D). It is straightforward to expand our analysis to

include additional physics, for example, moist thermodynamics, multi-band radiation, non-

hydrostatic atmospheres, chemical disequilibrium or magnetohydrodynamics. It follows from

the Buckingham-Pi theorem that each additional independent physical parameter will intro-
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duce another nondimensional parameter.

Our analysis suggests that the dynamics of gaseous planets could be even easier to un-

derstand than the dynamics of terrestrial planets. Gaseous planets do not have a distinct

surface, so we suppose that their atmospheric dynamics are to first order independent of

the bottom boundary. A range of modeling studies tend to support this assumption (Heng

et al., 2011a; Menou, 2012a; Kataria et al., 2013). This means the dynamics are insensitive

to the surface friction/heating parameter, CDa{H. We furthermore need to replace the sur-

face pressure, ps, with a new characteristic pressure. We note that for terrestrial planets ps

denotes the depth of the dynamically active part of the atmosphere, where winds are driven

by gradients in the stellar forcing. For a gaseous planet we analogously use the photon de-

position depth, that is, the pressure where stellar radiation is absorbed, pD „
a

gp0{κSW

(see eqn. 117, Heng et al., 2014). The longwave optical depth τLW , which was previously

defined at the surface, now becomes the optical depth at the level of photon deposition,

τLW “ κLW p0{g ˆ ppD{p0q
2 “ κLW {κSW “ γ´1. The last step shows that τLW and γ

cease to be independent degrees of freedom. This is also consistent with the Buckingham-Pi

theorem, because we should lose one nondimensional parameter in the limit ps Ñ 8. The

dynamics of gaseous planets then depend on only four nondimensional parameters (where

ps is now replaced by pD):
˜

R

cp
,
a2

L2
Ro

,
twave
trad

, γ

¸

.

This set is sufficiently small for easy numerical exploration. Moreover, observations that

cannot be explained by a model with the above four parameters would strongly point to the

importance of additional physics, for example, breakdown of well-mixed gaseous opacities

(via chemical disequilibrium), non-grey radiative effects, condensation or clouds.

Next, we discuss the observational effort necessary for phase curve observations. While

there were initial attempts to monitor phase curves discontinuously with Spitzer (Harrington

et al., 2006), more recent Spitzer observations tend to cover the whole course of an orbit to

account for long-term instrumental drift (Knutson et al., 2012). Similar continuous obser-
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vations with JWST would become very time-consuming for planets with period Á10 days.

Although we assumed in Section 2.4 that the planet is observed for half an orbit, our results

indicate that full phase curve coverage is not necessary as long as hot spot offsets are small

or negligible (Fig. 2.3). In theory this means that one only needs to observe a planet’s ther-

mal emission near primary and secondary eclipse, which would greatly reduce the required

observation time. In practice, it will be challenging to relate the observed thermal fluxes

from distinct observation periods, but precise characterization of JWST ’s instrumental drift

might still permit discontinuous observation strategies.

Finally, we discuss further physics that might influence our conclusions. Any model nec-

essarily only approximates the dynamics of real atmospheres. The dynamical similarities

predicted by our analysis will break down if processes neglected in our model become signifi-

cant or if the neglected processes are singular perturbations. We do not expect condensation

to be a singular perturbation, given that dry models are able to reproduce many aspects

of Earth’s atmospheric dynamics (Schneider et al., 2006). For a planet with a condensing

substance, our method should provide an upper bound on the atmospheric mass. That is be-

cause latent heat transport, and for true Earth analogs ocean heat transport, would increase

the day-night energy transport. Clouds would similarly reduce the phase curve amplitude,

by reducing the dayside brightness temperature while not strongly affecting the nightside

brightness temperature (Yang et al., 2013). If this effect is strong enough it can even reverse

the expected day-night phase curve pattern. Detection of a inverted phase curve pattern

would therefore be a tell-tale sign of a condensing atmosphere. In all other cases, a planet

with a condensing substance should have a reduced phase curve amplitude and thus resemble

a dry planet with larger atmospheric mass.

For the radiative transfer, we assume that shortwave and longwave opacities both in-

crease linearly with pressure due to pressure broadening and collision-induced absorption.

This assumption breaks down if atmospheric opacities are set by different mechanisms, for

example, if shortwave radiation was absorbed by dust (which is insensitive to pressure broad-
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ening). We therefore explored simulations in which the shortwave opacity is independent of

pressure. We find that reducing the pressure dependency has an effect qualitatively similar

to increasing the ratio of shortwave to longwave optical depths, γ, in our standard simula-

tions. Specifically, the resulting increase in shortwave absorption at higher altitudes creates

stratospheric inversions, but only has a limited impact on thermal phase curves („ 10´15%

decrease in phase amplitude compared to our standard simulations with γ “ 1; see Fig. 2.4).

We also assume that planets are tidally locked, but the effect of atmospheric thermal

tides (Cunha et al., 2014) and trapping in higher-order resonances (Makarov et al., 2012)

could result in non-synchronous orbital states. Non-synchronous rotation would introduce

an additional nondimensional parameter into our model that compares the length of the

day-night cycle with the planet’s cooling timescale. We do not expect that a small deviation

from synchronous rotation would be a singular perturbation of this parameter. Yang et al.

(2014) show that non-synchronously rotating planets with sufficiently slow rotation and/or

short cooling timescale smoothly approach the tidally locked regime (their Fig. 1a). Such

planets rotate non-synchronously but in an instantaneous sense still appear tidally locked.

Cunha et al. (2014) show that thermal tides are generally not compatible with synchronous

rotation. Nevertheless, the deviation from synchronous rotation is small for planets in close

orbits with zero eccentricity around small stars, such as M-dwarfs (Table 2 in Cunha et al.,

2014). Unless synchronous rotation represented a singular limit (see above), the potential

effect of thermal tides should then not greatly affect the types of planets we consider here.

Many terrestrial planets might never reach synchronous rotation and instead get trapped

in a higher-order orbital resonance, like Mercury did in our Solar system (Makarov et al.,

2012). The probability of being trapped decreases for planets with lower eccentricity (Fig. 6

in Makarov et al., 2012), which means that our assumption of synchronous rotation is at

least consistent with the fact that also we do not consider non-zero eccentricities. It is

beyond the scope of this article to investigate higher-order spin states, but phase curves at

visible wavelengths could provide a consistency check for applying our method to planets
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with optically thin atmospheres (Fujii et al., 2014).

2.6 Conclusions

We use dimensional analysis to find a set of six nondimensional parameters that captures

the main atmospheric dynamics of dry, tidally locked terrestrial planets in an idealized

GCM. We use the GCM to investigate the sensitivity of thermal phase curves to each of

the nondimensional parameters. Except for hot and rapidly rotating atmospheres that are

optically thick in the longwave, we do not find significant hot spot offsets. On the other

hand, the phase curve amplitude remains sensitive to changes in the atmospheric parameters

across a large range of atmospheric scenarios. Focusing on the phase amplitude, we find that

the phase amplitude of many terrestrial planets is sensitive to only two nondimensional

parameters. The main unknowns in the two nondimensional parameters are the surface

pressure and the longwave opacity. The longwave opacity can be constrained by transit

or emission spectroscopy, in which case the phase amplitude would constrain the surface

pressure and atmospheric mass. As an example, we estimate that a broadband phase curve

near 18 µm with JWST, taken over a single half-orbit, could be sufficient to constrain the

surface pressure of a cool super-Earth to within a factor of two. Constraints like the one we

propose will be crucial for understanding atmospheric evolution, in particular atmospheric

escape. Moreover, constraining atmospheric mass is important for characterizing the surface

conditions of potentially habitable planets.
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CHAPTER 3

TEMPERATURE STRUCTURE AND ATMOSPHERIC

CIRCULATION OF TIDALLY LOCKED EXOPLANETS

Next-generation space telescopes will observe the atmospheres of rocky planets orbiting

nearby M-dwarfs. Understanding these observations will require well-developed theory in

addition to numerical simulations. Here we present theoretical models for the temperature

structure and atmospheric circulation of dry, tidally locked rocky exoplanets with grey ra-

diative transfer and test them using a general circulation model (GCM). First, we develop

a radiative-convective model that captures surface temperatures of slowly rotating and cool

atmospheres. Second, we show that the atmospheric circulation acts as a global heat engine,

which places strong constraints on large-scale wind speeds. Third, we develop a radiative-

convective-subsiding model which extends our radiative-convective model to hot and thin

atmospheres. We find that rocky planets develop large day-night temperature gradients at

a ratio of wave-to-radiative timescales up to two orders of magnitude smaller than the value

suggested by work on hot Jupiters. The small ratio is due to the heat engine inefficiency and

asymmetry between updrafts and subsidence in convecting atmospheres. Fourth, we show

using GCM simulations that rotation only has a strong effect on temperature structure if

the atmosphere is hot or thin. Our models let us map out atmospheric scenarios for planets

such as GJ 1132b and show how thermal phase curves could constrain them. Measuring

phase curves of short-period planets will require similar amounts of time on the James Webb

Space Telescope as detecting molecules via transit spectroscopy, so future observations should

pursue both techniques.
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3.1 Introduction

3.1.1 Importance of atmospheric dynamics

Terrestrial exoplanets orbiting M-dwarfs are extremely common. Results from the Kepler

space telescope show that there are at least „ 0.5 rocky planets per M-dwarf, half of which

could even be habitable (Dressing & Charbonneau, 2015). Just as important, near-future

telescopes like the James Webb Space Telescope (JWST ) will be able to characterize the

atmospheres of these planets (Deming et al., 2009; Beichman et al., 2014; Cowan et al.,

2015), making them one of the most promising observational targets of the coming decade.

New theories are needed to understand the potential atmospheres of these exoplanets,

particularly their temperature structures and large-scale circulations. An atmosphere’s tem-

perature structure and circulation critically influence a planet’s surface and atmospheric evo-

lution as well as its potential habitability (Kasting, 1988; Abe et al., 2011; Yang et al., 2013).

An atmosphere’s temperature structure and circulation are also important for interpreting

observations. For example, a planet’s emission spectrum is determined by the vertical tem-

perature distribution of its atmosphere, while the planet’s thermal and optical phase curves

are set by its day-night temperature gradient and cloud patterns (Seager & Deming, 2009;

Yang et al., 2013; Hu et al., 2015). Even transit measurements can be strongly influenced by

chemical mixing and clouds, which in turn depend on the atmosphere’s large-scale circulation

(Fortney, 2005; Parmentier et al., 2013; Charnay et al., 2015; Line & Parmentier, 2016).

Unfortunately there is a large gap between current theories of terrestrial atmospheres

and the wide range of potential exoplanets. Planets accessible to follow-up observations will

generally be in short-period orbits, experience strong tidal forces, and thus tend to be either

tidally locked or captured in higher spin-orbit resonances (Kasting et al., 1993; Makarov

et al., 2012). The solar system offers no direct analogs of such atmospheres, and their dy-

namics are still poorly understood. In this work we focus on tidally locked (synchronously

rotating) atmospheres because their dynamics would differ most drastically from rapidly ro-
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tating atmospheres, whereas planets in higher spin-orbit resonances should resemble hybrids

between tidally locked and rapidly rotating planets (also see Section 3.9).

3.1.2 Previous work and open questions

Many groups have already used general circulation models (GCMs) to study the thermal

structure and atmospheric circulation of tidally locked terrestrial planets (e.g., Joshi et al.,

1997; Merlis & Schneider, 2010; Heng et al., 2011b; Pierrehumbert, 2011a; Selsis et al., 2011;

Leconte et al., 2013; Yang et al., 2013; Zalucha et al., 2013; Wordsworth, 2015; Kopparapu

et al., 2016). These studies investigated a range of processes that shape the atmospheres

of tidally locked planets, including the large-scale day-night circulation, equatorial superro-

tation, heat transport by atmospheric waves, and the potential for atmospheric collapse if

the nightside becomes too cold. The development of theory to understand these processes,

however, has not kept up with the rapid proliferation of simulations.

Recent theories of rocky planets focused on planets for which the horizontal heat redis-

tribution is extremely efficient (Pierrehumbert, 2011a; Mills & Abbot, 2013; Yang & Abbot,

2014; Wordsworth, 2015). Among the latter, Pierrehumbert (2011b) developed a scaling

relation for the surface temperature of a planet that is horizontally completely uniform and

whose atmosphere is optically thick,

Ts “ Teq ˆ
τ
β
LW

Γ p1` 4βq1{4
. (3.1)

Here Teq is the planet’s equilibrium temperature defined as Teq ” rL˚p1´αq{p4σqs
1{4, τLW is

the longwave optical thickness, Γ is the Gamma function defined as Γpaq ”
ş8
0 ta´1 expp´tqdt,

and β ” R{pcpnq. L˚ is the stellar constant, α is the planetary bond albedo, σ is the Stefan-

Boltzmann constant, R is the specific gas constant, cp is the specific heat capacity, and

n governs how optical thickness depends on pressure (Section 3.2). Similarly, Wordsworth

(2015) developed a theory for the temperature structure of tidally locked atmospheres in the
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optically thin limit, in which atmospheres become particularly vulnerable to atmospheric

collapse. Wordsworth (2015) found a lower bound for the nightside temperature of a tidally

locked planet1,

Tn “ Teq

´τLW
2

¯1{4
. (3.2)

Common to both scalings is that they are not valid in the physically important regime of op-

tical depth unity, and indeed contradict each other when extrapolated to this limit. Neither

do they explicitly account for horizontal atmospheric dynamics2. Nevertheless, we expect

that the dynamics of tidally locked planets should be sensitive to a range of additional pro-

cesses, including the atmosphere’s radiative timescale, surface drag, and planetary rotation,

all of which have not yet been addressed for rocky exoplanets.

On a different front, recent work has begun to understand the atmospheric circulation of

hot Jupiters (Perez-Becker & Showman, 2013; Showman et al., 2015; Komacek & Showman,

2016). Perez-Becker & Showman (2013) developed a weak-temperature-gradient (WTG)

theory that explains why the hottest hot Jupiters also tend to have the highest day-night

brightness temperature contrasts. WTG describes atmospheres that are slowly rotating

and are relatively cool, which allows atmospheric waves to efficiently eliminate horizontal

temperature gradients (Showman et al., 2013). In equilibrium the wave adjustment leads to

subsidence, that is, sinking motions, in regions of radiative cooling (see Section 3.5). Perez-

Becker & Showman (2013) showed that day-night temperature gradients become large once

the radiative timescale becomes shorter than the timescale for subsidence, trad À tsub. On

1. We use Equation 3.2 instead of Equation (29) in Wordsworth (2015), because it does not assume a
specific value for n.

2. Wordsworth (2015) also developed a model that incorporates dynamics, which we revisit in Section
3.4.
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hot Jupiters with sufficiently strong drag, temperature gradients are large when

trad À
twave
tdrag

ˆ twave, (3.3)

where twave is the timescale for a gravity wave to horizontally propagate across the planet

and tdrag is a characteristic drag timescale.

It would be tempting to assume Equation 3.3 applies equally well to rocky exoplanets.

That is not the case, and published GCM results of rocky planets are already at odds with

it. We show in Appendix E that for most tidally locked terrestrial planets drag and wave

timescales are comparable, tdrag « twave. If Equation 3.3 applied to rocky planets, they

should develop large day-night temperature gradients when

1 À
twave
trad

. (3.4)

In contrast, the GCM simulations in Selsis et al. (2011) indicate that tidally locked rocky

planets can develop atmospheric temperature gradients at a surface pressure of about 1

bar (their Fig. 5), which translates to a much lower value of twave{trad „ 0.05. Similarly,

we found in Koll & Abbot (2015) that rocky exoplanets develop large day-night brightness

temperature contrasts when twave{trad Á 10´2. The disagreement between hot Jupiter

theory and rocky planets has not been explored yet. Here we will show that the qualitative

threshold for a WTG atmosphere to develop large temperature gradients, trad À tsub, also

applies to rocky planets. However, rocky planets end up behaving quite differently than

hot Jupiters because of the processes that determine the large-scale circulation and the

subsidence timescale tsub.

3.1.3 Outline

In this paper we develop a series of models to understand the atmospheres of tidally locked

rocky exoplanets. To show how our models complement previous theories we adopt our
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nondimensional analysis from Koll & Abbot (2015). Using the Buckingham-Pi theorem

(Buckingham, 1914), we showed that the dynamics of a dry and tidally locked atmosphere

with grey radiation are governed by only six nondimensional parameters. This set of nondi-

mensional parameters allows us to cleanly disentangle the atmospheric processes that need

to be addressed. One choice for the six parameters is given by

˜

R

cp
,
a2

L2
Ro

,
twave
trad

, τSW , τLW ,
twave
tdrag

¸

. (3.5)

The convective lapse rate is controlled by R{cp. The nondimensional Rossby radius a2{L2
Ro

governs the influence of planetary rotation on equatorial waves. Here a is the planetary

radius, the equatorial Rossby deformation radius is defined as LRo ”
a

acwave{p2Ωq, Ω is

the planetary rotation rate, and cwave is the speed of a gravity wave. Although cwave is

a priori unknown, because it depends on an atmosphere’s vertical temperature structure,

we can place a reasonable upper bound on it by assuming an isothermal atmosphere. This

assumption leads to cwave “
a

R{cpˆ
?
gH “

a

R{cpˆ
a

RTeq, where g is the acceleration

of gravity and H ” RTeq{g is the scale height. The wave-to-radiative timescale ratio,

twave{trad, compares the time it takes for equatorial waves to redistribute energy across the

planet, twave ” a{cwave, to the atmosphere’s radiative cooling time, trad ” cpps{pgσT
3
eqq.

The atmospheric shortwave and longwave optical thicknesses are τSW and τLW . The ratio

of wave to drag timescales twave{tdrag “ CDa{H governs surface friction and turbulent heat

fluxes (Appendix E).

We only consider atmospheres that are transparent to shortwave absorption (τSW “ 0),

which ensures that the solid surface substantially affects the atmospheric dynamics. This

means we exclude from our consideration potential “rocky” planet scenarios with a bulk

silicate composition, but with gaseous envelopes several hundreds of bar thick (Owen &

Mohanty, 2016). We expect that the observable atmospheres of such planets would resemble

gas giants more than rocky planets, with dynamics that are better captured by theories
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developed for hot Jupiters (Perez-Becker & Showman, 2013; Showman et al., 2015; Komacek

& Showman, 2016).

Of the six nondimensional parameters τSW and τLW govern radiative transfer, R{cp

sets the vertical temperature structure, and the remaining three parameters determine the

horizontal dynamics. As an important starting point, we formulate an analytical radiative-

convective (RC) model for the temperature structure of tidally locked atmospheres that only

depends on β ” R{pncpq and τLW and therefore addresses the first two processes (Section

3.3). In the optically thick regime this model reduces to the asymptotic limit found by

Pierrehumbert (2011b). We then turn to horizontal dynamics. We show the day-night

circulation acts as a heat engine, in which heating and cooling balance frictional dissipation

in the dayside boundary layer (Section 3.4). We use our heat engine theory to develop

a radiative-convective-subsiding (RCS) model that includes the effects of twave{tdrag and

twave{trad on temperature structure (Section 3.5). For cool/thick atmospheres the RCS

model reduces to the RC model, whereas for optically thin and hot/thin atmospheres it

reduces to the asymptotic limit found by Wordsworth (2015). Our RCS model explains

why rocky planets develop large day-night temperature gradients at a significantly lower

twave{trad threshold than hot Jupiters (Section 3.6). Next, we use GCM simulations to

address rapidly rotating planets and a2{L2
Ro (Section 3.7). We find that twave{trad has to

be big for rotation to have a strong effect on temperature structure, that is, cause large

eastward hot spot offsets or cold nightside vortices. Our results imply that planets like GJ

1132b or HD 219134b will likely have significant day-night temperature contrasts, unless

their atmospheres are dominated by H2 (Section 3.8). We estimate that detecting these

potential contrasts via thermal phase curves will require about as much time with JWST as

detecting molecular signatures via transit spectroscopy. Finally, we discuss and summarize

our results in Sections 3.9 and 3.10.
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3.2 Methods

We compare our models with a large number of GCM simulations. We use the FMS GCM

with two-band grey gas radiative transfer and dry (non-condensing) thermodynamics. FMS

has been used to simulate the atmospheres of Earth (Frierson et al., 2006), Jupiter (Liu &

Schneider, 2011), hot Jupiters (Heng et al., 2011b), tidally locked terrestrial planets (Merlis &

Schneider, 2010; Mills & Abbot, 2013; Koll & Abbot, 2015), and non-synchronously rotating

terrestrial planets (Kaspi & Showman, 2015). We use the same FMS configuration as Koll

& Abbot (2015). The model version we use simulates the full atmospheric dynamics and

semi-grey (shortwave and longwave) radiation, and we include instantaneous dry convective

adjustment. Drag is parametrized using a standard Monin-Obukhov scheme which self-

consistently computes the depth of the planetary boundary layer as well as turbulent diffusion

of heat and momentum. The surface is represented by an idealized “slab layer”, that is

a single layer with uniform temperature and fixed depth. The “slab” temperature can be

interpreted as a temperature average across the surface’s thermal skin depth (Pierrehumbert,

2011b). Our simulations are all tidally locked and orbits are assumed to be circular so that

the stellar flux is constant in time.

Because we only consider atmospheres that are transparent to shortwave radiation (τSW “

0), the incoming stellar flux and the planetary albedo are degenerate in their effect on plane-

tary temperature. For simplicity we set the surface albedo to zero in all our simulations and

vary the incoming stellar flux. To specify the relation between longwave optical thickness

and pressure, we use a standard power law of the form

τ

τLW
“

ˆ

p

ps

˙n

. (3.6)

The exponent n specifies how the optical thickness τ increases with pressure. For example,

n “ 1 if the opacity of a gas mixture is independent of pressure, and n “ 2 if the opacity

increases due to pressure broadening (Pierrehumbert, 2011b; Robinson & Catling, 2012).
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Parameter Symbol Unit Min. value Max. value
Planetary radius a aC 0.5 2

Rotation rate Ω days´1 2π{100 2π{1
Equilibrium temperature Teq K 250 600

Surface gravity g 10 m s´2 2
5 ˆ pa{aCq

5
2 ˆ pa{aCq

Specific heat capacitya cp J kg´1 K´1 820 14518

Specific gas constanta R J kg´1 K´1 189 4158

Surface pressure ps bar 10´2 10

Longwave optical thicknessb τLW - 0.1 100
Surface drag coefficient CD, via kvk - ˆ0.1 ˆ10
a Minimum values correspond to CO2, maximum values correspond to H2.
b The optical thickness is defined at 1 bar.

Table 3.1: Parameter bounds for our simulations. The shortwave optical thickness is set to
zero, τSW “ 0. CD is not a fixed parameter, so we vary the von Karman constant kvk to
increase and decrease CD by an order of magnitude (Appendix E). We vary R and cp, but
require that R{cp stays within the range of diatomic and triatomic gases (0.23 ď R{cp ď
0.29).

Our GCM results assume n “ 2 or n “ 1. The longwave optical thickness τLW is set

independently of the atmosphere’s bulk composition. To constrain τLW we note that more

complex radiative transfer calculations tend to find values of τLW beween „1 and „10 at „1

bar across a wide range of atmospheres, (Robinson & Catling, 2014; Wordsworth, 2015). We

extend these bounds by one order of magnitude in each direction and require that the optical

thickness at 1 bar satisfy 0.1 ď τLW,1bar ď 100. The parameter bounds for our simulations

are summarized in Table 3.1.

Figure 3.1a shows the temperature structure of a representative, slowly rotating and rel-

atively cool, GCM simulation. The planet is Earth-sized (a “ aC), temperate (Teq “ 283K),

has an orbital period and rotation rate of 50 days, has a moderately thick N2-dominated at-

mosphere (ps “ 1 bar), and a longwave optical depth of unity (τLW “ 1). The GCM does not

explicitly model a host star, but the orbital period and equilibrium temperature correspond

to an early M-dwarf (M0 or M1; Kaltenegger & Traub, 2009, Table 1). In terms of nondimen-

sional parameters, pR{cp, a
2{L2

Ro, twave{trad, τLW , twave{tdragq “ p2{7, 0.12, 5ˆ10´3, 1, 1.4q.

Because the temperature structure is approximately symmetric about the substellar point
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Figure 3.1: Temperature and circulation structure of a representative slowly rotating and
weakly forced GCM simulation with pa2{L2

Ro, twave{tradq “ p0.12, 5 ˆ 10´3q. (a) Temper-
ature as a function of substellar latitude (=0˝ at the terminator, =90˝ at the substellar
point). (b) Vertical velocity in pressure coordinates as a function of substellar latitude.
(c) Area fraction of rising motion, where the dot shows the vertically averaged area frac-
tion. The dashed black line in (a,b) shows the top of the GCM’s boundary layer. In-
side the boundary layer temperature increases towards the substellar point, and air rises;
outside the boundary layer temperature contours are flat and air sinks. The region of
rapidly rising motions, ω ă 0.01 ˆ minpωq, is narrowly focused on the substellar point
while most of the atmosphere experiences weak subsidence, ω Á 0. We normalize tempera-
ture by the equilibrium temperature Teq, and pressure velocity by the characteristic surface
speed from the heat engine Us ˆ ps{a (Section 3.4). The planet’s physical parameters are
Teq “ 283K, a “ aC,Ω “ 2π{p50dq, ps “ 1bar, τLW “ 1, and pR, cpq “ pR, cpqN2

.

we present this simulation in terms of a substellar latitude, i.e., the angle between substellar

and antistellar point (also see Koll & Abbot, 2015, Appendix B). The temperature structure

in Figure 3.1a is comparable to that found by previous studies, and temperature contours are

horizontally flat outside the dayside boundary layer (dashed black line). The flat tempera-

ture contours are characteristic of the weak-temperature-gradient (WTG) regime. However,

WTG does not hold on large parts of the dayside where the absorbed stellar flux creates a re-

gion of strong convection and turbulent drag, which damps atmospheric waves and allows the

atmosphere to sustain horizontal temperature gradients (Showman et al., 2013). As noted

by Wordsworth (2015), this boundary layer will be of critical importance for understanding

the atmospheric circulation of rocky planets.
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Figure 3.2: The two-column radiative-convective model. We assume convection on the day-
side sets up an adiabatic temperature profile. Horizontal heat transport is assumed to be
effective so that the atmosphere is horizontally uniform. The black dots indicate surface tem-
peratures. The dayside surface and atmosphere are closely coupled via convection, whereas
the nightside surface is in radiative equilibrium with, and generally colder than, the overlying
atmosphere.

3.3 A two-column radiative-convective model

In this section we present a two-column model for tidally locked planets. We divide the

planet into two (dayside and nightside) vertical columns, as shown in Figure 3.2. The day-

side is heated by stellar radiation, which triggers convection and sets an adiabatic vertical

temperature profile. We assume the convective heat flux is large so that the temperature

jump between dayside surface and lowest atmospheric level is small. We also assume con-

vection is deep and do not include a stratosphere (i.e., a purely radiative layer in the upper

atmosphere), so that the dayside column temperature profile in terms of optical thickness τ
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can be written as

T “ Td

ˆ

τ

τLW

˙β

, (3.7)

where Td is the dayside surface temperature, τLW is the total optical thickness in the long-

wave, and β ” R{pcpnq is the adiabatic lapse rate in optical thickness coordinates. Next,

we assume the weak-temperature-gradient (WTG) regime holds globally (i.e., also inside the

dayside boundary layer). The atmosphere is therefore horizontally homogeneous and the

nightside temperature structure is also described by Equation 3.7. Under these assumptions

the entire atmosphere is in radiative-convective equilibrium, with convection governed by

the dayside surface temperature Td. The nightside surface will generally be colder than the

overlying air, which leads to stable stratification and suppresses turbulent fluxes between the

nightside surface and atmosphere. We idealize this situation by assuming that the nightside

surface is in radiative equilibrium with the overlying atmosphere (see Fig. 3.2).

For a grey atmosphere on a dry adiabat, the top-of-atmosphere (TOA) upward longwave

and surface downward longwave fluxes are (Pierrehumbert, 2011b; Robinson & Catling, 2012)

F Òpτ “ 0q “ σT 4
d e
´τLW ` σT 4

d

ż τLW

0

ˆ

τ 1

τLW

˙4β

e´τ
1

dτ 1, (3.8a)

F Ópτ “ τLW q “ σT 4
d

ż τLW

0

ˆ

τ 1

τLW

˙4β

e´pτ
1´τLW qdτ 1. (3.8b)

Using these expressions we write the dayside TOA, nightside TOA, and nightside surface
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energy budgets3 as

L˚p1´ αpq

2
“ σT 4

d e
´τLW ` σT 4

d

ż τLW

0

ˆ

τ 1

τLW

˙4β

e´τ
1

dτ 1 `HT, (3.9a)

HT “ σT 4
ne
´τLW ` σT 4

d

ż τLW

0

ˆ

τ 1

τLW

˙4β

e´τ
1

dτ 1, (3.9b)

0 “ σT 4
n ´ σT

4
d

ż τLW

0

ˆ

τ 1

τLW

˙4β

e´pτLW´τ
1qdτ 1, (3.9c)

where Td is the dayside temperature, Tn is the nightside temperature, and HT is the day-

night heat transport. We express the stellar flux in terms of the equilibrium temperature,

L˚p1 ´ αpq{2 “ 2σT 4
eq. Next, we combine the TOA equations to eliminate HT and use the

nightside surface budget to write Tn in terms of Td. We find

σT 4
d “

2σT 4
eq

2
şτLW
0

´

τ 1

τLW

¯4β
e´τ

1
dτ 1 ` e´τLW

„

1`
şτLW
0

´

τ 1

τLW

¯4β
e´pτLW´τ

1qdτ 1
 ,(3.10a)

σT 4
n “

2σT 4
eq ˆ

şτLW
0

´

τ 1

τLW

¯4β
e´pτLW´τ

1qdτ 1

2
şτLW
0

´

τ 1

τLW

¯4β
e´τ

1
dτ 1 ` e´τLW

„

1`
şτLW
0

´

τ 1

τLW

¯4β
e´pτLW´τ

1qdτ 1
 .(3.10b)

The first term in the denominator is the atmosphere’s contribution to the TOA flux, the

second term is the TOA flux contribution from the dayside and nightside surfaces. In practice

we evaluate the definite integrals in these expressions numerically, but they can also be

expressed in terms of gamma functions (Robinson & Catling, 2012).

In the optically thick limit, these expressions reduce to the result of Pierrehumbert

(2011b). For τLW " 1 the exponential terms e´τLW become negligibly small. The integrand

in the upward flux decays exponentially at large τ 1, which means we can approximate the up-

per limit as infinity and replace the integral with a gamma function, τ
´4β
LW

şτLW
0 τ 14βe´τ

1
dτ 1 «

τ
´4β
LW

ş8
0 τ 14βe´τ

1
dτ 1 “ τ

´4β
LW Γp1 ` 4βq. Similarly, in the optically thick limit the downward

3. We implicitly use the dayside surface energy budget by assuming that the surface-air temperature jump
is negligible on the dayside.
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flux at the surface has to approach unity,
şτLW
0 pτ 1{τLW q

4βe´pτLW´τ
1qdτ 1 « 1. Combining

these approximations we find Tn « Td « Teqτ
β
LWΓp1 ` 4βq´1{4, which is the same as Pier-

rehumbert’s result (Equation 3.1). The dayside and nightside temperatures become equal

in this limit because the atmosphere’s downward longwave emission becomes large enough

to eliminate the temperature difference between the nightside surface and the air directly

above it (which in turn is equal to the dayside surface temperature).

In the optically thin limit, our model differs slightly from the result of Wordsworth

(2015). For τLW ! 1 we can approximate all exponentials using Taylor series, e´τLW “

1 `OpτLW q. Retaining only the lowest order in τLW , we write the integrals in the upward

and downward fluxes both as τ
´4β
LW

şτLW
0 τ 14βe˘τ

1
dτ 1 « τ

´4β
LW

şτLW
0 τ 14βdτ 1 “ τLW {p1 ` 4βq.

The atmosphere’s TOA upward and surface downward emission therefore become equal,

which is a well-known property of grey radiation in the optically thin limit (Pierrehumbert,

2011b). Again discarding higher-order terms in τLW , we find Td « 21{4Teqˆr1´3τLW {p4p1`

4βqqs and Tn « 21{4Teqτ
1{4
LW ˆ p1 ` 4βq´1{4. This nightside temperature has the same

asymptotic limit but is slightly warmer than Equation 3.2 from Wordsworth (2015). That is

because we assume the atmosphere remains fixed to an adiabat, whereas Wordsworth (2015)

assumes an atmosphere that is vertically isothermal. We will use our radiative-convective-

subsiding model (Sections 3.5-3.6) to show that Wordsworth’s result is a limiting expression

for atmospheres that are very hot or thin, twave{trad Á 1, whereas our results in this Section

apply for atmospheres that are cold or thick, twave{trad À 10´4. Nevertheless, β is always

of order unity so the difference between Equation 3.2 and our result is small in the optically

thin regime.

Next, we compare the previous scalings and our radiative-convective (RC) model with our

GCM simulations. Figure 3.3 shows dayside (top) and nightside (bottom) average surface

temperatures of many simulations. To represent all GCM results in a single figure, we

normalize surface temperatures using the equilibrium temperature Teq of each simulation.

We only show simulations with β “ 1{7, i.e., pR, cp, nq “ pRN2
, cp,N2

, 2q. First, as we showed
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Figure 3.3: Our radiative-convective (RC) model captures the basic dependency of surface
temperature on τLW and joins previous asymptotic limits. Top: Average dayside surface
temperatures of many GCM simulations (N “ 251). Bottom: Average nightside surface
temperatures. Dashed and dotted curves show previously-derived asymptotic scalings in
the optically thick (τLW " 1, Pierrehumbert, 2011b) and optically thin limits (τLW ! 1,
Wordsworth, 2015). The solid curve shows the RC model (Section 3.3). While the RC model
closely matches the GCM dayside temperatures, it does not account for the wide spread in
nightside temperatures. All shown simulations use n “ 2 and pR, cpq “ pR, cpqN2

.

above, the RC model tends towards the expressions of Pierrehumbert and Wordsworth in the

optically thick and thin regimes (compare solid line with dashed and dotted lines). While

the two approximate expressions diverge at τLW “ 1, our model provides a smooth fit in

this region. Second, the RC model captures dayside surface temperatures very well, with

deviations beween the RC model and the GCM simulations smaller than 0.1ˆ Teq. The RC

model systematically overpredicts dayside temperatures because of its idealized geometry,
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Figure 3.4: Temperature structure of a slowly rotating GCM simulation pa2{L2
Ro “ 0.1q,

compared with the radiative-convective (RC, left) and the radiative-convective-subsiding
model (RCS, right). Solid curves correspond to dayside (red) and nightside-averaged (blue)
GCM temperature profiles, and GCM temperature profiles at each latitude and longitude
(grey). Left: Although the RC model (mixed red-blue curve) qualitatively captures the
temperature structure, it does not capture the nightside inversion and thus overpredicts the
nightside surface temperature (compare blue square with blue circle). Right: the RCS model
(dashed curves) accounts for imperfect day-night heat transport and qualitatively captures
the nightside inversion structure. This leads to a better fit of nightside surface temperature
than for the RC model. The planet’s physical parameters are Teq “ 400K, a “ aC,Ω “

2π{p50dq, ps “ 0.5bar, τLW “ 1, pR, cpq “ pR, cpqN2
, and g “ 5m s´2.

which represents the entire dayside as a single column. For example, the dayside-average

temperature of an airless planet in pure radiative equilibrium is 4
?

2{5 ˆ Teq « 1.13Teq,

whereas the RC model predicts 21{4 ˆ Teq « 1.19Teq. Third, the RC model captures the

general trend of nightside surface temperature with τLW . However, Figure 3.3 also shows

that nightside temperatures exhibit a much wider spread than dayside temperatures, which

is not captured by the RC model.

There are two reasons for the spread in nightside temperatures: first, rapidly rotating

atmospheres develop horizontally inhomogeneous nightsides, and second, tidally locked at-

mospheres do not have an adiabatic temperature structure on the nightside. We address

rotation in Section 3.7, here we consider the effect of temperature structure. Figure 3.4a
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shows the vertical temperature structure of a slowly rotating simulation. The grey lines

show the vertical temperature profiles at each horizontal GCM grid point, which form a

wide envelope. The hottest temperatures at the right side of the envelope correspond to

the substellar point. These profiles are indeed adiabatic, which can be seen from the fact

that they are parallel to the temperature profile of the RC model (dashed red-blue line).

However, as the dayside and nightside averaged profiles show, large parts of the atmosphere

do not follow an adiabat (solid red and blue lines in Fig. 3.4a). The deviation arises because

WTG breaks down inside the dayside boundary layer (Fig. 3.1a). This allows the atmosphere

outside the boundary layer to decouple from regions of convection, and develop a strongly

non-adiabatic temperature profile. In particular, Figure 3.4 shows that the nightside average

(blue line) forms a strong inversion below p{ps „ 0.6, which means the nightside is stably

stratified and far from radiative-convective equilibrium. Nightside inversions are a robust

feature of tidally locked atmospheres and have been found in a range of simulations (e.g.,

Joshi et al., 1997; Merlis & Schneider, 2010; Leconte et al., 2013), but are not captured by

the RC model. As a consequence the RC model produces a warmer nightside atmosphere

and therefore also a warmer nightside surface than the GCM (compare blue square and blue

circle in Fig. 3.4a). We present a model that captures the nightside temperature structure

in Section 3.5. However, to do so we have to account for atmospheric dynamics, which show

up via the parameters twave{trad and twave{tdrag. To address the dynamics we first have to

develop a theory of large-scale wind speeds and the atmospheric circulation, which we turn

to in the next section.

3.4 A heat engine scaling for wind speeds

Earth’s atmosphere acts as a heat engine: it absorbs heat near the surface at a high tem-

perature and emits heat to space at a low temperature, which allows the atmosphere to do

work and balance frictional dissipation (Peixoto & Oort, 1984). On Earth the heat engine

framework has been used to derive upper bounds on the strength of tropical moist convec-
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Figure 3.5: A diagram of the atmospheric heat engine. The heat engine is driven by dayside
heating and cooling to space. Frictional dissipation in the dayside boundary layer limits the
strength of the resulting day-night atmospheric circulation.

tion (Renno & Ingersoll, 1996; Emanuel & Bister, 1996) and small-scale circulations such as

hurricanes (Emanuel, 1986).

In this section we idealize the atmospheric circulation of a tidally locked planet as a single

overturning cell between the substellar and antistellar point. We model the circulation as

an ideal heat engine to place an upper bound on its circulation strength. The ideal heat

engine is an upper bound because additional physical processes, such as diffusion, lead to

irreversible production of entropy and decrease the efficiency of a heat engine below its ideal

limit (Pauluis & Held, 2002). As shown in Figure 3.5, the atmosphere absorbs heat near the

dayside surface at a hot temperature and emits it to space at a cold temperature. These

temperatures are defined in terms of entropy-weighted averages over which the atmosphere

absorbs and gives off heat (Emanuel & Rotunno, 1989; Pauluis & Held, 2002). Here we

idealize the dayside as a single column that follows an adiabat. Entropy is therefore vertically
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constant on the dayside, which means the temperature at which the atmosphere absorbs heat

is equal to the dayside surface temperature, Td. We approximate the cold temperature as

the planet’s effective emission temperature to space, i.e., its equilibrium temperature Teq.

The parcel does work against friction in the boundary layer which is given by W “ CDρsU
3
s

(Bister & Emanuel, 1998). Here W is the work, ρs is the surface density, and Us is a surface

wind speed, which we take to be the dayside-average surface wind (Fig. 3.5). Using Carnot’s

theorem,

W “ ηQin, (3.11)

where η “ pTd ´ Teqq{Td is the atmosphere’s thermodynamic efficiency, and Qin “ 2σT 4
eq ˆ

p1´ e´τLW q is the amount of energy that is available to drive atmospheric motion. We note

that the dayside-averaged incoming stellar flux is equal to 2σT 4
eq, but we additionally account

for the fact that only a fraction 1 ´ e´τLW of stellar energy is available to the atmosphere,

while the remainder is immediately re-radiated from the surface to space.

We find the following upper bound on the dayside average surface wind speed,

Us “

«

Td ´ Teq
Td

ˆ p1´ e´τLW q
2σT 4

eq

CDρs

ff1{3

“

«

Td ´ Teq
Td

ˆ p1´ e´τLW q
2RTdσT

4
eq

CDps

ff1{3

“

«

pTd ´ Teqq ˆ p1´ e
´τLW q

2RσT 4
eq

CDps

ff1{3

, (3.12)

where we used the ideal gas law to substitute for ρs in the second step. The only unknown in

this equation is the dayside surface temperature Td. As we saw in Section 3.3, Td was already

well constrained by the radiative-convective model (Fig. 3.3). In this section we therefore

close the model using Td from Equation 3.10a (but note that we will self-consistently solve

for Td in Section 3.5).
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Figure 3.6: Two different surface wind speed scalings compared with many GCM results
(N “ 271). Left: scaling for dayside surface wind speed from Wordsworth (2015), which
was derived assuming optically thin atmospheres (τLW ă 1). Right: our scaling for average
surface wind speed for an ideal heat engine (Eqns. 3.12 and 3.10a). The GCM simulations
are less efficient than ideal heat engines and therefore have smaller surface wind speeds. The
grey dashed line corresponds to an inefficiency factor of 1{4.

Figure 3.6 compares dayside averaged surface wind speeds xUsy with a numerical wind

speed scaling from Wordsworth (2015, see Appendix F) and our analytical heat engine scal-

ing. We note that Wordsworth considered the optically thin limit, whereas our results are

valid for arbitrary τLW . Wordsworth derived a scaling by assuming weak temperature gra-

dients hold globally. In a weak-temperature-gradient (WTG) atmosphere, radiative cooling

leads to subsidence, which Wordsworth assumed in turn drives the large-scale circulation.

Figure 3.6 shows that the GCM wind speeds span two orders of magnitude, from 3 m s´1

up to about 300 m s´1. The Wordsworth (2015) scaling seems to match these wind speeds
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at Op1q m s´1. However, it predicts a strong decrease, down to less than 10´2 m s´1, which

is several orders of magnitude smaller than the GCM results (Fig. 3.6a). The mismatch

arises because Wordsworth’s global WTG scaling assumes winds are purely driven by ra-

diative cooling, Us9τLW (Appendix F), so Us should rapidly vanish in the optically thin

limit. Instead, Figure 3.1 shows that WTG balance breaks down in regions that are strongly

convecting. The convecting regions in turn govern the return flow from the nightside to

the dayside, which means that the effect of friction on the large-scale circulation cannot be

neglected. Our heat engine scaling includes this effect and predicts very different dynamics.

For example, in the optically thin limit the dayside temperature is approximately constant

and 1 ´ eτLW « τLW , so Us9τ
1{3
LW (Equation 3.12). Figure 3.6b supports our theory. The

slope predicted by the heat engine provides an excellent fit to the GCM results. Moreover,

we expect the heat engine to provide an upper bound on surface wind speeds. Our expecta-

tion is confirmed by the GCM simulations, which fall below the dashed black line in Figure

3.6b. In addition, the overestimate of xUsy is small and generally amounts to less than a

factor of 4 (grey dashed line in Figure 3.6b), with most simulations falling about a factor of

2 below the ideal limit.

Next, we use the surface wind speed scaling to place an upper bound on the strength of

the day-night circulation. Of particular interest to us is the large-scale vertical motion on the

nightside, which we will show governs the day-night heat transport and is critically important

for the temperature structure on the nightside (Section 3.5). We express all vertical motions

using pressure coordinates, that is, using the pressure velocity ω ” Dp{Dt where ω ą 0

means sinking motions. We take the surface wind speed Us to be the characteristic horizontal

velocity within the boundary layer. We relate the horizontal velocity in the boundary layer
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to the pressure velocity near the substellar point using mass conservation4 (Equation A.1c),

ωup
ps

„
Us
a
. (3.13)

Figure 3.1b supports this scaling, and ω{ωup near the substellar point is of order unity.

However, Figure 3.1b also shows that there is a large asymmetry between rising and sinking

motions. While air rises rapidly near the region of strongest convection at the substellar

point, it sinks slowly over a large area outside the boundary layer. Figure 3.1c quantifies

the asymmetry using Aup{Adown, the fraction of the atmosphere in which air rises versus

sinks5. In the shown simulation rising air never covers more than 20% of the atmosphere,

while its vertically averaged value is about 10% (dot in Fig. 3.1c). The asymmetry in vertical

motions arises from the geometric asymmetry of the incoming stellar flux, and is distinct

from the asymmetry of rising and sinking motions in Earth’s tropics which is caused by the

condensation of water during convection. Because upward and downward mass fluxes have

to balance across a horizontal slice of atmosphere,

ρAupωup “ ρAdownωdown, (3.14)

where ρ is the density of an air parcel, we can relate the pressure velocity on the nightside

to the dayside surface wind,

ωdown “
Aup
Adown

ps
a
ˆ Us. (3.15)

Equation 3.15 explains how tidally locked planets sustain weak downward motions despite

very large horizontal wind speeds. The time for a parcel of air to be advected horizontally

4. A more accurate scaling than Equation 3.13 would be ωup{ps „ Us{
a

Aup. However, as long as
Aup{Adown „ Op10´1q, Equation 3.13 leads to essentially the same result.

5. Because the uppermost layers of the atmosphere show both weakly rising and falling motions we define
Aup as the area with “significant” upward motion where ω ď 0.01ˆminpωq.

54



10-5 10-4 10-3 10-2 10-1 100 101

ω from Heat Engine,
Aup/Adown×psUs/a [Pa/s]

10-5

10-4

10-3

10-2

10-1

100

101

〈 ω̄
〉 n

ig
h
t i

n
 G

C
M

 [
P
a
/s

]

a2 /L 2
Ro≥1

a2 /L 2
Ro<1

Figure 3.7: The heat engine scaling provides a strong constraint on the day-night atmospheric
circulation. Shown is the vertical velocity in pressure coordinates predicted by the heat
engine scaling (x-axis), compared with the average nightside pressure velocity in the GCM
(y-axis). Rapidly rotating atmospheres, a2{L2

Ro ě 1, develop inhomogeneous nightsides and
can locally sustain smaller pressure velocities (Section 3.7).

is tadv “ a{Us whereas the time for a parcel to subside (that is, be advected vertically) is

tsub “ ps{ωdown “ Adown{Aupˆ tadv. For Adown{Aup „ 10 it takes a parcel of air ten times

longer to sink back to the surface on the nightside than to be advected from the nightside

to the dayside. The same comparison also explains why day-night temperature gradients of

tidally locked planets are not set by the advective timescale and instead depend on the ratio

of subsidence and radiative timescales (Section 3.6).

Next, Figure 3.7 compares the pressure velocity ωdown from Equation 3.15 with the mass-

weighted vertically and horizontally averaged pressure velocities, xω̄ynight, from GCM simu-

lations. In the comparison we use Equation 3.12 to predict Us but still diagnose Aup{Adown

directly from GCM output. First, because the heat engine provides an upper limit on Us

it also provides an upper limit on ωdown. The GCM simulations indeed fall almost entirely

55



below the dashed black line in Figure 3.6b. We note that in deriving Equation 3.12 we ne-

glected some factors that we expect to be small (e.g., geometric factors), but which explain

why some GCM simulations slightly exceed the value predicted by the scaling. Second, we

find that relatively slowly rotating atmospheres (blue dots) closely follow the heat engine

scaling and most of them deviate less than a factor of 4 from it (grey dashed line). Third,

rapidly rotating atmospheres (red dots) still follow the scaling qualitatively but xω̄ynight is

smaller than in slowly rotating atmospheres. The larger deviation arises because rapidly

rotating atmospheres develop inhomogeneous nightsides (Section 3.7). In the extra-tropics

the flow then becomes geostrophic which in turn suppresses vertical motions by OpRoq ! 1,

where Ro is the Rossby number (Showman et al., 2010).

We conclude that atmospheres of dry tidally locked planets are dominated by dayside

boundary layer friction. The heat engine framework successfully constrains the amount of

dissipation and surface wind speeds within the boundary layer. Combined with the areal

asymmetry between rising and sinking motions, we find an upper bound on the nightside

vertical velocity. Our result is distinct from previous scalings that have been proposed for

exoplanets. We will use our result in the next section to constrain the thermal structure of

the nightside.

3.5 A two-column radiative-convective-subsiding model

As we showed in Figures 3.3 and 3.4, to understand nightside surface temperatures of tidally

locked planets we need to account for an imperfect day-night heat transport and to better

constrain the nightside atmospheric temperature structure. In this section we develop a two-

column model that does so. We again divide the atmosphere into two dayside and nightside

columns, shown in Figure 3.8. As in Section 3.3 the dayside column is strongly convecting,

but we allow the nightside temperature profile to deviate from an adiabat. Both columns

are capped by a stratosphere, that is, a layer in pure radiative equilibrium.

As in our radiative-convective model, convection sets an adiabatic temperature profile on
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Figure 3.8: A diagram of the two-column radiative-convective-subsiding model. We assume
convection sets an adiabatic temperature profile on the dayside, and a balance between ra-
diative cooling and subsidence heating sets the temperature profile on the nightside. In
addition, both columns are capped by a horizontally uniform and purely radiative strato-
sphere. The day-night circulation and the rate of subsidence are governed by the atmospheric
heat engine.

the dayside. The dayside temperature profile is therefore

T “ Td

ˆ

τ

τLW

˙β

. (3.16)

The nightside is in weak-temperature-gradient (WTG) balance. WTG balance follows

from the thermodynamic equation (Equation A.1d),

BT

Bt
` u ¨∇T ` ωBT

Bp
“

RTω

cpp
`
g

cp

BF

Bp
`
g

cp

BD
Bp
, (3.17)

where u is the horizontal velocity, ω is the pressure velocity (ω ą 0 for subsiding air), F is

the net radiative flux (the sum of upward and downward longwave fluxes, F “ F Ò´F Ó), and
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D is the energy flux due to diffusion. The left side of the thermodynamic equation represents

advection, the first term on the right is heating/cooling due to compression/expansion as

air parcels move vertically, the second term on the right is radiative heating/cooling, and

the third term represents the effect of small-scale convection inside the boundary layer.

In equilibrium BT {Bt “ 0, and D is negligible on the nightside because the nightside is

stably stratified. As long as horizontal temperature gradients are small on the nightside the

thermodynamic equation then reduces to WTG balance

ω

ˆ

BT

Bp
´
RT

cpp

˙

«
g

cp

BF

Bp
. (3.18)

Equation 3.18 entails that radiative cooling is accompanied by subsidence as follows. In a

cooling layer the net radiative flux decreases towards the surface, BF {Bp ă 0. The lapse rate

has to be smaller than, or equal to, the adiabatic lapse rate because the atmosphere would

otherwise start convecting, BT {Bp ď RT {pcppq. It follows that ω ą 0.

In Earth’s tropics the vertical temperature structure, BT {Bp, and radiative fluxes, BF {Bp,

are set by small regions of moist convection, in which case WTG can be used to predict the

large-scale ω (Sobel et al., 2001). In this section we pursue the opposite approach: because

ω is set by the day-night circulation which, in turn, is limited by friction in the dayside

boundary layer (Section 3.4), we will use WTG balance to solve for T and F . For simplicity

we replace ω with its vertical average ω̄. Because we assume that horizontal variations are

small, we also replace all partial derivatives with normal derivatives. We rewrite WTG

balance in optical depth coordinates and combine it with the Schwarzschild equation for the

radiative flux F ,

cpω̄

g

ˆ

dT

dτ
´
βT

τ

˙

“
dF

dτ
, (3.19a)

d2F

dτ2
´ F “ ´2

dpσT 4q

dτ
. (3.19b)
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Given boundary conditions, these equations can be solved for T and F . The left side

of Equation 3.19a represents the vertical energy flux due to subsidence (in W m´2). In

the WTG regime subsidence is how the atmosphere transports heat between dayside and

nightside. Atmospheres with strong subsidence (large ω̄) will tend to have nightsides that

are close to an adiabat, while atmospheres with very weak subsidence will tend to approach

pure radiative equilibrium on their nightsides (i.e., dF {dτ « 0).

To solve for T and F on the nightside we need to specify an upper boundary condition.

A natural choice is the tropopause, τ0, up to which convection rises on the dayside. Above τ0

the atmosphere is in pure radiative equilibrium, dF {dτ “ 0. We assume the stratosphere is

horizontally uniform, which means it has the same temperature structure as in Pierrehumbert

(2011b),

Tstrat “ Teq

ˆ

1` τ

2

˙1{4

. (3.20)

We can now specify the boundary conditions for the nightside atmosphere and Equations

3.19. Because WTG balance is a first-order equation and the radiative equation is a second-

order equation we require three conditions,

T pτ0q “ Tstratpτ0q, (3.21a)

dF pτ0q{dτ “ 0, (3.21b)

F pτLW q “ 0. (3.21c)

The first equation is temperature continuity at the tropopause. The second is the strato-

spheric energy budget, that is, pure radiative equilibrium. The third condition is the night-

side surface energy budget. Because the nightside surface is in radiative equilibrium with

the overlying atmosphere, F ÒpτLW q “ F ÓpτLW q, the net radiative flux F “ F Ò ´ F Ó has

to vanish at the surface. The only unknown in these boundary conditions is the tropopause

height τ0.
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The tropopause height τ0 is in turn governed by convection on the dayside. On the

dayside, the convective temperature profile (Equation 3.16) has to match the stratospheric

temperature profile (Equation 3.20) at τ0, so

Td

ˆ

τ0
τLW

˙β

“ Tstratpτ0q,

Td

ˆ

τ0
τLW

˙β

“ Teq

ˆ

1` τ0
2

˙1{4

. (3.22)

Finally, we use the top-of-atmosphere (TOA) energy budget to constrain Td. The global

TOA energy budget is

2σT 4
eq “ F p0qday ` F p0qnight. (3.23)

The left side is the incoming solar radiation and the right side is the dayside and nightside

outgoing longwave radiation (OLR). To specify these fluxes we note that the stratosphere is

in radiative equilibrium, dF {dτ “ 0, so the OLR has to match the net flux at the tropopause,

F p0q “ F pτ0q. The net radiative flux at the dayside tropopause is

F pτ0qday “ σT 4
d e
´pτLW´τ0q ` σT 4

d

ż τLW

τ0

ˆ

τ 1

τLW

˙4β

e´pτ
1´τ0qdτ 1 ´ σT 4

eq
τ0
2
. (3.24)

The first two terms are the upwelling flux at the dayside tropopause (from the surface

and atmosphere respectively), and the third term is downward flux from the stratosphere

(Robinson & Catling, 2012). The global TOA energy budget therefore is,

2σT 4
eq “ σT 4

d e
´pτLW´τ0q ` σT 4

d

ż τLW

τ0

ˆ

τ 1

τLW

˙4β

e´pτ
1´τ0qdτ 1 ´ σT 4

eq
τ0
2
` F pτ0q.(3.25)

Equations 3.21-3.25 determine the tropopause height τ0, the dayside surface temperature

Td, and the nightside OLR F pτ0q.

Finally, we constrain the pressure velocity ω̄ on the nightside. We showed in Figure 3.7
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that the heat engine scaling allows us to place an upper bound on ω̄ once we account for

the fact that atmospheres are imperfect heat engines and once we know the relative fraction

of rising versus subsiding motions, Aup{Adown (we consider rotation in Section 3.7). In this

section we incorporate these effects via

ωdown “ χˆ
psUs
a

(3.26)

where χ captures the inefficiency of the heat engine as well as the smallness of Aup{Adown.

We again use Equation 3.12 to compute Us, but now we self-consistently solve for the dayside

temperature Td. To constrain χ we note that the asymmetry between rising and sinking

motions is set by the tidally locked geometry and hence should not vary much between

different simulations. We use Aup{Adown « 0.1 from Figure 3.1c as a representative value.

Similarly, for slowly rotating atmospheres we found that ω̄ falls between the value predicted

by the heat engine and about a factor of four less (Fig. 3.7), so we choose a representative

inefficiency of 1{2. Combining these two, we find χ “ 1{20. Because rapidly rotating

atmospheres tend to have weaker nightside subsidence (Figure 3.7), our choice of χ is an

upper bound for ωdown and will overestimate the day-night heat transport on rapidly rotating

planets. We emphasize that χ is the only tunable parameter in our model and is fixed to a

single value. We do not change χ when we compare the radiative-convective-subsiding model

with different GCM simulations.

We numerically solve the model to find the nightside temperature T and radiative flux F ,

the dayside surface temperature Td, the nightside surface temperature Tn and the tropopause

height τ0. The boundary conditions for T and F are specified at the tropopause and at the

surface, so we use a shooting method (Appendix G). We note that the Schwarzschild equation

(Equation 3.19b) becomes difficult to solve accurately in the optically thick limit because

the radiative boundary conditions at the tropopause and surface decouple at large τLW

(Equations 3.21b,c). Nevertheless, the underlying physics do not change qualitatively once
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τLW " 1. We therefore avoid these issues by limiting our numerical solver to atmospheres

with τLW ď 15.

Figure 3.4b compares the radiative-convective-subsiding (RCS) model with the same

slowly rotating GCM simulation as in Figure 3.4a. The RCS model produces an adiabatic

temperature profile on the dayside and an inversion on the nightside. Compared to the

radiative-convective model (RC, Fig. 3.4a), the RCS model produces a colder nightside

and a warmer dayside because it does not assume that the day-night heat transport is

necessarily highly effective. The predicted temperatures match the GCM significantly better,

particularly on the nightside. The RCS model also places the tropopause at p{ps „ 0.3,

whereas the GCM tropopause is higher up, at p{ps „ 0.1. The high tropopause in the GCM

arises because it is set by the deepest convection and hottest temperatures near the substellar

point instead of the average dayside temperature (Fig. 3.4b), which the RCS model does not

account for. Finally, the inversion structure in the RCS model is somewhat skewed compared

with the GCM, and the inversion occurs higher up in the atmosphere (Fig. 3.4b). The raised

inversion is likely due to our assumption of a vertically constant value of ω. Nevertheless,

given the simplicity of the RCS model, we consider the fit between the RCS model and

the GCM highly encouraging. We emphasize that the RCS model is obtained via a simple

numerical solution, and is conceptually much simpler (and computationally much cheaper)

than the full GCM.

Next, Figure 3.9 compares the RC and RCS models with many GCM simulations. The top

row compares the radiative-convective model (RC) with the GCM, the bottom row does the

same for the radiative-convective-subsiding (RCS) model. We note that in rapidly rotating

atmospheres (a2{L2
Ro ě 1) WTG balance does not hold at higher latitudes, and both models

should break down. However, WTG balance actually provides a good approximation of the

nightside structure even at rapid rotation provided the atmosphere is not too hot or thin

(twave{trad Á 5 ˆ 10´2). We explain this threshold in Sections 3.6 and 3.7, here we simply

mark simulations for which the RCS model could break down in red and all other simulations
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Figure 3.9: Comparison of surface temperatures predicted by the radiative-convective (RC)
and radiative-convective-subsiding (RCS) models with many GCM simulations (N “ 241).
Red dots represent simulations that are both rapidly rotating and have hot/thin atmospheres
(a2{L2

Ro ě 1 and twave{trad exceeds threshold from Equation 3.34), blue dots show all other
simulations. Top left: average nightside temperature, RC model vs. GCM. Top right: average
dayside temperature, RC model vs. GCM. Bottom left: average nightside temperature, RCS
model vs. GCM. Bottom right: average dayside temperature, RCS model vs. GCM. The
RCS model captures nightside temperatures much better than the RC model. The RCS
model breaks down only for atmosphere that are both rapidly rotating and hot/thin (red
dots; see Section 3.7).

in blue. First, as we already explained for Figure 3.4b, the RCS model generally predicts

warmer daysides than the RC model, which already overestimates dayside temperatures

slightly (see right panels in Fig. 3.9). To quantify the goodness of fit between the GCM

and our models, we compute r2 values for the simulations marked in blue. For dayside

temperatures we find r2 “ 0.82 with the RC model, and r2 “ 0.23 with the RCS model.
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These values underline that the RC model already captures the basic structure of the dayside.

Improving the fit even further would require addressing the spatial inhomogeneity on the

dayside (Fig. 3.1), whereas the reduced heat transport in the RCS model actually worsens

its dayside fit. Second, as in Figure 3.3, Figure 3.9 shows that the RC model overpredicts

nightside surface temperatures (top left panel). In contrast, the RCS model fits the GCM

values extremely well (bottom left panel). For nightside temperatures we find r2 “ 0.76

with the RC model, while the RCS model essentially reproduces the GCM results with a fit

of r2 “ 0.98.

To conclude, we have formulated a radiative-convective-subsiding model that utilizes

WTG balance combined with the heat engine scaling for the large-scale circulation to capture

the day-night heat transport and nightside temperature structure. Our model captures the

day-night temperature structure of many GCM simulations extremely well. We provide an

intuitive understanding of the model results in the next section.

3.6 Transition to large day-night temperature gradients

In this section we explain the threshold at which atmospheres of tidally locked rocky planets

develop large day-night temperature gradients. We point out again that hot Jupiter theories

suggest this should occur when twave{trad Á 1 (Section 3.1). In contrast, we show that

on rocky planets the threshold is up to two orders of magnitude smaller and temperature

gradients become large when twave{trad Á Op10´2q. The small threshold is important

because it means rocky exoplanets are relatively more sensitive to the parameter twave{trad,

so planets that are relatively cool or have thick atmospheres still exhibit large day-night

temperature differences. Finally, we relate the RCS model back to previous theories by

showing that it reduces to our RC model for twave{trad À 10´4 and to Wordsworth (2015)’s

result for twave{trad Á 1 and τLW ! 1.

To start, we consider the thermodynamic equation under WTG balance (Equation 3.19a).

WTG balance expresses a balance between subsidence heating and radiative cooling, and
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we nondimensionalize it using T̂ “ T {Teq and F̂ “ F {pσT 4
eqq. We find that the ratio of

subsidence heating to radiative cooling is governed by two parameters,

dT̂

dτ
´ β

T̂

τ
“

ˆ

tsub
trad

˙

dF̂

dτ
, (3.27)

where β “ R{pcpnq sets the adiabatic lapse rate, tsub ” ps{ω̄ is a characteristic subsidence

timescale for a parcel of air and trad “ pscp{pgσT
3
eqq is the radiative cooling timescale.

Equation 3.27 is the three-dimensional equivalent of the WTG scaling developed by Perez-

Becker & Showman (2013) using the shallow-water equations. The lapse rate parameter β

is always of order unity whereas the subsidence timescale tsub is an emergent timescale set

by the large-scale dynamics. When tsub{trad ! 1 radiative cooling is inefficient compared

with subsidence heating, the nightside atmosphere is close to an adiabat, and day-night

temperature differences are small. When tsub{trad Á 1 a parcel of air cools significantly as

it descends, the nightside develops inversions, and day-night differences are large. Finally,

for tsub{trad " 1 the nightside is close to radiative equilibrium.

The transition to large day-night temperature gradients occurs at a wave-to-radiative

timescale threshold of twave{trad „ 10´2. Figure 3.10 shows temperatures from the RCS

model as a function of the timescale ratio twave{trad and optical thickness τLW . We as-

sume a representative rocky planet scenario6, and plot the dayside surface temperature,

xTsyday, nightside surface temperature, xTsynight, and the atmospheric temperature just

above the nightside surface, xTatmynight. Because the atmospheric temperature on the day-

side is strongly coupled to the surface via convection, xTatmyday « xTsyday, the difference

between xTsyday and xTatmynight also shows the day-night temperature gradient in the lowest

part of the atmosphere. First, it is clear from Figure 3.10 that the atmospheric temperature

gradient is small when twave{trad ! 10´2. The transition to large temperature gradients

spans many orders of magnitude, but we take twave{trad „ 10´2 as a representative value

6. We assume an Earth-sized planet, a “ aC, with an N2-dominated atmosphere, pR, cpq “ pR, cpqN2
.
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Figure 3.10: Day-night temperature gradients are large once the wave-to-radiative timescale
ratio twave{trad exceeds the threshold from Equation 3.34 (vertical dashed lines). The panels
show dayside surface temperature, xTsyday, nightside surface temperature, xTsynight, and the
bottom-most atmospheric temperature on the nightside, xTatmynight, from the radiative-
convective-subsiding model (RCS, Section 3.5). In all cases, cool/thick atmospheres with
twave{trad À 10´4 have small temperature gradients between dayside surface and nightside
atmosphere. Surface temperature gradients additionally depend on optical thickness, and
even cool/thick atmospheres can have large day-night surface temperature gradients if τLW !

1 (left panel). Black symbols show the nightside surface temperatures predicted by the
radiative-convective model (RC), and the asymptotic scaling of Wordsworth (2015); the
RCS model reduces to either in the limits twave{trad À 10´4 and twave{trad Á 1.

that ensures temperature gradients are large for larger values of twave{trad. Second, once

day-night atmospheric gradients are large their magnitude additionally depends on τLW ,

with optically thicker atmospheres having larger maximum temperature gradients (compare

maximum difference between xTsyday and xTatmynight). Third, because the nightside surface

is in radiative equilibrium with the overlying atmosphere, the gradient in surface temper-

atures is at least as big as the gradient in atmospheric temperatures. However, it can be

much larger in the optically thin limit because the nightside atmosphere becomes ineffective

at radiatively heating the nightside surface. At low optical thickness the nightside surface is

much colder than the overlying air (Fig. 3.10a), while at high optical thickness the nightside

surface is closely tied to the overlying air temperature (Fig. 3.10c).

Next, we explain why atmospheres develop large temperature gradients at twave{trad „
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10´2. As we showed above, the nightside temperature structure is controlled by the ratio

of subsidence to radiative timescales, tsub{trad. Here we analyze the processes that control

tsub. Using the heat engine and the area ratio between upward and downward motions, we

already found the pressure velocity on the nightside ωdown. Equation 3.26 allows us to write

tsub “
ps

ωdown
“

a

χUs
. (3.28)

Next, we scale the surface wind speed Us from the heat engine (Equation 3.12)

Us “

„

pTd{Teq ´ 1q ˆ p1´ e´τLW q
´cp
R

¯2 tdrag
trad

1{3

ˆ cwave,

Us «

´cp
R

¯2{3
ˆ

tdrag
trad

˙1{3

ˆ cwave, (3.29)

where in the second step we assumed an optically thick atmosphere, τLW ě 1, so that all

incoming stellar flux goes towards driving atmospheric motion, 1 ´ e´τLW « 1. We also

drop the dependence on the dayside temperature from Td{Teq ´ 1. We do so because in

the optically thick limit Td is approximately given by Equation 3.1, so pTd{Teq ´ 1q1{3 «

pτ
β
LWΓr1` 4βs´1{4´ 1q1{3 which is always of order unity7. We combine Equations 3.28 and

3.29 and find

tsub “
1

χ

ˆ

R

cp

˙2{3
˜

trad
tdrag

¸1{3

twave (3.30)

Equation 3.30 gives us the subsidence time on the nightside. Day-night temperature gradients

will be small if a parcel of air cools slower than it sinks, trad ą tsub. Conversely, day-night

temperature gradients will be large if a parcel cools faster than it sinks, trad ă tsub. The

7. For example, assuming τLW “ 2 and a diatomic gas without pressure broadening (β “ 2{7), pTd{Teq ´
1q1{3 « 0.6. The gamma function Γr1 ` 4βs´1{4 does not vary significantly over the plausible range of

atmospheric gases. Similarly, the dependency on τ
β{3
LW is negligible because the exponent β{3 is always small.
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threshold between these two regimes is

trad „ tsub

trad „
1

χ

ˆ

R

cp

˙2{3
˜

trad
tdrag

¸1{3

twave

t
2{3
rad „

1

χ

ˆ

R

cp

˙2{3
˜

1

tdrag

¸1{3

twave

trad „

ˆ

1

χ

˙3{2 ˆR

cp

˙

˜

twave
tdrag

¸1{2

twave pfor τLW ě 1q. (3.31)

We can find a similar threshold for optically thin atmospheres (τLW ă 1). We note that

the standard radiative timescale trad “ cpps{pgσT
3
eqq is the cooling timescale of an optically

thick column of air. In contrast, an optically thin column of air only emits a radiative flux

„ τLW ˆ σT 4
eq so its radiative cooling timescale is

trad,thin “
trad
τLW

. (3.32)

WTG balance (Equation 3.27) in the optically thin regime is still governed by the ratio of

subsidence to radiative timescales, but now trad has to be replaced by trad,thin.

To find the subsidence timescale tsub in the optically thin limit, we note that optically

thin atmospheres are also less efficient heat engines. The lower efficiency arises because, for

τLW ! 1, the surface re-emits most of the incoming stellar flux directly back to space and

only a fraction 1 ´ e´τLW “ 1 ´ p1 ´ τLW ` ...q « τLW of the stellar flux is available to

drive atmospheric motions. The dayside temperature Td is approximately constant in the

optically thin case (Fig. 3.3), so tsub is

tsub “
1

χ

ˆ

R

cp

˙2{3
˜

trad,thin
tdrag

¸1{3

twave. (3.33)

Equation 3.33 only differs from Equation 3.30 through the use of trad,thin instead of trad.
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Our result for large temperature gradients therefore also holds for optically thin atmospheres,

once we replace trad with trad,thin.

To compare our result with the result for hot Jupiters, we express the criterion for

an atmosphere to develop large temperature gradients in terms of the wave-to-radiative

timescale ratio twave{trad. Day-night atmospheric temperature gradients are large once

twave
trad

Á

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

χ3{2 ˆ
cp
R

ˆ

tdrag
twave

˙1{2

if τLW ě 1,

χ3{2

τLW
ˆ
cp
R

ˆ

tdrag
twave

˙1{2

if τLW ă 1.

(3.34)

We emphasize that Equation 3.34 only ensures that atmospheric temperature gradients are

large, but they remain significant until twave{trad becomes extremely small (Fig. 3.10).

We draw three important conclusions from Equation 3.34. First, in the optically thick

case the right hand side is dominated by χ « 1{20 (Section 3.5) while the other quantities do

not vary much in most cases of interest. The small value of χ causes the threshold for large

day-night temperature gradients to generally be much smaller than one. As a representative

high mean-molecular-weight (MMW) scenario, we consider an N2 atmosphere with Teq “ 300

K. In this case cp{R “ 7{2 and tdrag{twave “ 1.4 (Appendix E), so temperature gradients

are large when

ˆ

twave
trad

˙

high MMW
Á 5ˆ 10´2. (3.35)

Our result explains why rocky planets develop large atmospheric temperature gradients at

a threshold almost two orders of magnitudes smaller than what one would expect based on

the results for hot Jupiters, twave{trad Á 1.

Second, hot H2-dominated atmospheres are a notable exception to the first result and

develop day-night temperature gradients at larger values of twave{trad. The larger threshold
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arises because H2-dominated atmospheres have larger scale heights than high-MMW atmo-

spheres, which increases the drag time tdrag. For example, we consider a H2 atmosphere

with Teq “ 600 K. In this case tdrag{twave “ 40 (Appendix E) so temperature gradients are

large when

ˆ

twave
trad

˙

H2

Á 0.2. (3.36)

The wave-to-radiative timescale threshold in this case is a factor of four larger than for high-

MMW atmospheres, but it is still almost an order of magnitude smaller than the result for

hot Jupiters, twave{trad Á 1.

Third, optically thin atmospheres are less prone to developing day-night temperature

gradients than optically thick atmospheres because optically thin atmospheres cool less

effectively. Although optically thin atmospheres are also less efficient heat engines, the

radiative effect dominates because trad,thin91{τLW whereas tsub9t
1{3
rad,thin91{τ

1{3
LW . Weak-

temperature-gradient (WTG) balance therefore holds even better in optically thin atmo-

spheres than in optically thick ones. It also explains why the stratospheres of our simula-

tions, where the atmosphere becomes optically thin (Robinson & Catling, 2012), are much

more horizontally homogeneous than the lower atmosphere (Fig. 3.1).

We can now relate the RCS model to the results in Section 3.3. First, when tsub{trad ! 1

radiative cooling is inefficient compared to subsidence heating. In this limit sinking parcels of

air on the nightside remain close to an adiabat and the RCS model reduces to the RC model8.

Figure 3.10 shows nightside surface temperatures in both models and demonstrates that the

RCS model reduces to the RC model at a representative value of twave{trad À 10´4 (compare

blue lines to black dots). Second, when tsub{trad " 1 radiative cooling is much stronger than

subsidence heating. In this limit WTG balance (Eqn. 3.27) becomes dF {dτ « 0, so the

8. Because the RCS model additionally includes a stratosphere, it predicts slightly colder nightsides in
the limit twave{trad ă 10´4 than the RC model but the effect is small (the black dot is slightly above the
blue line in Figure 3.10, right panel).
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nightside is in purely radiative equilibrium and F is vertically constant. To still satisfy the

nightside surface budget (Equation 3.21c), F has to be zero. The Schwarzschild equation

(Eqn. 3.19b) shows that in this case dpσT 4q{dτ « 0 which means the nightside becomes

vertically isothermal with a temperature that is set by the overlying tropopause temperature

Tstratpτ0q. A lower bound for Tstrat (see Eqn. 3.20) is given by the skin temperature Tskin ”

2´1{4Teq (Pierrehumbert, 2011b). In the optically thin limit the nightside surface energy

budget is then equal to σT 4
n “ τLW ˆ σT 4

skin “ τLW ˆ σT 4
eq{2, and we recover Wordsworth

(2015)’s result Tn “ TeqpτLW {2q
1{4. Figure 3.10 shows that the nightside temperature in

the RCS model reduces to this limit at a representative value of twave{trad Á 1 (compare

black square and blue line in left panel).

Up to now we have focused on slowly rotating planets a2{L2
Ro ă 1. Next, we consider

the effects of rapid rotation, and how they interact with the threshold for large day-night

temperature gradients.

3.7 Effects of rapid rotation on temperature structure

In this section we use GCM simulations to address how rapid rotation affects the circulation

and temperature structure. Leconte et al. (2013) showed that tidally locked planets develop

drastically different circulations when a2{L2
Ro Á 1 because equatorial waves are not able to

freely propagate into high latitudes once the planetary radius, a, is larger than the equatorial

Rossby radius, LRo. Rapidly rotating planets then develop standing Rossby and Kelvin wave

patterns. The standing wave patterns lead to strong equatorial superrotation, an eastward

offset of the equatorial hot spot, and off-equatorial cold vortices on the nightside (Matsuno,

1966; Showman & Polvani, 2011). Here we also find that the circulation regime changes

at a2{L2
Ro „ 1. However, while rapid rotation drastically alters the flow field the effect

on temperature structure is small unless the atmosphere is also prone to developing strong

temperature gradients, twave{trad Á Op10´2q.

We perform a set of GCM simulations in which we vary a2{L2
Ro and twave{trad while
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Figure 3.11: Rapid rotation (a2{L2
Ro Á 1) does not have a strong effect on temperature

structure unless the atmosphere is also hot or thin (twave{trad ą 10´2). Shown are 2D
temperature and wind fields, averaged over the upper troposphere (0.3 ď p{ps ď 0.4).
Rotation increases from left to right, the wave-to-radiative timescale ratio increases from
top to bottom. Increased rotation changes the circulation drastically, from a day-night flow
at slow rotation (left) to an equatorially superrotating jet and cold nightside vortices at
rapid rotation (right). However, at low twave{trad temperature gradients are small, even if
rotation is rapid (top right). Large temperature gradients, eastward hot spot offsets, and
cold nightside vortices only emerge once an atmosphere is both hot/thin and rotates rapidly
(bottom right). The substellar point is located at 270˝ longitude.

keeping all other parameters fixed. We vary a2{L2
Ro by changing the rotation rate Ω,

and twave{trad by changing the surface pressure ps. All other parameters are fixed to

the same values as the reference simulation in Figure 3.1, that is, a “ aC, Teq “ 283K,

pR, cpq “ pR, cpqN2
, and τLW “ 1. We explore a2{L2

Ro “ p0.1, 0.5, 1q and twave{trad “

p10´3, 10´2, 10´1q, which correspond to 2π{60 days ď Ω ď 2π{6 days and 5 bar ď ps ď 0.05

bar.

We find that rapid rotation has a large effect on the circulation, but its effect on the
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temperature structure is small unless twave{trad also exceeds the threshold twave{trad Á

5 ˆ 10´2 from the previous section. Figure 3.11 shows 2D maps of the circulation and

temperatures in the upper atmosphere. The wind and temperatures are mass-weighted

averages taken over 0.3 ď p{ps ď 0.4, and the substellar point is located at longitude λ “

270˝. Slowly rotating simulations are shown in the left column of Figure 3.11. As expected,

the circulation consists of a substellar-to-antistellar flow. At small values of twave{trad

the day-night temperature differences are small, but the atmosphere develops large day-

night temperature gradients at twave{trad “ 10´1, consistent with our results in Section

3.6. The top row of Figure 3.11 shows simulations with small twave{trad. As rotation rate

increases, the atmospheric circulation changes drastically. A strong equatorial jet develops

and the nightside atmosphere additionally develops standing Rossby waves in the form of off-

equatorial vortices (Showman & Polvani, 2011). Nevertheless, as long as twave{trad “ 10´3,

the maximum horizontal temperature difference at a2{L2
Ro “ 1 only reaches 0.05Teq, or „ 15

K.

Figure 3.11 underlines that day-night atmospheric temperature gradients are primarily

controlled by twave{trad. However, the effect of rapid rotation can strongly enhance tem-

perature gradients in the form of eastward hot spot offsets and cold nightside vortices. The

slowly rotating simulation with a thin atmosphere (a2{L2
Ro “ 0.1, twave{trad “ 10´1; bot-

tom left) has its hottest point located at the substellar point and a maximum horizontal

temperature difference of 0.2Teq, or „ 65 K. In contrast, the simulation with the same value

of twave{trad but at rapid rotation shows an eastward hot spot offset and a significantly

larger maximal horizontal temperature difference of 0.4Teq, or „ 110 K (bottom right). In

the following section we consider what our results imply for future observations.

3.8 Implications for Observations

Figure 3.12 summarizes some implications of our results for observations of rocky exoplan-

ets. We showed that atmospheric day-night temperature contrasts strongly depend on the
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Figure 3.12: CO2 atmospheres are more likely to develop large temperature gradients than
H2 atmospheres. Atmospheric day-night temperature gradients are negligible inside the blue
region (twave{trad ď 10´4) and are large inside the red region (Eqn. 3.34 for τLW ě 1). CO2
atmospheres collapse inside the grey region [solid line: empirical fit to GCM results from
Wordsworth (2015); dotted line: calculated using our RCS model]. Bottom symbols show
equilibrium temperatures of two nearby rocky planets and of a hypothetical tidally locked
Venus; p˚q marks scenarios for which rotational effects would additionally be important
(a2{L2

Ro ě 1). The shown thresholds assume a GJ1132b-sized planet (a, g “ 1.16aC, 11.7 m

s´2).

parameter twave{trad “ a{p
a

R{cp ˆ
a

RTeqq ˆ gσT 3
eq{pcppsq9T

5{2
eq {ps. The planetary ra-

dius a and surface gravity g vary relatively little for plausible rocky planets, which means

day-night temperature differences are to first order controlled by the equilibrium tempera-

ture Teq, the surface pressure ps, and whether or not the atmosphere is made of H2 (via

R and cp). In Figure 3.12 we consider these parameters for a GJ 1132b-sized planet9 with

hypothetical CO2 and H2 atmospheres. The red region indicates when the atmosphere is

hot/thin and develops large day-night atmospheric temperature gradients (Equation 3.34 for

τLW ě 1). The blue region indicates when the atmosphere is cool/thick and day-night atmo-

spheric temperature gradients become negligible (twave{trad ď 10´4 from Section 3.6). Part

of the CO2 phase space is unstable to atmospheric collapse, which occurs when the nightside

9. We assume a, g “ 1.16aC, 11.7 m s´2 (Berta-Thompson et al., 2015).
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surface is cold enough for CO2 to condense. We delineate atmospheric collapse using two

approaches. First, the solid black line shows the empirical fit from Wordsworth (2015), who

used a GCM with full radiative transfer to compute collapse thresholds up to Teq “ 367 K.

Second, we use the RCS model to compute when nightside surface temperatures fall below

the condensation temperature of CO2. To specify the optical thickness we use Equation 3.6

and assume τp1 barq “ 1 and n “ 1. Although we do not include non-grey effects, the RCS

model (dashed black line) closely fits the GCM results (solid black line) over the range of pa-

rameters explored by Wordsworth (2015). As such, we consider the RCS model appropriate

for predicting atmospheric collapse (also see Section 3.9). We repeat a similar computation

for H2 atmospheres, and find that the entire phase space in Figure 3.12b is stable against

collapse10. The symbols at the bottom of Figure 3.12 show equilibrium temperatures11 of

two recently-discovered rocky planets and of a hypothetical tidally locked planet at Venus’

present-day orbit (Berta-Thompson et al., 2015; Motalebi et al., 2015). Finally, we found

that temperature structure can be affected by rapid rotation. We mark all rapidly rotating

planet scenarios with a2{LRo ě 1 using star symbols (˚). For these cases we expect that

strong rotational effects, such as large eastward hot spot offsets or cold nightside vortices,

occur inside the red region (see Section 3.7).

Figure 3.12 allows us to make some tentative predictions. First, with a high MMW

atmosphere like CO2, GJ 1132b and HD 219134b would have non-negligible day-night tem-

perature gradients. This conclusion holds even for surface pressures as high as that of Venus

(ps “ 92 bar). Second, GJ 1132b and HD 219134b with CO2 atmospheres both satisfy the

criterion for rapid rotation (a2{L2
Ro ě 1). Should observations detect a large eastward hot

spot offset, it would favor surface pressures less than Op1q bar (inside the red region). Third,

Figure 3.12a shows that a CO2 atmosphere with surface pressure comparable to that of Mars

10. We use the Solar opacity value in Menou (2012a) and n “ 1, and compute nightside surface tempera-
tures with the RCS model. We find that nightside temperatures always exceed the critical point of H2, 33.2
K.

11. We assume a planetary albedo of zero.
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(ps “ 6ˆ10´3 bar) would be close to collapse on GJ 1132b. We note that our collapse calcula-

tion does not account for rotational effects, and cold nightside vortices (Fig.3.11) would allow

the atmosphere to collapse at even higher pressures. Fourth, if these planets managed to

retain H2-dominated atmospheres against atmospheric escape, they would be stable against

collapse and exhibit much smaller day-night temperature differences than similar CO2 atmo-

spheres. The increased stability and smaller temperature gradient is due to a combination

of H2’s large heat capacity cp, which increases the radiative timescale trad (Menou, 2012a),

its large gas constant R, which increases the speed of atmospheric waves cwave and thus

decreases the wave timescale twave (Heng & Kopparla, 2012), and its increased scale height,

which decreases the effect of friction (Appendix E). Fifth, H2-dominated atmospheres would

be significantly less affected by rotation than CO2 atmospheres. The smaller effect of rotation

is also due to the reduced wave timescale twave in H2 atmospheres. For example, assuming

GJ 1132b’s equilibrium temperature Teq “ 579K, the characteristic speed of gravity waves

in a CO2 atmosphere is cwave “
a

R{cpˆ
a

RTeq “ 158m s´1, whereas in a H2 atmosphere

cwave “ 838m s´1. It follows that the nondimensional Rossby radius, a2{L2
Ro “ 2Ωa{cwave,

is about five times smaller in a H2 atmosphere. Our results also imply that rocky planets

with H2-dominated atmospheres are less likely to exhibit eastward hot spot offsets and cold

nightside vortices. These predictions are qualitative because they do not consider the op-

tical thickness τLW , which helps set the magnitude of the day-night temperature gradient

(Fig. 3.10). Quantitatively interpreting an observed day-night temperature gradient also

requires constraining τLW , for example via transit spectroscopy (see Koll & Abbot, 2015).

One way of distinguishing the scenarios in Figure 3.12 would thus be through combined

transit spectroscopy and thermal phase curve observations with JWST. Previous feasibility

studies have tended to emphasize the transit technique (e.g., Beichman et al., 2014; Batalha

et al., 2015), here we compare the signal-to-noise ratio (SNR) that can be achieved by

spending the same amount of JWST time on low spectral-resolution transit and broadband

phase curve observations. We find that it would take about as much time to measure
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the broadband mid-IR phase curve of a short-period rocky exoplanet as it would to detect

molecular signatures in its atmospheres through near-IR transit spectroscopy. The basic

science goal for transit observations would be to detect a molecular species from its spectral

imprint; a flat spectrum could alternately be a cloudy atmosphere or no atmosphere. The

basic science goal for phase curve observations would be to detect the day-night flux difference

of a bare rock. An observed flux difference lower than that of a bare rock would imply

the presence of an atmosphere thick enough to modify the day-night temperature contrast

(outside the red region in Fig. 3.12). Similarly, hot/cold spot offsets would imply the presence

of an atmosphere that is hot or thin enough that its thermal structure is significantly affected

by rotation (see above). We consider GJ 1132b with a CO2-dominated atmosphere as a

representative target. We assume GJ 1132b is tidally locked, which could be verified using

optical phase curves with TESS (cf. Fujii et al., 2014). We compute transit signals following

Cowan et al. (2015), but assume that spectral features in the near-IR cause an absorption

difference of three scale heights and have a typical width of 0.1µm (see Table 2, Kaltenegger

& Traub, 2009). We compute the phase curve signal of a bare rock following Koll & Abbot

(2015). We estimate JWST ’s precision in the near-IR (1 ´ 4µm in 0.1µm bins, R „ 25 on

NIRSpec) using the photon noise limit (see Koll & Abbot, 2015). We similarly estimate

the precision in the mid-IR (16.5´ 19.5µm broadband, F1800W on MIRI) assuming photon

noise, but account for the imperfect instrument throughput of 1/3 (Glasse et al., 2010).

We assume that both techniques bin photons over the length of one transit (45 minutes)

and we multiply the noise by
?

2 to account for the fact that both techniques compare two

snapshots in time. We assume that a single transit measurement consists of observing the

primary eclipse and an equal out-of-transit baseline (cf. Kreidberg et al., 2014). We check

our transit estimate by comparing our SNR with the detailed calculations in Batalha et al.

(2015), and find that we can reproduce their results up to a factor of two (not shown). We

also note that our estimate of GJ 1132b’s thermal emission is slightly higher than the signal

in Berta-Thompson et al. (2015), because the observer-projected dayside temperature of a
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Transit vs. phase curve observations of GJ 1132b with JWST

Method Observation Time Signal (ppm) Noise (ppm) SNR

Single transita one transitb = 90 min 19.9 19.7 1
Stacked transitsa 13 transits = 19.5 hours 19.9 5.5 4
Thermal phase curvec one half-orbit = 19.5 hours 373 84 4
a 1´ 4µm, NIRSpec, R „ 25, CO2-dominated atmosphere.
b We assume a measurement lasts 45 min in-transit, plus 45 min out-of-transit baseline.
c 16.5´ 19.5µm, MIRI, broadband.

Table 3.2: Transit spectroscopy and thermal phase curve measurements of a planet like GJ
1132b will require similar amounts of JWST observation time. The shown signal-to-noise
(SNR) ratios are estimates for the most basic observational goals: detecting molecular fea-
tures in low-resolution near-IR transit spectra, and detecting the day-night thermal emission
contrast of a bare rock in the mid-IR. We compute signals following Cowan et al. (2015) and
Koll & Abbot (2015). We estimate noise assuming photon-limited precision, but include
imperfect instrument throughput for MIRI (see Section 3.8).

bare rock is higher than its equilibrium temperature by p8{3q1{4 « 1.28 (Koll & Abbot,

2015).

Table 3.2 shows our results. Similar to previous estimates (e.g., Batalha et al., 2015;

Cowan et al., 2015), we find that a single transit would not be sufficient to conclusively

identify molecular absorption features (SNR „ 1). The low SNR arises largely because

of the high MMW atmosphere; for comparison, a H2 atmosphere on GJ 1132b should be

detectable in a single transit with SNR „ 22. For a CO2 atmosphere, 13 repeated transit

observations would reduce the noise sufficiently to allow spectral features to be discerned

with SNR „ 4. The time it takes to measure 13 repeated transits of GJ 1132b is also equal

to the time it takes to measure one half-orbit phase curve (from transit to secondary eclipse).

We find that the thermal emission of a bare rock would be detectable with a comparable

SNR „ 4. We conclude that characterizing high MMW atmospheres of rocky exoplanets

will require relatively large investments of JWST time. If such observations are pursued,

however, then thermal phase curves are a feasible technique that would yield important

complementary information about these planets (Koll & Abbot, 2015).
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3.9 Discussion

The heat engine framework is well-established for Earth’s atmosphere (e.g., Peixoto & Oort,

1984). Similarly Goodman (2009) pointed out that hot Jupiters can be viewed as heat

engines, but did not develop his insight more quantitatively. Here we have demonstrated

that the atmospheres of rocky exoplanets act as heat engines, which allowed us to develop

a new constraint on their day-night circulations. We also found that surface wind speeds in

most of our GCM simulations are about a factor of two smaller than the value predicted by

the heat engine (Fig. 3.6). Because work scales with the cube of the surface wind speed, our

simulations produce „ p1{2q3 “ 1{8 as much work as an ideal heat engine. Interestingly,

Earth’s atmospheric heat engine also produces about an order of magnitude less work than its

ideal limit and therefore has a similar inefficiency as our dry and tidally locked simulations

(Peixoto & Oort, 1984). Our result seems to be at odds with the usual understanding

that the inefficiency of Earth’s atmospheric heat engine is caused by its hydrological cycle

(Pauluis et al., 2000; Pauluis, 2010), and also raises the question whether our scaling can

be generalized to planets that are not tidally locked. We hope to address these issues

in future work. Our results also strongly suggest that hot Jupiters should obey similar

constraints as rocky planets. For example, using the heat engine framework it might be

possible to constrain the day-night overturning circulation, which controls the vertical mixing

and chemical equilibrium of hot Jupiter atmospheres. However, modeling these atmospheres

as heat engines will require a better understanding of the mechanisms through which they

dissipate kinetic energy, which could include magneto-hydrodynamic drag, shocks, or shear

instabilities (Li & Goodman, 2010; Menou, 2012b; Fromang et al., 2016).

Our results allow us to interpret previous GCM results that have not been fully explained

yet. First, Merlis & Schneider (2010) explored Earth-like atmospheres at different rotation

rates. They found that although the strength of superrotation is strongly dependent on

rotation rate, day-night surface temperature gradients are mostly insensitive to rotation

rate (their Fig. 15). Our results explain why: Merlis & Schneider varied rotation rates
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while keeping the stellar flux fixed at Earth’s value. Their simulations were therefore in

the rapidly rotating (a2{L2
Ro ą 1) but relatively cool/thick regime (twave{trad ă 10´2)

in which temperature structure is not strongly sensitive to rotation (Fig. 3.11). Second,

in Koll & Abbot (2015) we found that thermal phase curves are mainly sensitive to the

nondimensional parameters twave{trad and τLW . Our result only broke down for hot/thin

and rapidly rotating atmospheres, twave{trad Á 10´2 and a2{L2
Ro Á 1. Our results here

explain both the wave-to-radiative timescale threshold of twave{trad „ 10´2 and why rotation

is relatively unimportant (Figs. 3.10 and 3.11).

There are additional physical effects that might affect our conclusions. We assume broad-

band grey radiative transfer, but a wide range of plausible atmospheric compositions fea-

ture significant spectral window regions. As already noted by Leconte et al. (2013) and

Wordsworth (2015), window regions allow the nightside surface to cool even more effectively,

which would increase day-night surface temperature gradients compared to that predicted

by our grey models. At the same time, large spectral window regions would increase the at-

mosphere’s radiative cooling timescale and thus reduce atmospheric temperature gradients,

similar to the optically thin cases we discussed in Section 3.6. We also did not consider

shortwave absorption. Shortwave absorption will shift heating to lower pressures, which

would decrease the heat intake temperature of the atmospheric heat engine and reduce the

atmospheric circulation strength. We therefore expect our heat engine theory to be an upper

bound on wind speeds.

Many planets might be able to retain a hydrologic cycle (e.g., H2O inside the habitable

zone, or CH4 on Titan-like planets) against atmospheric escape and nightside collapse. Be-

sides changing the atmosphere’s radiative properties (e.g., H2O effectively absorbs both in

the shortwave and longwave), condensation would also modify the atmospheric dynamics.

Moist GCM simulations indicate that the temperature and circulation structure sketched out

in Figure 3.8 could still apply qualitatively (Merlis & Schneider, 2010; Yang et al., 2013), but

with several modifications. First, latent heat transport would reduce the day-night tempera-
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ture gradient compared to dry atmospheres (Leconte et al., 2013). Second, moist convection

would lead to thick cloud cover on the dayside and could drastically change a planet’s ap-

pearance to remote observers (Fortney, 2005; Yang et al., 2013). Third, dry atmospheres

develop strongly turbulent daysides. The friction associated with this dry convection allows

the nightside temperature structure to decouple from regions of convection (Fig. 3.1, Voigt

et al., 2012). In contrast, moist atmospheres such as Earth’s tropics maintain an adiabatic

temperature profile through deep moist convection, while the dry turbulent boundary layer

is relatively shallow. We therefore expect that moist atmospheres would be less dominated

by friction, and would be even better captured by WTG models similar to our radiative-

convective model (Section 3.3).

It is an open question how many rocky planets around M-stars will actually be tidally

locked. Leconte et al. (2015) found that thermal tides in relatively thick atmospheres (ps Á 1

bar) can prevent habitable-zone planets around early M-dwarfs from reaching a tidally locked

state. Although thermal tides could limit the application of our results to planets on longer-

period orbits, they are less likely to apply to planets around late M-dwarfs or hot exoplanets

like GJ 1132b. Moreover, given that rocky exoplanets are extremely common, we also expect

that future discoveries will find rocky exoplanets in a wide range of rotational states. Optical

phase curves could constrain the rotation rates of these planets without relying on models

(Fujii et al., 2014), while future theoretical work should consider the connection between the

tidally locked limit we considered here and planets in higher-order spin-orbit resonances.

3.10 Conclusions

We have developed a series of theoretical models to understand the basic temperature struc-

ture and large-scale circulations of tidally locked planets with dry atmospheres. These mod-

els are able to capture and predict many fundamental aspects of much more complex GCM

simulations, including the atmospheric temperature structure, dayside and nightside surface

temperatures, as well as large-scale wind speeds. We draw the following conclusions from
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our work:

1. Our radiative-convective model describes tidally locked atmospheres with efficient day-

night heat transport and applies in the limit of cool and thick atmospheres (twave{trad À

10´4). It captures the basic temperature structure of tidally locked planets and ex-

tends the asymptotic theory for optically thick atmospheres (τLW " 1, Pierrehumbert,

2011b) to arbitrary optical thickness.

2. Atmospheres of dry, tidally locked exoplanets act as global heat engines. Our heat

engine scaling places strong constraints on the day-night circulation strength of tidally

locked atmospheres.

3. Our radiative-convective-subsiding model describes tidally locked atmospheres with

limited day-night heat transport. It extends both our radiative-convective model and

the asymptotic theory for optically thin atmospheres (τLW ! 1, Wordsworth, 2015),

and captures the dynamics of a wide range of complex GCM simulations. It breaks

down in the limit of atmospheres that are both rapidly rotating (a2{L2
Ro Á 1) and

hot/thin (twave{trad ą Op10´2q).

4. Like hot Jupiters, day-night atmospheric temperature gradients of rocky exoplanets

become large once parcels of air take longer to subside than to cool radiatively. Unlike

hot Jupiters, the timescale for subsidence on rocky planets is severely increased by

the limited heat engine efficiency and the areal asymmetry between convection and

subsidence. Rocky planets develop large day-night atmospheric temperature gradients

when

twave
trad

Á

$

’

’

’

&

’

’

’

%

χ3{2 ˆ
cp
R

ˆ

tdrag
twave

˙1{2

if τLW ě 1,

χ3{2

τLW
ˆ
cp
R

ˆ

tdrag
twave

˙1{2

if τLW ă 1.

(3.37)

Optically thin atmospheres cool inefficiently, which makes them less likely to develop
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large temperature gradients than optically thick atmospheres.

5. Rapid rotation (a2{L2
Ro Á 1) only has a strong influence on temperature structure if

the wave-to-radiative timescale exceeds the above ratio, twave{trad Á Op10´2q. Once

rotation is important its effects cannot be ignored for a detailed understanding of a

planet’s atmosphere, including its thermal phase curve signature and the potential for

atmospheric collapse.

6. Short-period rocky exoplanets with high MMW atmospheres and surface pressures of

À 1 bar will likely exhibit significant day-night temperature gradients. Thermal phase

curve observations of such planets will require similar amounts of JWST time as transit

observations.
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CHAPTER 4

ENTROPY BUDGET CONSTRAINS GENERAL

CIRCULATIONS OF DRY ATMOSPHERES

It is well-known that Earth’s atmosphere resembles a heat engine but this insight has yet to

be quantitatively extended to other planets. One obstacle in doing so arises from the many

effects caused by moisture, which are important in the context of understanding present-day

Earth and which are the subject of ongoing research. A wide range of atmospheres are

essentially dry, however, such as Snowball Earth climates, Mars, and desiccated terrestrial

exoplanets. Here we address the extent to which dry atmospheres can be understood as

planetary heat engines. We diagnose the entropy budget of an idealized general circulation

model (GCM) for tidally locked, slowly rotating, and rapidly rotating planets, and study

how it varies with optical thickness. We find that dry atmospheres primarily produce en-

tropy through convection, that is, through turbulent vertical transport of heat, whereas the

entropy produced by horizontal motions is relatively small. We develop scaling relations to

explain this behavior, and show that dry atmospheres can be understood as heat engines

for which maintaining the vertical temperature structure lowers an atmosphere’s ability to

generate horizontal motions. Furthermore, because our scaling relations constrain the en-

tropy production necessary to maintain the vertical temperature structure, we can predict

the frictional dissipation of horizontal motions and thus mean surface winds. Our results

demonstrate that the entropy budget allows quantitative insight into the circulations of di-

verse planetary atmospheres, such as colder climates of Earth and the climates of terrestrial

exoplanets.

4.1 Introduction

Earth’s atmosphere resembles a heat engine. Similar to the Carnot cycle the atmosphere

absorbs heat near the surface, at a hot temperature, and emits heat to space in the upper
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troposphere, at a cold temperature; this process allows the atmosphere to perform work

and thus generate the kinetic energy that drives winds and weather (Carnot, 1824). Unlike

the Carnot cycle, which is reversible, the atmospheric circulation has to continuously bal-

ance irreversible processes such as friction, which would otherwise cause all motion to cease

(Lorenz, 1955).

The balance between differential heating and irreversible processes is quantified through

the atmosphere’s entropy budget (Peixoto et al., 1991). In steady state the entropy emitted

to space via radiative fluxes has to equal the entropy absorbed by the atmosphere via surface

heat fluxes plus the entropy produced within the atmosphere via irreversible processes. For

Earth’s present-day climate, the balance between these processes has been explored using a

wide range of methods, including observational estimates (Peixoto et al., 1991; Goody, 2000;

Pauluis & Dias, 2012), theoretical calculations (Renno & Ingersoll, 1996; Emanuel & Bister,

1996), radiative-convective equilibrium (RCE) simulations (Pauluis et al., 2000; Pauluis &

Held, 2002; Romps, 2008), and general circulation models (GCMs; Goody, 2000; Kleidon

et al., 2003; Pascale et al., 2011; Laliberté et al., 2015).

One important result of these efforts is that Earth’s hydrological cycle is also irreversible

and produces entropy through friction acting on raindrops, irreversible phase changes (e.g.,

by evaporating liquid water into sub-saturated air), and diffusion of water vapor (Pauluis

et al., 2000; Pauluis & Held, 2002). Although it is difficult to measure the effect of the

hydrological cycle directly, estimates based on GCMs indicate that Earth’s atmospheric heat

engine is relatively inefficient and only produces two-thirds as much work as an equivalent

dry atmosphere (Laliberté et al., 2015). Understanding how Earth’s atmospheric heat engine

will change in the near future due to anthropogenic warming therefore requires a detailed

understanding of the irreversibilities associated with the hydrological cycle, and research into

this topic is still ongoing (Pauluis & Held, 2002; Romps, 2008; Laliberté et al., 2015; Singh

& O’Gorman, 2016).

There are, however, a wide range of atmospheres for which the effects of water vapor
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and condensation are negligible. Because the amount of water vapor generally decreases

with global-mean temperature, the effect of water vapor tends to be less important in colder

climates and would have been virtually absent in Earth’s atmosphere during past Snow-

ball Earth episodes (Pierrehumbert et al., 2011; Voigt et al., 2012; Voigt, 2013). Similarly,

the entropy production associated with irreversible phase changes disappears once an atmo-

sphere is fully saturated (Pauluis, 2010), which suggests that steam atmospheres of runaway

greenhouse climates could also resemble dry heat engines. Finally, recent astronomical dis-

coveries imply there is about one rocky extrasolar planet per star in the galaxy (Dressing &

Charbonneau, 2015) and next-generation telescopes will be able to study the atmospheres

of these planets within the next three years (Koll & Abbot, 2015; Kreidberg & Loeb, 2016).

Many of these atmospheres could in turn be dry due to photodissociation and water loss to

space, similar to how Venus is thought to have lost its water (Ingersoll, 1969; Wordsworth &

Pierrehumbert, 2013; Barnes et al., 2016; Ribas et al., 2016). In the case of dry convection,

the entropy budget constrains the overall strength of convection (Renno & Ingersoll, 1996;

Emanuel & Bister, 1996; Pauluis & Held, 2002). By extension one would expect the entropy

budget to provide insight into the circulations of dry atmospheres, but this has not yet been

explicitly demonstrated.

As a first step towards a general understanding of planetary atmospheres as heat en-

gines, we recently showed that the large-scale circulations of dry and tidally locked planets

act very similar to ideal heat engines (Koll & Abbot, 2016). A tidally locked and dry at-

mosphere, we showed, is driven by the thermal contrast between the hot dayside and the

cold radiative emission level, which allowed us to formulate an upper bound for how much

work a tidally locked atmosphere can produce. Assuming that this work is entirely used to

balance turbulent friction acting on the day-night circulation, we were able to successfully

put an upper bound on the large-scale wind speeds of tidally locked planets, allowing us to

further constrain their day-night mass fluxes and heat transports. Our previous work did

not address why some atmospheres developed significantly lower wind speeds than ideal heat
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engines, however, and it also did not show how our theory could be extended to other types

of circulations.

To address these questions we consider here the entropy budget of a wide range of atmo-

spheric circulations in an idealized GCM, and how it changes in response to changes in optical

thickness (Section 4.2). We find that dissipation of vertical turbulence and convective mixing

of heat generally dominates the entropy budget of dry atmospheres whereas dissipation of

large-scale horizontal motions is a comparatively minor term (Section 4.3). Nevertheless,

the entropy production via vertical turbulence can be constrained. This allows us to place

strong constraints on the entropy production via horizontal motions and therefore predict

the strength of surface winds over a wide range of dry atmospheres (Section 4.3). To finish

we discuss our results in the context of the climates of Snowball Earth and of Mars (Section

4.4).

4.2 Model and Simulations

We use the FMS GCM with grey radiative transfer. The model was previously described

in Frierson et al. (2006) and O’Gorman & Schneider (2008); we modify it as follows. We

specify a longwave optical thickness τ that is spatially uniform and increases quadratically

in pressure,

τ “ τLW ˆ

ˆ

p

ps

˙2

, (4.1)

where τLW is the surface optical thickness, p is the pressure, and ps is the surface pressure.

This means we treat the longwave absorber as a generic pressure-broadened greenhouse gas.

Similarly, we do not include atmospheric shortwave absorption, which, in Earth’s current

atmosphere, is in great part due to water vapor (Biagio et al., 2012). We set the gas constant

and heat capacity of dry air equal to those of N2. Without atmospheric solar absorption

the surface albedo and the solar constant are degenerate. We set the albedo to zero and the
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solar constant equal to 952 W m´2, which results in an Earth-like equilibrium temperature of

Teq “ 255 K. As in Frierson et al. (2006), we make the GCM dry by reducing the saturation

vapor pressure constant in the model’s Clausius-Clapeyron relation from e0 “ 610.70 Pa to

e0 “ 610.70ˆ 10´20 Pa.

We consider the entropy budget and how it responds to changes in optical thickness (τLW )

for three different circulation geometries. First, we consider an Earth-like planet with Earth-

like insolation and rotation period. In this case the atmosphere develops the familiar pattern

of a low-latitude Hadley circulation and high-latitude baroclinic eddies. Second, we consider

a slowly rotating planet with Earth-like insolation and a rotation period of 50 days. The slow

rotation causes the Hadley cell to extend almost to the poles, analogous to the circulations

of Venus and Titan (Del Genio & Suozzo, 1987; Mitchell et al., 2009) and the hypothesized

Hadley circulation on Earth during the Eocene (Farrell, 1990). Third, we consider a tidally

locked planet with a tidally locked insolation pattern and a rotation period of 50 days, which

is characteristic of a rocky planet in the habitable zone of an early M-dwarf star (Kopparapu

et al., 2016). The slow rotation combined with the zonally asymmetric forcing create a

thermally direct circulation between dayside and nightside, analogous to a global Walker

circulation (Joshi et al., 1997; Merlis & Schneider, 2010; Koll & Abbot, 2016).

The production of entropy in a dry atmosphere is ultimately always due to friction and

diffusion acting on a molecular scale. On the spatial scales of an atmosphere, however, it

is advantageous to separate between the entropy produced by friction and diffusion acting

on small-scale vertical turbulent motions versus large-scale horizontal motions. We write

the entropy budget for a dry atmosphere as (cf. Pauluis & Held, 2002; Kleidon et al., 2003;

Romps, 2008; Fraedrich & Lunkeit, 2008; Pascale et al., 2011)

9srad “ 9ssurf ` 9sfric ` 9smix ` 9snum. (4.2)

On the left hand side is the entropy sink by radiative cooling 9srad. On the right hand
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side are the entropy sources via surface heat fluxes 9ssurf , frictional dissipation of large-

scale horizontal motions 9sfric, vertical turbulent mixing of heat 9smix, and explicit numerical

entropy sources 9snum. Turbulent mixing, 9smix, is the result of motions which act to vertically

redistribute heat but which are too small to be explicitly resolved. In the GCM these motions

are parametrized using a quasi-equilibrium convection scheme (Frierson, 2007; O’Gorman &

Schneider, 2008) as well as a boundary layer turbulence scheme (Frierson et al., 2006). We

note that 9smix should be thought of as the combined effect of diffusion as well as friction

acting on turbulent (unresolved) motions, whereas 9sfric only includes friction acting on

large-scale (explicitly resolved) motions (Pauluis & Held, 2002). The GCM has two potential

sources of large-scale friction: boundary layer friction and numerical damping by the model’s

hyperviscosity. In practice we find that the entropy production due to numerical damping is

negligible, so we only include the boundary layer friction in 9sfric. The term 9snum accounts for

explicit entropy changes in the model’s numerics, which arise from the model’s hyperdiffusion

of temperature and a global temperature and humidity correction which makes up for model

shortcomings in conserving energy and water vapor. Following Pauluis & Held (2002) we

combine the external sources and sinks of heat into a net entropy sink 9ssink “ 9srad ´ 9ssurf .

The entropy budget then states that the entropy sink due to the atmosphere’s differential

heating has to be balanced by the atmosphere’s internal entropy production via irreversible

processes,

9ssink “ 9sfric ` 9smix ` 9snum. (4.3)

To diagnose the sources and sink in the GCM, we start with the change of entropy ds

per unit mass of air, which can be written as ds “ cpdT {T ´ dp{pρdT q (cf. Emanuel, 1988),

where cp is the specific heat capacity, T is the temperature, ρd is the density, and p is the
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pressure. Next, we write 9s “ ds{dt, so

9s “ cp
9Ti
T
´

1

T

9pi
ρd
, (4.4)

where 9Ti, and 9pi are temperature and pressure tendencies computed in the GCM. We com-

pute the sources and sinks in the entropy budget (Equation 4.3) from the mass-weighted

vertical and global average of 9s (Equation 4.4), which we denote using angular brackets.

In the GCM radiative heating and cooling only affects temperature, so 9srad “ xcp 9Trad{T y.

We similarly compute the entropy produced via frictional dissipation through the heating it

induces, 9sfric “ xcp 9Tfric{T y. The entropy produced by turbulent mixing of heat, 9smix, can

be inferred by writing the first term in Equation 4.4 as the convergence of a convective heat

flux, cp 9T {T “ ´p∇ ¨Fconvq{T . We separate this term into surface and internal contributions,

B

∇ ¨ Fconv
T

F

“

B

∇ ¨
ˆ

Fconv
T

˙F

´

B

Fconv ¨∇
ˆ

1

T

˙F

,

B

∇ ¨ Fconv
T

F

“

B

Fconv
Ts

F

surf
`

B

Fconv ¨∇T
T 2

F

,

9sconv “ 9ssurf ` 9smix, (4.5)

where we have used Gauss’ theorem in the second step. We then infer the entropy produced

via mixing as 9smix “ 9sconv ´ 9ssurf “ xcp 9Tconv{T y ´ 9ssurf , where 9Tconv is the temperature

tendency produced by convective parametrizations. The second term in Equation 4.4 is the

work performed by a parcel of air on its environment. In a hydrostatic atmosphere this term

is proportional to a parcel’s vertical motion. In the GCM diabatic forcings modify 9T but do

not directly induce vertical motion, so in practice we do not include the second term.

4.3 Constraining the circulation strength

Our diagnostic accurately captures the entropy production in our simulations. Figure 4.1

shows the global-mean entropy budget in the three types of simulations as the atmosphere’s
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Figure 4.1: Entropy budget as optical thickness (τLW ) is increased. (a) Simulations with
Earth-like insolation and rotation rate. (b) Earth-like insolation and slow rotation (50 day
rotation period). (c) Tidally locked insolation and slow rotation (50 day rotation period).
Turbulent mixing of heat dominates the entropy budget whereas frictional dissipation of
large-scale kinetic energy is a relatively minor term, particularly for slowly rotating atmo-
spheres (b and c).

optical thickness (τLW ) is increased. The imbalance between the net entropy sink 9ssink

(blue circles) and the sum of entropy sources (blue lines) is slightly less than 3% of 9ssink in

one simulation, and less than 1% in all other simulations. The entropy imbalance tends to

be largest in optically thin simulations with τLW ă 1 and is most likely due to the GCM’s

imperfect energy conservation. For example, the slowly rotating simulation with τLW “ 0.5

has the largest relative entropy imbalance and emits „ 0.06 W m´2 more energy to space

than it absorbs. If this energy surplus did not drive any irreversible processes but was

emitted at the equilibrium temperature (255 K) it would cause an artificial entropy sink of

„ 0.2mW m´2 K´1, which compares well with the simulation’s actual shortfall of 0.26 mW

m´2 K´1.
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Turbulent mixing, 9smix, dominates the entropy budget in all simulations (Figure 4.1),

underscoring the fact that dry atmospheres produce entropy primarily through vertical, as

opposed to horizontal, redistribution of heat (cf. Pascale et al., 2012). The ratio between

9sfric and 9smix depends on circulation geometry and is largest for Earth-like atmospheres

(Fig. 4.1a). This is because the vertical temperature structure in the extratropics of rapidly

rotating planets is maintained by large-scale eddies (Schneider & O’Gorman, 2008; Jansen

& Ferrari, 2013), which in turn are captured by 9sfric, whereas slowly rotating planets re-

semble Earth’s tropics and maintain their vertical temperature structure through small-scale

turbulence, that is, convection. Nevertheless, 9smix is the largest term in the entropy bud-

get across all simulations. Understanding the entropy budget of the large-scale circulation

therefore requires a theory for the entropy produced via turbulent mixing, which we develop

below. Figure 4.1 also shows that the numerical entropy production 9snum can be significant,

particularly for tidally locked simulations in the optically thick limit. We find that 9snum is

dominated by the model’s energy correction term whereas hyperdiffusion is negligible, which

again points to imperfect energy conservation by the model’s large-scale dynamics.

First we address the entropy sink 9ssink “ 9srad´ 9ssurf . We assume that horizontal temper-

ature differences in the atmosphere are small compared to vertical temperature differences.

Although present-day Earth does not quite satisfy this assumption (Peixoto & Oort, 1992), it

is satisfied on slowly rotating planets as well as rapidly rotating planets with optically thick

atmospheres, such as ancient Earth with higher CO2 concentrations. Using this assumption

we will relate the terms in the entropy budget back to suitably averaged mean quantities

(see below). The entropy produced by surface heat fluxes is 9ssurf “ Fconvppsq{Ts, where

Fconvppsq is the surface heat flux, ps is the surface pressure, and Ts is the surface tempera-

ture. The entropy removed by radiative cooling is 9srad “
ş

∇ ¨ Frad{Tdp, where Frad is the

net radiative flux, p is pressure, and T is temperature. Atmospheric energy balance requires

that radiative cooling balances the surface heat flux,
ş

∇ ¨Fraddp “ Fconvppsq, so the entropy
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sink scales as (see Pauluis & Held, 2002; Singh & O’Gorman, 2016)

9ssink „ Fconvppsq

ˆ

1

Trad
´

1

Ts

˙

, (4.6)

where Trad is the average temperature at which radiative cooling takes place. As optical

thickness increases and the surface can shed less energy via longwave radiation, the surface

energy budget requires that Fconvppsq has to increase; consequently, Equation 4.6 explains

why the entropy sink increases with optical thickness (Fig. 4.1). Next, we specify Trad

by considering its behavior in the optically thick and thin limits. In the optically thick

limit radiative cooling occurs mainly around the emission level (Pierrehumbert, 2011b), so

Trad „ Teq where Teq is the equilibrium temperature. In the optically thin limit radiative

cooling takes place over the entire atmosphere, so Trad „ xT y. We combine these two

limits as Trad “ minpTeq, xT yq. Figure 4.2a compares Equation 4.6 with the entropy sink

in the GCM. For simulations with Earth-like insolation we use the global average of Ts and

Fconvppsq. On tidally locked planets Fconvppsq coincides with the turbulent hot dayside,

whereas inversions suppress turbulence on the nightside (Merlis & Schneider, 2010; Koll &

Abbot, 2016), so we only use the dayside average of Ts. We find that, up to a constant,

Equation 4.6 provides an excellent fit to the entropy sink in our dry simulations.

We address the entropy production by turbulent mixing next, again assuming that hori-

zontal variations are much smaller than vertical variations. In this case convection produces

entropy at a rate 9smix “
ş

FconvppqpdT {dpq{T
2dp (Equation 4.5). If Fconv is constant up to

some convective outflow pressure ptop and zero above, such that the entire convective heat

flux is deposited at ptop, then 9smix scales as

9smix „ Fconvppsq

ż ps

ptop

dT {dp

T 2
dp. (4.7)

Next, assuming convection is efficient at maintaining a dry adiabat, T ppq “ Tspp{psq
R{cp ,
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Entropy sink due to the atmosphere’s differential heating. Middle: Entropy source due to
turbulent mixing of heat. Bottom: Entropy source due to frictional dissipation of large-scale
kinetic energy.

the lapse rate is given by dT {dp “ RT {pcppq. We arrive at

9smix „
R

cp
Fconvppsq

ż ps

ptop

1

T ppqp
dp,

“
R

cp

Fconvppsq

Ts
p
R{cp
s

ż ps

ptop
p´pR{cp`1qdp,

“
R

cp

Fconvppsq

Ts
p
R{cp
s

„

p´1q

R{cp
p´R{cp

ps

ptop

,

9smix „
Fconvppsq

Ts

«

ˆ

ps
ptop

˙R{cp

´ 1

ff

. (4.8)
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k1 k2

Earth 0.25 0.19
Slowly rotating 0.39 0.09
Tidally locked 0.39 0.12

Table 4.1: Fitting constants used in our scaling relations.

To close Equation 4.8 we have to specify ptop. The deepest extent of convection is from the

surface up to the radiative emission level, that is, from the surface temperature Ts up to the

radiative temperature Trad. Because the temperature structure is assumed to be adiabatic,

Trad can be expressed as Trad “ Tspptop{psq
R{cp . Equation 4.8 will give an overestimate

of the entropy produced by mixing because in reality the convective heat flux Fconv is not

constant in height and has to diminish to balance radiative and large-scale advective cooling.

To account for this vertical structure we multiply Equation 4.7 by a fitting constant, which

has to be less than one and which we choose to match 9smix in the optically thick limit for

each set of simulations (we chose the simulations at τLW “ 10). We arrive at

9smix “ k1Fconvppsq

ˆ

1

Trad
´

1

Ts

˙

, (4.9)

which is the same scaling relation as for 9ssink but multiplied by the fitting constant k1.

The constant varies between 0.25 and 0.39 in our dry simulations (Table 4.1). Figure 4.2b

compares Equation 4.9 with the entropy from turbulent mixing in our dry GCM simulations.

Given the simplicity of the scaling, the fit in Figure 4.2b is very good and shows that the

entropy production by turbulence can be largely determined from first principles. This is

important, because we did not make any assumptions about the nature of turbulent mixing

nor how it is parametrized in the GCM. This implies that, as long as convection is efficient

at keeping the atmospheric temperature profile close to an adiabat, variations in 9smix are

largely constrained by energetics.

We now combine our scalings to constrain the entropy production by frictional dissipation,
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9sfric. From Equations 4.3, 4.6, and 4.9, we find

9sfric „ p1´ k1q 9ssink,

9sfric “ k2Fconvppsq

ˆ

1

Trad
´

1

Ts

˙

, (4.10)

where k2 is another fitting constant which accounts for the fact that our scaling for 9ssink

is an overestimate and for the numerical entropy source 9snum, which also scales with 9ssink

(Fig. 4.1). We compare Equation 4.10 with our dry GCM simulations in Figure 4.2c. Our

scaling is able to match the GCM results. The frictional dissipation 9sfric in the simulations

varies by more than one order of magnitude, and our scaling correctly captures this varia-

tion. Our result is highly encouraging because we only assumed that horizontal temperature

gradients are small compared with vertical temperature gradients, and made no explicit as-

sumptions about the horizontal structure of the atmospheric circulation. This raises the

question of how 9sfric can be used to characterize a planet’s atmosphere, which we address

next.

The rate at which kinetic energy is dissipated by friction is equal to F ¨ v, where F

is the drag force acting on a parcel of air and v is its velocity (Emanuel & Bister, 1996;

Pauluis et al., 2000). On rocky planets friction is largely caused by turbulent dissipation in

the boundary layer (cf. Chai et al., 2016), which we idealize as a thin layer directly above

the surface. Using standard bulk exchange coefficients, the drag acting on a parcel of air is

therefore F “ ρsCDU
2
s where ρs is the surface air density, CD is the drag coefficient, and Us

is the wind speed at the surface. This means the net entropy production due to friction scales

as 9sfric „ pF ¨vq{Ts „ ρsCDU
3
s {Ts. To constrain the drag coefficient we assume a neutrally

stable convective layer, CD “ k2
vk{logpz0{z˚q, where kvk is the von Kármán constant, z0 “ 10

m, and z˚ is the surface roughness length (our simulations use z˚ “ 10´3m). Although this

is a simplification because the drag coefficient varies locally depending on stratification, the

dependence is not strong and neutral stratification is a reasonable first-order assumption.
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Figure 4.3: In dry atmospheres, average wind speeds in the GCM (y-axes) follow our scaling
for frictional dissipation (x-axis). Top: mean surface wind speed xUsy. Bottom: cube-

root of the surface wind speed cubed, xU3
s y

1{3. In steady circulations, such as on slowly

rotating planets (green symbols), xUsy « xU
3
s y

1{3, whereas eddy-driven variability on Earth-

like planets (blue symbols) causes xUsy ă xU
3
s y

1{3.

We can then use the entropy budget to constrain the surface wind speed scale,

U3
s “ k2

Fconvppsq

ρsCD
Ts

ˆ

1

Trad
´

1

Ts

˙

. (4.11)

Figure 4.3a shows that average surface wind speeds in the GCM xUsy indeed follow our

predicted scaling. Similar to above, for planets with Earth-like insolation we use the global

average of Ts whereas for tidally locked planets we only use a dayside average. For slowly

rotating and tidally locked planets our scaling captures the average surface wind speed well,

whereas for Earth-like planets our scaling overestimates wind speeds by about a factor of

four. The overestimate for rapidly rotating planets is due to atmospheric variability. Slowly

rotating planets are characterized by steady circulations whereas Earth-like planets possess

extratropical storm tracks. Within the storm tracks, eddies create time-varying wind speeds
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so that the average of the surface wind is smaller than the normalized average of the surface

wind cubed, xUsy ă xU
3
s y

1{3. If we compare our scaling with the normalized average of the

surface wind cubed instead, xU3
s y

1{3, we find a good fit for all GCM simulations (Fig. 4.3b).

To the extent that changes in dissipation on Earth-like planets also occur largely within

the storm tracks, this means that the entropy budget could also be used to constrain how

mid-latitude weather systems respond to changes in radiative forcing.

Finally, Equation 4.11 can be interpreted analogous to the Carnot cycle but with a

reduced efficiency due to the vertical redistribution of heat by turbulence. The work done

to balance friction is Wfric “ ρsCDU
3
s , so

Wfric “ Fconvppsq ˆ k2Ts

ˆ

1

Trad
´

1

Ts

˙

,

“ Fconvppsq ˆ k2

ˆ

Ts ´ Trad
Trad

˙

,

“ Fconvppsq ˆ η, (4.12)

where η “ k2pTs ´ Tradq{Trad is the efficiency of the general circulation. In comparison,

the work done by an equivalent Carnot cycle is W “ Fconvppsq ˆ ηCarnot “ Fconvppsq ˆ

pTs´Tradq{Ts, which differs from Equation 4.12 only through its intake temperature. Unlike

the Carnot cycle’s intake temperature, Ts, vertical turbulence and heat redistribution lowers

the intake temperature of the general circulation to Trad{k2. For Earth-like planets k2

is approximately equal to k1 (Table 4.1), so the intake temperature is set by the vertical

structure of the convective heat flux. For tidally locked and slowly rotating planets k2 is

smaller than k1 because k2 also accounts for the numerical entropy production, which is larger

on slowly rotating than on Earth-like planets (Fig. 4.1). This means numerical adjustments

act to further reduce the production of work by the general circulation. Carnot’s theorem

requires that η ď ηcarnot, or k2{Trad ď 1{Ts, which we find is satisfied in all our simulations.
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4.4 Discussion

In previous work we showed that dry and tidally locked atmospheres tend to resemble heat

engines which balance friction and drive large-scale horizontal motions, but we also found

that some atmospheres develop significantly weaker wind speeds than expected (Koll &

Abbot, 2016). Our results here explain why: instead of performing work purely to balance

friction acting on horizontal motions, atmospheres also need to vertically transport and

mix heat to maintain their vertical temperature structure. Although this process has to

be parametrized in GCMs as a vertical diffusion of heat or a relaxation back towards an

adiabatic temperature profile (the GCM we use includes both processes), it closely captures

the general behavior of dry convection (Emanuel et al., 1994) so we expect our result to be

robust.

We also find that frictional dissipation of large-scale kinetic energy mainly scales with the

surface heat flux Fconvppsq (Eqn. 4.12). Increasing an atmosphere’s optical thickness reduces

the surface’s ability to shed longwave radiation and therefore increases Fconvppsq. This would

affect past Snowball episodes, which deglaciated due to a massive buildup of volcanic CO2

(Hoffman et al., 1998). Because more CO2 implies a higher optical thickness, our results

imply that Snowball surface winds should have been strongest right before deglaciation. This

means the wind stress acting on sea ice and the aeolian transport of dust would also have

been strongest right before deglaciation, which in turn could affect the duration and timing

of Snowball episodes (Abbot & Pierrehumbert, 2010; Abbot & Halevy, 2010; Voigt & Abbot,

2012).

Similarly, our scalings suggest that ancient Mars would have had more frequent dust

storms than today. Present-day Mars only supports an optically thin atmosphere whereas

ancient Mars must have had at least a transiently thicker atmosphere to explain the geologic

features of present-day Mars (Wordsworth, 2016). We estimate an optical thickness of τLW „

0.2 for Mars’s current solar constant of about L˚ “ 585 W m´2, whereas τLW would have

exceeded unity on ancient Mars when the solar constant was about 80% as high. Assuming
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that Fconvppsq in optically thin atmospheres scales as „ τLWL˚ entails that the global-mean

frictional dissipation 9sfric on ancient Mars would have been higher by about a factor of four.

Given that this would have increased the average atmospheric drag exerted on the surface

by the same amount, we expect that thicker atmospheres on Mars would have initiated dust

storms more frequently.

Our conclusions could be influenced by physical processes other than the ones consid-

ered here. In particular, we do not include atmospheric absorption of solar radiation but

this could occur through dust or photochemical hazes, which could have developed in the

anoxic atmosphere of early Earth (Pavlov et al., 2001). Following Equation 4.6, solar ab-

sorption would reduce the atmospheric entropy production because it reduces the magnitude

of the entropy sink by decreasing the surface heat flux Fconvppsq and increasing the effective

temperature of radiative cooling Trad.

4.5 Conclusions

Our main conclusions are:

• The entropy budget of dry atmospheres is dominated by convection, that is, small-scale

turbulence which acts to vertically mix heat. Relatively less entropy is produced by

dissipation of kinetic energy in large-scale horizontal motions.

• The entropy production by turbulent mixing depends on the magnitude of surface heat

fluxes and the depth over which convection redistributes them. Convection approxi-

mately extends from the surface up to the radiative emission layer, which allows us to

constrain the entropy production necessary for maintaining an atmosphere’s vertical

temperature structure.

• Once the entropy production necessary for maintaining the atmosphere’s vertical tem-

perature is known, the residual term in the entropy budget is the entropy production
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by large-scale horizontal motions. Our scalings constrain this term and capture the

variability of surface winds across a wide range of dry atmospheres.
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CHAPTER 5

SUMMARY AND OUTLOOK

In this thesis we have developed a series of theoretical models for understanding the atmo-

spheric dynamics of dry and rocky exoplanets, and have connected the dynamics of extrasolar

atmospheres back to atmospheres in the Solar system. Although the appendices are auxiliary

to this thesis they include a systematic nondimensionalization of the atmospheric equations

of motion and a derivation of a coordinate system appropriate for tidally locked atmospheres,

which can be used in further studies.

To summarize our takeaway points for planetary atmospheres:

• The large-scale dynamics of planetary atmospheres can be captured by a tractably

small number of non-dimensional parameters.

• Dry and tidally locked atmospheres develop deep turbulent boundary layers. Weak-

temperature-gradient theories apply on the nightside of tidally locked planets, but

break down on their daysides. Understanding the dayside is critical for understanding

the day-night circulation of these atmospheres.

• The atmospheres of tidally locked planets resemble planetary heat engines. These

atmospheres absorb heat on the dayside and emit it to space at the radiating level,

which allows them to balance frictional dissipation on the dayside.

• Small-scale vertical turbulence in the form of convection reduces the production of

large-scale kinetic energy. In contrast to hot Jupiters, whose upper atmospheres are

radiatively dominated and generally stable against convection, we expect that many

rocky planets have convecting atmospheres. This means rocky exoplanets should posses

atmospheric dynamics that are distinct from the already-observed dynamics of hot

Jupiters; future observations will allow us to compare the two.
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Finally, the coming years will see a new generation of space telescopes launched to explore

the atmospheres of rocky exoplanets. Looking towards the discoveries that will be made by

these instruments, in particular by the James Webb Space Telescope (JWST ), some of our

takeaway points for observations are:

• The observable thermal phase curve signatures of rapidly rotating and slowly rotating

rocky planets are distinct. For planets on long-period orbits (which includes the hab-

itable zone of early M-dwarfs), the main phase curve signature is the peak-to-trough

amplitude.

• Rocky planets that are rapidly rotating also need to be sufficiently hot or have suf-

ficiently thin atmospheres to exhibit the strong equatorial superrotation and large

eastward hotspot offsets known from hot Jupiters. For moderately hot planets like

GJ 1132b with high mean-molecular-weight atmospheres (that is, not hydrogen), the

surface pressure threshold is Op1q bar.

• Planets with hydrogen atmospheres exhibit significantly smaller temperature gradients

than planets with high mean-molecular-weight atmospheres. These atmospheres would

exhibit large spectral features in transit, while their thermal phase curves would be

relatively flat.

• Thermal phase curves by themselves are ambiguous to interpret, but combined with

transit spectra they constrain a planet’s surface pressure. If a planet’s transit spectrum

is well-characterized, a single broadband thermal phase curve with JWST could be

sufficient to constrain the atmospheric thickness of a nearby rocky exoplanet.

• Unless the atmospheres of rocky exoplanets are made of hydrogen, constraining their

atmospheric composition with JWST will require similar amounts of telescope time

as measuring their thermal phase curves. Future observation campaigns will ideally

budget time to do both.
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• In contrast to gas giants, rocky exoplanets can exhibit significant day-night tempera-

ture gradients and phase curve amplitudes even inside the habitable zone of their host

star.
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APPENDIX A

BASIC EQUATIONS

The primitive equations expressed in standard latitude-longitude-pressure coordinates (θ, λ, p)

are

Du

Dt
“ ´2Ω sin θkˆ u´∇φ´ gBFm

Bp
, (A.1a)

Bφ

Bp
“ ´

RT

p
, (A.1b)

∇ ¨ u `
Bω

Bp
“ 0, (A.1c)

DT

Dt
“

RTω

cpp
`
g

cp

BF

Bp
`
g

cp

BD
Bp
. (A.1d)

Here u “ pu, vq is the horizontal wind velocity, D
Dt “

B
Bt ` u ¨ ∇ ` ω B

Bp is the material

derivative, k is a unit vector pointing along the axis of planetary rotation, φ is the geopoten-

tial, T is temperature, ω ” Dp
Dt is the vertical velocity (expressed as a change in pressure),

and dimensional parameters are defined in Section 2.2. From the top, these equations ex-

press conservation of momentum, the hydrostatic approximation, conservation of mass, and

conservation of energy. Although the mass conservation equation looks like it assumes in-

compressibility, it does not. The primitive equations are compressible, but mass conservation

can be written in the above simple form using p coordinates and the hydrostatic equation
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(Vallis, 2006, p.79). The forcing terms are

F “ F
Ò

LW ´ F
Ó

LW ´ F
Ó

SW ,

BF
Ò

LW

Bp
“

2κlw
g
pF
Ò

LW ´ σSBT
4
q,

BF
Ó

LW

Bp
“ ´

2κlw
g
pF
Ó

LW ´ σSBT
4
q,

BF
Ó

SW

Bp
“ ´

2κsw
g

F
Ó

SW ,

F
Ó

SW |p“0 “

$

’

’

&

’

’

%

p1´ αqL˚ cos θ cosλ if 270˝ ď λ ď 90˝

0 elsewhere,

Fm|ps “ ρsCD|us|us,

D|ps “ ρscpCD|us|pTs ´ T |psq.

Here us is the surface wind velocity, Ts is the surface temperature, T |ps is the near-surface

air temperature, and ρs is the atmospheric density at the surface (ρs “ psR
´1T |ps , using

the ideal gas law). In addition, convection instantaneously adjusts an unstable lapse rate

toward the dry adiabat while conserving dry enthalpy

d

dt

ż ps

0
cpT

dp

g
“ 0.

We neglect scattering in the radiative equations. We assume the hemi-isotropic closure,

which is why the radiative equations contain a factor of two (Section 6.4 in Heng et al., 2014).

We also assume that opacities increase with p due to pressure broadening and/or collision-

induced absorption, so κsw “ κSW pp{p0q and κlw “ κLW pp{p0q. We define nondimensional

shortwave and longwave optical depths as dτ̂sw{dp “ 2κswppq{g and dτ̂lw{dp “ 2κlwppq{g.

We integrate to find the total optical depths, τSW ” τ̂swppsq “ κSW p0{g ˆ pps{p0q
2 and

τLW ” τ̂lwppsq “ κLW p0{gˆpps{p0q
2. The surface temperature, Ts, is determined by energy
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balance

CdTs
dt

“ F
Ó

SW |ps ´ pσSBT
4
s ´ F

Ó

LW |psq ´D|ps .

Here C is the surface thermal inertia. For a tidally locked planet the stellar forcing does

not depend on time. As a first approximation we ignore internal atmospheric variability and

assume that Ts is time-independent. This means that C does not enter the list of dimensional

quantities (see below for a discussion of when this assumption is valid).

We form the following nondimensional quantities, marked with the hat symbol: D
Dt “

1
twave

´

D
Dt̂

¯

, ∇ “ ∇̂{a, p “ psp̂, u “ cwaveû, ω “ cwaveps{a ˆ ω̂, φ “ gHφ̂, T “ TeqT̂ ,

F “ σSBT
4
eqF̂ , Fm “ psCDc

2
wave{pRTeqq ˆ F̂m, D “ pscpCDcwave{R ˆ D̂.

The primitive and radiative equations in nondimensional form are

ˆ

Dû

Dt̂

˙

“ ´
a2

L2
Ro

psin θkˆ ûq ´
cp
R

´

∇̂φ̂
¯

´
CDa

H

˜

BF̂m
Bp̂

¸

,

˜

Bφ̂

Bp̂

¸

“ ´

˜

T̂

p̂

¸

,

´

∇̂ ¨ û
¯

`

ˆ

Bω̂

Bp̂

˙

“ 0,

˜

DT̂

Dt̂

¸

“
R

cp

˜

T̂ ω̂

p̂

¸

`
twave
trad

˜

BF̂

Bp̂

¸

`
CDa

H

˜

BD̂
Bp̂

¸

,

˜

BF̂
Ò

LW

Bτ̂lw

¸

“ F̂
Ò

LW ´ T̂ 4
p0 ď τ̂lw ď τLW q,

˜

BF̂
Ó

LW

Bτ̂lw

¸

“ ´pF̂
Ó

LW ´ T̂ 4
q p0 ď τ̂lw ď τLW q,

˜

BF̂
Ó

SW

Bτsw

¸

“ ´F̂
Ó

SW p0 ď τ̂sw ď γτLW q.

The surface energy budget in nondimensional form is

trad,s
trad

˜

dT̂s

dt̂

¸

“ F̂
Ó

SW |ps ´ pT̂
4
s ´ F̂

Ó

LW |psq ´
trad
twave

CDa

H
D̂|ps ,
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where trad,s “ C{σSBT 3
eq is the surface radiative timescale. Our assumption that Ts is time-

independent, and trad,s can be ignored, therefore breaks down when trad,s Á trad. In our

reference simulations we assume a heat capacity equivalent to that of a well-mixed water

layer with depth 3 m. This means the surface thermal inertia, C, is actually large enough that

trad,s „ trad. To check if this affects our results we recomputed the reference simulations in

Figure 2.4 with C reduced by a factor of 300, such that trad,s ! trad. We note that this heat

capacity is far less than realistic values for C. At individual grid points, the time-averaged

surface temperature changes up to 2.5% in the cool Earth-size scenario and up to 6% for

the hot super-Earth. However, reducing C affects the phase curve amplitude of both runs

by less than 0.5%. This confirms that our choice of six nondimensional parameters captures

the dominant dynamics in the GCM simulations (Fig. 2.2).
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APPENDIX B

TIDALLY LOCKED COORDINATE SYSTEM

A standard geographic coordinate system is defined via the radial distance from a planet’s

center, r, the latitude, θ, which is the angle away from the equator, and the longitude,

λ, which is the angle about the planet’s north pole. Atmospheres of fast rotating planets

are approximately symmetric around the axis of rotation due to conservation of angular

momentum, so their time-averaged properties are often displayed as averages over λ. Here

we make use of the approximate symmetry of slowly rotating tidally locked planets about the

axis connecting the substellar and antistellar points (Fig. 2.1). We define the tidally locked

latitude, θTL, as the angle away from the terminator, and the tidally locked longitude, λTL,

as the angle about the substellar point. We choose pθ, λq “ p0, 0q to coincide with the

substellar point, and pθTL, λTLq “ p0, 0q to coincide with the north pole (see top row in

Fig. 2.1). For example, in tidally locked coordinates λTL “ 0 and 90˝ ě θTL ě ´90˝ defines

the arc that connects substellar and antistellar points via the north pole.

To translate between standard and tidally locked coordinates we first transform both

spherical coordinate systems into Cartesian coordinates, so that the north pole lies at

px, y, zq “ p0, 0, rq and the substellar point lies at px, y, zq “ pr, 0, 0q

x “ r cos θ cosλ, (B.1)

y “ r cos θ sinλ,

z “ r sin θ,

and

x “ r sin θTL, (B.2)

y “ r cos θTL sinλTL,

z “ r cos θTL cosλTL.
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By combining equations B.1 and B.2 we can express θTL and λTL in terms of θ and λ:

θTL “ sin´1
pcos θ cosλq, (B.3)

λTL “ tan´1
ˆ

sinλ

tan θ

˙

.

To plot GCM output in tidally locked coordinates we first express the GCM output in terms

of θTL and λTL, and then linearly interpolate the output onto an evenly-spaced pθTL, λTLq

grid.

Transforming GCM wind velocities into tidally locked coordinates is slightly more com-

plicated. Horizontal winds are defined as pu, vq ”
´

r cos θDλ
Dt , r

Dθ
Dt

¯

. We analogously define

wind velocities in a tidally locked coordinate system as

uTL ” r cos θTL
DλTL

Dt

“ r cos θTL

ˆ

BλTL
Bλ

Dλ

Dt
`
BλTL
Bθ

Dθ

Dt

˙

“ cos θTL

ˆ

BλTL
Bλ

u

cos θ
`
BλTL
Bθ

v

˙

,

and

vTL ” r
DθTL

Dt

“ r

ˆ

BθTL
Bλ

Dλ

Dt
`
BθTL
Bθ

Dθ

Dt

˙

“
BθTL
Bλ

u

cos θ
`
BθTL
Bθ

v.

We evaluate the partial derivatives (BλTL{Bλ, BλTL{Bθ, BθTL{Bλ, BθTL{Bθ) using equations

B.3. The resulting expressions are long and lead to little insight, so we omit them here.
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APPENDIX C

COMPUTING PHASE CURVES

The area-averaged and observer-projected flux from a planet as seen by a distant observer is

F pξq “

şπ{2
´π{2

ş´ξ`π{2
´ξ´π{2

F
Ò

LW |p“0 cospλ` ξq cos2pθqdλdθ

şπ{2
´π{2

ş´ξ`π{2
´ξ´π{2

cospλ` ξq cos2pθqdλdθ
,

where ξ is the phase angle, i.e., the angle between the observer’s line-of-sight and the substel-

lar point (ξ “ 0 at secondary eclipse, ξ “ π at transit), and F
Ò

LW |p“0 is the outgoing thermal

flux at the top-of-atmosphere. This equation is expressed in standard latitude-longitude co-

ordinates, and assumes that the orbit is viewed edge-on (Cowan & Agol, 2008). The planet’s

total flux as seen by a distant observer is πa2 ˆ F pξq.

The maximum thermal flux emitted by a planet corresponds to the flux emitted by the

dayside of a bare rock, which we call Frock. We compute Frock by setting the outgoing ther-

mal flux equal to the incoming stellar flux at every point, F
Ò

LW |p“0 “ L˚p1´αq cospθq cospλq,

so Frock “ 2{3 ˆ L˚p1 ´ αq. We define the dayside-averaged observer-projected tempera-

ture of a bare rock as σSBT
4
rock “ Frock. This temperature is related to the equilibrium

temperature of a planet with effective heat transport via Trock “ p8{3q
1{4Teq.
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APPENDIX D

FINDING ALL DIMENSIONAL TRANSFORMATIONS THAT

ONLY AFFECT ONE NONDIMENSIONAL PARAMETER

We illustrate how to find the set of all transformations on the dimensional parameters that

only vary one nondimensional parameter. Our approach is similar to the commonly-used

technique in dimensional analysis of finding a complete set of nondimensional parameters

via matrix methods (Price, 2003). The method is general, but we illustrate it assuming

pa,Ω, Teqq are fixed to directly explain our parameter choices in Table 2.1b. To transform

the remaining dimensional parameters, we consider multiplying each of them by a different

constant,

pR1, c1p, g
1,p1s, κ

1
SW , κ1LW , C 1Dq “

pCv1R,Cv2cp, C
v3g, Cv4ps, C

v5κSW , Cv6κLW , Cv7CDq,

where a prime denotes a transformed parameter, C is a constant, and pv1, v2, ...q are different

exponents. At the same time we want to keep all nondimensional parameters except one

fixed. As an example we consider all transformations that multiply R{cp by a factor of C.

This means

ˆ

R

cp

˙1

“ C ˆ

ˆ

R

cp

˙

ñ Cv1C´v2
ˆ

R

cp

˙

“ C

ˆ

R

cp

˙

ñ Cv1´v2 “ C1
˜

a2

L2
Ro

¸1

“ C ˆ

˜

a2

L2
Ro

¸

ñ C´v1`v2{2

˜

a2

L2
Ro

¸

“ C0

˜

a2

L2
Ro

¸

ñ C´v1`v2{2 “ C0

ˆ

twave
trad

˙1

“ C ˆ

ˆ

twave
trad

˙

ñ C´v1´v2{2`v3´v4
ˆ

twave
trad

˙

“ C0
ˆ

twave
trad

˙

ñ C´v1´v2{2`v3´v4 “ C0

...
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We consider the exponents of C in the resulting equations. They form a linear system of

equations and can be written in matrix form Av “ p1, 0, 0, ...q as

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 ´1 0 0 0 0 0

´1 1{2 0 0 0 0 0

´1 ´1{2 1 ´1 0 0 0

0 0 0 0 1 ´1 0

0 0 ´1 2 0 1 0

´1 0 1 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

v1

v2

v3

v4

v5

v6

v7

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

0

0

0

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

The matrix columns correspond to the exponents of (R, cp, g, ps, κSW , κLW , CD), and the

matrix rows correspond to each nondimensional parameter. For example, the first row of

the matrix corresponds to R{cp, and has only two non-zero entries (corresponding to the

exponents with which R and cp appear in R{cp).

This system of equations is underdetermined, that is, it has infinitely many solutions

(there are 6 rows/6 equations, but 7 columns/7 unknowns). All solutions can be expressed

as a particular solution v to the equation Av “ p1, 0, 0, ...q, plus any vector that lies in the

kernel (nullspace) of A: tv`x, where x satisfies Ax “ 0u. We express the set of all solutions

as

tv ` k ¨ xu “ p´1,´2,´1´ k, 1´ k,´3` k,´3` k, kq ,

where k is an arbitrary number, and each entry of this vector corresponds to the power to

which C is being raised for each dimensional parameter. For example, to increase R{cp by C,

the first dimensional parameter, R, is multiplied by C´1, the second dimensional parameter,

cp, is multiplied by C´2 etc.

To vary R{cp over the largest possible range compatible with the dimensional constraints
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in Table 2.2 amounts to finding the largest and smallest values of C that are still consistent

with Table 2.2, while k is allowed to take on any value. We first solve this problem by

inspection, and then compare our parameter choices to the values we get from numerical

optimization. For our reference case of a cool, Earth-sized planet we find k “ 0 and 1{
?

1.5 À

C ď 1 (Table 2.1b).

We note that one can use this method similarly to find the set of all transformations

that leave all nondimensional parameters invariant (see Table 2.1a, Fig. 2.2). This set of

transformations is simply given by the kernel of A.
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APPENDIX E

DRAG TIMESCALE

We start with the nondimensional parameters that we derived in Koll & Abbot (2015):

˜

R

cp
,
a2

L2
Ro

,
twave
trad

, τSW , τLW ,
CDa

H

¸

. (E.1)

Theoretical work on the atmospheric dynamics of hot Jupiters uses similar wave and ra-

diative timescales (e.g., Perez-Becker & Showman, 2013), but additionally introduces a drag

timescale. This is because the drag mechanisms on hot Jupiters are still not well-constrained,

and friction is often parametrized as Rayleigh friction with a unknown damping timescale.

To facilitate comparison of our work with the hot Jupiter literature and to examine the

importance of drag in the atmospheres of rocky planets, we rewrite the last of our six nondi-

mensional parameters as a ratio of wave over drag timescales.

Models of terrestrial atmospheres (including FMS) often parametrize boundary layer

friction as vertical momentum diffusion with a source term that is quadratic in wind speed.

The horizontal momentum equation takes the form

Du

Dt
“ ¨ ¨ ¨ ` g

BDm
Bp

, (E.2)

where u is the horizontal wind speed, Dm is the diffusive momentum flux due to surface

drag, and the source term is Dm ppsq “ CDρs|us|us. We take a vertical average across the
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boundary layer to find the average acceleration due to drag:

1

ps ´ pBL

ż ps

pBL

Du

Dt
dp “ ¨ ¨ ¨ `

g

ps ´ pBL

ż ps

pBL

BDm
Bp

dp

Du

Dt
“ ¨ ¨ ¨ `

g

ps ´ pBL
ˆ rDm ppsq ´Dm ppBLqs

Du

Dt
“ ¨ ¨ ¨ `

gDm ppsq
ps ´ pBL

Du

Dt
“ ¨ ¨ ¨ `

gCDρs|us|us
ps ´ pBL

(E.3)

Here pBL denotes the top pressure level of the boundary layer and we used the fact that

drag has to disappear at the upper edge of the boundary layer, Dm ppBLq “ 0. We then

scale this equation for fast atmospheric motions u „ cwave,

cwave
tdrag

„
gCDρsc

2
wave

ps

cwave
tdrag

„
aCDg

RTs

cwave
a

cwave

cwave
tdrag

„
CDa

H

1

twave
cwave, (E.4)

where we have assumed that the boundary layer is thick, pBL ! ps (see Fig. 3.1), used the

ideal gas law in the second step, ρs “ psR
´1T´1

s , and used the wave timescale twave “

a{cwave in the last step. This lets us derive a drag timescale

tdrag „
H

CDa
twave. (E.5)

Note, in contrast to Rayleigh drag schemes where the drag timescale is independent of u, here

the drag timescale scales with u and thus with the dynamical timescale twave. Using this

drag timescale we can rewrite the last nondimensional parameter as CDa{H „ twave{tdrag
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and find an alternative set of six governing parameters:

˜

R

cp
,
a2

L2
Ro

,
twave
trad

, τSW , τLW ,
twave
tdrag

¸

. (E.6)

In most cases CDa{H is of order unity so the drag timescale is generally comparable to

the dynamical timescale. For example, assuming a planet of Earth’s size, pa, gq “ paC, gCq,

a high MMW atmosphere, R “ RN2
, a relatively cool temperature, Teq “ 300K, and a

standard value for the drag coefficient, CD “ 10´3, we find tdrag “ 1.4twave. Variations

in the planetary radius a or in the drag coefficient CD do not affect this result much. For

example, for a neutrally buoyant boundary layer CD “ rkvk{ logpz{z0qs
2, where kkv is the

von Karman constant, z is the height above the surface and z0 is the surface roughness length.

Because CD only depends logarithmically on z0, the drag timescale is not very sensitive to

the surface properties. This means we expect friction to generally be an important process

inside the boundary layer of rocky planets.

The most important exception is a hot H2 atmosphere, through its effect on the scale

height H. For example, repeating the above calculation with a hot H2-dominated atmo-

sphere, R “ RH2
and Teq “ 600 K, we find tdrag “ 40twave. This means surface friction is

far less effective in H2 atmospheres than in high MMW atmospheres.
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APPENDIX F

WIND SPEED SCALING FROM WORDSWORTH (2015)

To compare the results of Wordsworth (2015) with our GCM simulations we write Wordsworth’s

Equation 33 as

U0 “ 4σT 4
eq

τLW
2ζpsCD

R

cp
, (F.1)

where ζ ” 1{3. The above equation reduces to Wordsworth’s Equation 33 by plugging in his

Equation 12, i.e., by assuming a specific form for τ . We leave the equation in this general

form. We identify Wordsworth’s absorbed stellar flux p1´ AqF as 4σT 4
eq.

The nondimensional equations in Wordsworth (2015) are not affected. To find the surface

wind speed we solve his Equations 44 and 45 numerically to find T̃ and Ũ . We then convert

the nondimensional Ũ into a dimensional quantity using the above scale U0, i.e., |u| “ U0Ũ .
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APPENDIX G

NUMERICAL SOLUTION FOR THE RCS MODEL

The boundary conditions of the radiative-convective-subsiding (RCS) model are specified at

two different points, the tropopause and the surface. Instead of matching both boundaries

simultaneously we first guess a value of the nightside OLR, F pτ0q. Given a value of F pτ0q,

we can solve for all variables (Td, τ0, T pτq, and F pτq). Our guess will in general not satisfy

the nightside surface energy budget (Equation 3.21c), so we iterate until F pτLW q “ 0 is

satisfied. To iterate we use a bisection method, where the nightside OLR is bounded by

0 ď F pτ0q ď σT 4
eq (the limits correspond to a planet with zero and perfect day-night heat

redistribution).

We proceed as follows. Given a value of F pτ0q, Equations 3.25 and 3.22 can be rewritten

as an implicit equation for τ0,

2`
τ0
2

“

ˆ

1` τ0
2

˙ˆ

τLW
τ0

˙4β
«

e´pτLW´τ0q `

ż τLW

τ0

ˆ

τ 1

τLW

˙4β

e´pτ
1´τ0qdτ 1

ff

`
F pτ0q

σT 4
eq

(G.1)

We solve for τ0 using, again, a bisection method, where we note that 0 ă τ0 ă τLW . We

then use Equations 3.20 and 3.22 to find T pτ0q and Td:

T pτ0q “ Teq

ˆ

1` τ0
2

˙1{4

(G.2)

Td “ Teq

ˆ

1` τ0
2

˙1{4 ˆτLW
τ0

˙β

. (G.3)

Once we know Td we can find ω̄ (Equations 3.12 and 3.26). We then have three boundary

conditions that are specified at the upper boundary, the guessed F pτ0q, dF pτ0q{dτ “ 0, and

T pτ0q. We use SciPy’s VODE solver to integrate the WTG and Schwarzschild equations

(Equations 3.19) down to the nightside surface, which gives us the net surface flux F pτLW q.

We iterate until we satisfy the nightside surface budget, F pτLW q “ 0. After having solved

for T pτq we find the nightside surface temperature Tn using the nightside surface energy
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budget (cf. Robinson & Catling, 2012),

σT 4
n “ F´pτLW q

“ σT 4
eq
τ0
2
e´pτLW´τ0q `

ż τLW

τ0

σT pτ 1q4e´pτ
1´τ0qdτ 1. (G.4)
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Laliberté, F., Zika, J., Mudryk, L., et al. 2015, Science, 347, 540

Lecavelier des Etangs, A., Pont, F., Vidal-Madjar, A., & Sing, D. 2008, Astronomy and
Astrophysics, 481, L83

Leconte, J., Forget, F., Charnay, B., Wordsworth, R., & Pottier, A. 2013, Nature, 504, 268

Leconte, J., Wu, H., Menou, K., & Murray, N. 2015, Science, 347, 632

Lee, J.-M., Fletcher, L. N., & Irwin, P. G. J. 2012, Monthly Notices of the Royal Astronomical
Society, 420, 170

Li, J., & Goodman, J. 2010, The Astrophysical Journal, 725, 1146

125



Line, M. R., & Parmentier, V. 2016, The Astrophysical Journal, 820, 78

Line, M. R., Zhang, X., Vasisht, G., et al. 2012, The Astrophysical Journal, 749, 93

Liu, J., & Schneider, T. 2011, Journal of the Atmospheric Sciences, 68, 2742

Lorenz, E. N. 1955, Tellus, 7, 157

Madhusudhan, N., & Seager, S. 2009, The Astrophysical Journal, 707, 24

Makarov, V. V., Berghea, C., & Efroimsky, M. 2012, The Astrophysical Journal, 761, 83

Manabe, S., Smagorinsky, J., & Strickler, R. F. 1965, Monthly Weather Review, 93, 769

Matsuno, T. 1966, Journal of the Meteorological Society of Japan. Ser. II, 44, 25

Menou, K. 2012a, The Astrophysical Journal Letters, 744, L16

—. 2012b, The Astrophysical Journal, 745, 138

—. 2013, The Astrophysical Journal, 774, 51

Merlis, T. M., & Schneider, T. 2010, Journal of Advances in Modeling Earth Systems, 2,
doi:10.3894/JAMES.2010.2.13

Mills, S. M., & Abbot, D. S. 2013, The Astrophysical Journal Letters, 774, L17

Misra, A., Meadows, V., & Crisp, D. 2014, The Astrophysical Journal, 792, 61

Misra, A. K., & Meadows, V. S. 2014, The Astrophysical Journal Letters, 795, L14

Mitchell, J. L., Pierrehumbert, R. T., Frierson, D. M., & Caballero, R. 2009, Icarus, 203,
250

Mitchell, J. L., & Vallis, G. K. 2010, Journal of Geophysical Research, 115, E12008

Mitchell, J. L., Vallis, G. K., & Potter, S. F. 2014, The Astrophysical Journal, 787, 23

Morbidelli, A., Chambers, J., Lunine, J. I., et al. 2000, Meteoritics & Planetary Science, 35,
1309

Morton, T. D., & Swift, J. 2014, The Astrophysical Journal, 791, 10

Motalebi, F., Udry, S., Gillon, M., et al. 2015, Astronomy & Astrophysics, 584, A72

O’Gorman, P. A. 2010, Journal of the Atmospheric Sciences, 68, 75

O’Gorman, P. A., & Schneider, T. 2008, Journal of Climate, 21, 3815

Owen, J. E., & Mohanty, S. 2016, Monthly Notices of the Royal Astronomical Society, stw959

Parmentier, V., Showman, A. P., & Lian, Y. 2013, Astronomy & Astrophysics, 558, A91

126



Pascale, S., Gregory, J. M., Ambaum, M., & Tailleux, R. 2011, Climate Dynamics, 36, 1189

Pascale, S., Gregory, J. M., Ambaum, M. H. P., Tailleux, R., & Lucarini, V. 2012, Earth
Syst. Dynam., 3, 19

Pauluis, O. 2010, Journal of the Atmospheric Sciences, 68, 91

Pauluis, O., Balaji, V., & Held, I. M. 2000, Journal of the Atmospheric Sciences, 57, 989

Pauluis, O., & Dias, J. 2012, Science, 335, 953

Pauluis, O., & Held, I. M. 2002, Journal of the Atmospheric Sciences, 59, 125

Pavlov, A. A., Brown, L. L., & Kasting, J. F. 2001, Journal of Geophysical Research: Planets,
106, 23267

Peixoto, J. P., & Oort, A. H. 1984, Reviews of Modern Physics, 56, 365

—. 1992, Physics of Climate, 1992nd edn. (New York: American Institute of Physics)

Peixoto, J. P., Oort, A. H., De Almeida, M., & Tomé, A. 1991, Journal of Geophysical
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